
The Cryosphere, 6, 51–69, 2012
www.the-cryosphere.net/6/51/2012/
doi:10.5194/tc-6-51-2012
© Author(s) 2012. CC Attribution 3.0 License.

The Cryosphere

Comparison of MODIS-derived land surface temperatures with
ground surface and air temperature measurements in continuous
permafrost terrain

S. Hachem1, C. R. Duguay1, and M. Allard 2

1Interdisciplinary Centre on Climate Change and Department of Geography and Environmental Management,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
2Centre d’́etudes nordiques and Département de Ǵeographie, Université Laval, Qúebec, Qúebec G1K 7P4, Canada

Correspondence to:S. Hachem (hachemsonia@yahoo.fr)

Received: 29 April 2011 – Published in The Cryosphere Discuss.: 27 May 2011
Revised: 31 December 2011 – Accepted: 3 January 2012 – Published: 13 January 2012

Abstract. Obtaining high resolution records of surface tem-
perature from satellite sensors is important in the Arctic be-
cause meteorological stations are scarce and widely scattered
in those vast and remote regions. Surface temperature is the
primary climatic factor that governs the existence, spatial dis-
tribution and thermal regime of permafrost which is a ma-
jor component of the terrestrial cryosphere. Land Surface
(skin) Temperatures (LST) derived from the Moderate Res-
olution Imaging Spectroradiometer (MODIS) sensor aboard
the Terra and Aqua satellite platforms provide spatial esti-
mates of near-surface temperature values. In this study, LST
values from MODIS are compared to ground-based near-
surface air (Tair) and ground surface temperature (GST) mea-
surements obtained from 2000 to 2008 at herbaceous and
shrub tundra sites located in the continuous permafrost zone
of Northern Qúebec, Nunavik, Canada, and of the North
Slope of Alaska, USA. LSTs (temperatures at the surface
materials-atmosphere interface) are found to be better cor-
related withTair (1–3 m above the ground) than with avail-
able GST (3–5 cm below the ground surface). AsTair is most
often used by the permafrost community, this study focused
on this parameter. LSTs are in stronger agreement withTair
during the snow cover season than in the snow free season.
Combining Aqua and Terra LST-Day and LST-Nigh acquisi-
tions into a mean daily value provides a large number of LST
observations and a better overall agreement withTair. Com-
parison between mean daily LSTs and mean dailyTair, for all
sites and all seasons pooled together yields a very high cor-

relation (R = 0.97; mean difference (MD) = 1.8◦C; and stan-
dard deviation of MD (SD) = 4.0◦C). The large SD can be ex-
plained by the influence of surface heterogeneity within the
MODIS 1 km2 grid cells, the presence of undetected clouds
and the inherent difference between LST andTair. Retrieved
over several years, MODIS LSTs offer a great potential for
monitoring surface temperature changes in high-latitude tun-
dra regions and are a promising source of input data for inte-
gration into spatially-distributed permafrost models.

1 Introduction

The 2007 Intergovernmental Panel on Climate Change
(IPCC) reports a global temperature increase of 0.74◦C over
the last 100 yr. Observational records show that average tem-
perature in the Arctic has risen at almost twice the rate as the
rest of the world in the past few decades (Zhou et al., 2001;
Hinzman et al., 2005; IPCC, 2007). Near-surface air temper-
ature trends in the Arctic have been shown to be greater for
inland regions than coastal/ocean regions (Comiso, 2003).
There are clear signs that change is ongoing in many environ-
mental variables (Kane, 2005), including permafrost whose
temperature increase results in a deepening of the active layer
and thermokarst (Romanovsky et al., 2002). In the context
of greenhouse gas emissions, permafrost thawing could con-
tribute to the release of a significant amount of CH4 and
CO2 stored in organic frozen soils (Christensen et al., 2004;
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Serreze et al., 2000). It is therefore important to be able to
monitor the evolution of the surface thermal regime of per-
mafrost at regional and global scales. However, climate sta-
tions that provide near-surface air and ground surface tem-
peratures are scarce and widely scattered in the vast Arctic
regions. Spatial interpolation may be inaccurate when few
point measurements are available. As a result, a strong in-
terest is being expressed by the permafrost science commu-
nity to use satellite-derived land surface temperature (LST)
either as a replacement or in conjunction with more spatially
limited ground surface temperature (GST) or near-surface air
temperature (Tair) from meteorological stations in permafrost
models (Marchenko et al., 2009; Heim et al., 2011). Here we
focused on the comparison of these three parameters to eval-
uate the applicability of LSTs for permafrost mapping.

There has been interest for some time already in using
spaceborne LST measurements for understanding biologi-
cal, hydrological and climatological systems which reflect
the results of surface-atmosphere interactions and energy ex-
changes between the atmosphere and the ground, and for cli-
mate monitoring at high latitudes. A few studies have uti-
lized LST obtained from satellite sensors (NOAA AVHRR,
GOES, and SSM/I) to observe temperature variability and
trends in Boreal and Arctic regions (Comiso, 2003; Goı̈ta et
al., 1997; Han et al., 2004; Mialon et al., 2007; Traoré et
al., 1997). LST products derived from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) are increasingly
being used to study various land components and processes
at northern latitudes. Recent applications include vegetated
areas (Coops et al., 2009), CO2 exchange (Schubert et al.,
2010), and permafrost at regional (Hachem et al., 2009) and
local scales (Langer et al., 2010; Westermann et al., 2011).
MODIS 1 km LST products have been cross-compared or
validated against ground-based temperature measurements
over homogeneous surfaces such as lakes (Wan et al., 2002a,
b, 2004; Hook et al., 2007; Wan, 2008; Crosman and Horel,
2009), rice crops (Coll et al., 2005, 2009; Wan et al., 2004;
Galve et al., 2007), silt-playas (Snyder et al., 1997), and
densely vegetated areas (Wan, 2008). The 1 km products
have also been validated with the alternative radiance-based
(R-based) method over a lake, rice crops (Wan and Li., 2008;
Coll et al., 2009) and dense forest (Coll et al., 2009). In addi-
tion, comparisons have been conducted betweenTair at me-
teorological stations and MODIS 5 km LST products and up-
scaled to 25 km around the globe (Bosilovitch, 2006). Most
validations/comparisons have been made at mid- and low-
latitude sites. Recently, Langer et al. (2010) and Wester-
mann et al. (2011) compared summertime MODIS LST data
with those obtained with a thermal imaging system installed
on a mast 10 m above the ground at two permafrost sites.
They report differences of less than 2 K between the two
sets of measurements under clear-sky conditions, with oc-
casionally larger differences when clouds are not properly
detected in the MODIS LST product. Validations with ther-
mal infrared radiometers made on several homogeneous sites

within a 1 km pixel area, revealed that the differences found
between the LST and the field-based radiometer measure-
ments come from essentially two sources: undetected clouds
(Westermann et al., 2011) and surface heterogeneity within
the pixel (Klene et al., 2001).

In regions underlain by permafrost, GST is the principal
variable that drives the thermal regime of the ground; it is
estimated in spatially distributed models simulating the ther-
mal regime of permafrost. To date, however, temperature
fields used as input in those models have largely been de-
rived through spatial interpolation ofTair measurements from
a limited number of geographically scattered meteorological
stations (e.g. Hinzman et al., 1998; Shiklomanov and Nel-
son, 2002; Sazonova and Romanovsky, 2003) or, more re-
cently, have been provided by coarse resolution (e.g. 2.5◦ lat-
itude× 2.5◦ longitude) atmospheric reanalysis data such as
NCEP/NCAR (Shiklomanov et al., 2007).Tair is still widely
used for permafrost mapping because of the scarcity of sites
where GST is measured; most often, corrections such as n-
factors are applied to account for surface factors, particularly
snow cover. But evenTair data from meteorological stations
are either not spatially representative (field) or too coarse (re-
analysis) for regional permafrost studies. MODIS LST prod-
ucts are of particular interest since they offer the potential to
retrieve LST on a daily basis, over large areas, and at a spatial
resolution of∼1 km.

The primary objective of this research was to compare the
1 km LST product (i.e. the clear-sky “skin” temperatures) re-
trieved from the MODIS sensor aboard the Terra and Aqua
satellite platforms to GST andTair measured day and night,
year-round, at meteorological stations to establish how close
the LSTs are to these ground-based measurements. Both
GST andTair are compared herein with MODIS LSTs be-
cause GSTs drive in fact the thermal regime of permafrost;
howeverTair is most often available from meteorological sta-
tions and is therefore also used by permafrost specialists and
modelers. The lack of GST measurements is a problem in
the Arctic and, similar to ice surfaces,Tair had to be used
for verification of LSTs (Hall et al., 2004). One purpose
of this study is to verify the correspondence between me-
teorological station data and MODIS data (as in Bosilovich,
2006, for 5 km2 LSTs) in order to establish a more general
relation than through validation using thermal radiometers or
imaging systems which, unlikeTair, are limited temporally
(summer only) and spatially (2–3 test sites) (e.g. Langer et
al., 2010; Westermann et al., 2011). The sites we use for
comparisons are located in high latitude regions character-
ized by heterogeneous tundra surface types in the continuous
permafrost zone of Northern Québec, Canada, and the North
Slope of Alaska, USA.

Tair is measured in ventilated shelters located 1–2 m above
the ground at meteorological stations. GST is defined as
the temperature at the surface of the ground. In most cases,
that surface is covered by different types of materials which
are the organic layer, vegetation and snow in winter, often

The Cryosphere, 6, 51–69, 2012 www.the-cryosphere.net/6/51/2012/



S. Hachem et al.: Comparison of MODIS-derived land surface temperatures 53

altogether referred to as the buffer layer. LSTs are measured
from satellites that can only observe the surface of the Earth,
which corresponds, in fact, to the various above mentioned
materials. LSTs are different from bothTair and GSTs and,
as a result, the comparisons made here attempt to evaluate
the degree of correspondence between these three parame-
ters. We conclude this paper with a summary of the key find-
ings of this research and implications for permafrost studies.

2 Data and methods

2.1 Rationale for the selection of MODIS on the terra
and aqua platforms

2.1.1 Land surface temperature retrieval

The LSTs from the MODIS sensor are available from
NASA’s Warehouse Inventory Search Tool website1. The V5
level 3 MODIS LST (MOD11A1 and MYD11A1) products
were used in this study. LST is retrieved from MODIS sen-
sors based on the use of the day-night split-window algorithm
(Wan and Dozier, 1996) where two unknowns need to be de-
termined: the emissivity of the surfaces under consideration
in the two adjacent spectral windows (channels around 11
and 12 µm) and the atmospheric transmission. As MODIS
acquires several data simultaneously in multiple channels,
the atmospheric transmission is derived directly from the at-
mospheric concentrations contained in the MOD07L2 atmo-
spheric product (Wan, 2007). The emissivity of land surfaces
cannot be directly retrieved by the sensor, but other avail-
able MODIS-derived products are used to estimate/calculate
emissivities as a function of time: land cover (MOD12Q1)
and daily snow cover (MOD10L2) products (Wan, 2007).
Then MODIS LST products are generated from measure-
ments in the thermal infrared of channel 31 (10.78–11.28 µm)
and channel 32 (11.77–12.27 µm) (Wan and Dozier, 1996;
Wan et al., 2002; Wan, 2008). With the MODIS sensors
aboard NASA’s Aqua and Terra satellites, maximum surface
temperature errors have been reported to range between 2
and 3 K, with a standard deviation of 0.009 due to emissivity
errors (Wan and Li, 1997).

2.1.2 High temporal and spectral resolution, and
moderate spatial resolution

The level 3 MODIS LST products provide only two values
for each satellite (Terra and Aqua) and MODIS sensors have
a 1 km spatial resolution in the thermal infrared. The twice-
daily temporal resolution is of particular interest as it allows

1https://wist.echo.nasa.gov/api/; names of products
used: MODIS/TERRA LAND SURFACE TEMPERA-
TURE/EMISSIVITY DAILY L3 GLOBAL 1 KM SIN GRID
V005 and MODIS/AQUA LAND SURFACE TEMPERA-
TURE/EMISSIVITY DAILY L3 GLOBAL 1KM SIN GRID
V005

one to monitor the evolution of surface temperatures through-
out the year. At the pixel scale (within a 1 km2 grid-cell),
however, variations in topography, surface materials, vegeta-
tion and snow cover can influence the temperatures measured
from spaceborne thermal sensors. As the Level 3 MODIS
LST product is distributed with two sets of data named LST-
Day and LST-Night, the frequency of acquisition can be as
much as 4 times per day if Terra and Aqua data are combined.
Thus, the more frequent coverage can improve the calcula-
tion of a mean daily LST, which is of particular interest to
permafrost mapping and modeling efforts. It is important
to note that, at high latitudes with large seasonal variations
in daylight duration, the LST-Day and LST-Night MODIS
name convention is not related to daylight but rather with as-
cending (LST-Day) and descending acquisition modes (LST-
Night).

Although, the first NOAA satellites were launched in
1979, providing a long time series for studying Arctic climate
change over a period of more than 25 yr (Comiso, 2003),
a temporal drift is known to occur during the lifetime of
NOAA satellites which can result in a local overpass time
variation of up to 4 h, especially in the afternoon (Traoré et
al., 1997) leading to a significant cooling of the LST mea-
surements (Gleason et al., 2002, Jin and Treadon, 2003).
However, Terra and Aqua satellites, which have been active
since 2000 and 2002, respectively, do not suffer from such
drift. This choice thus directs the research towards the evalu-
ation of MODIS LST for surface temperature mapping in the
Arctic rather than for making a time series analysis of trends
and variability in surface temperatures. In the following sec-
tions LST refers to LST MODIS products.

2.2 Location of study sites and data description

The ground-based meteorological stations for this study were
located in tundra areas underlain by continuous permafrost,
north of treeline, in Northern Québec (Canada) and North-
ern Alaska (USA). The characteristics of each site for which
GST andTair were compared to LSTs are given in Table 1.
At some stations GST andTair from meteorological stations
were only available until the end of 2003, for other stations
until 2007 or 2008.

2.2.1 Northern Québec (Nunavik) stations, Canada

Five meteorological stations within three Inuit villages
recorded hourly GST (3–5 cm below ground) andTair (1–
2 m above ground) corresponding to Terra and Aqua overpass
times during the period 2000–2008 (Fig. 1). Three stations
are located near the village of Salluit: Sila, Tiki (for Tikiraat-
siaq), and the Salluit Airport (SalA in Table 1). The fourth
station is situated in Kangiqsualujjuaq on the southeast coast
of Ungava Bay and the fifth station, operated by Environment
Canada, is located in Kuujjuaq.
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Table 1. Characteristics of the field sites used as reference stations.

Station Name Station coordinates Height Tair (m) Depth GST (cm) Elevation (m) Vegetation cover Soil Characteristics
Latitude Longitude /frequency of /frequency of

(N) (W) measure ments measure ments: *
hourly

Alaska

West Dock 70◦22′50′′ 148◦33′39′′ 1 – 7–6 Marshy drained lake basin Organic overlying layers
(WD) tundra of fine sans and silts
Betty Pingo wetland 70◦16′46.3′′ 148◦53′44.5′′ 1 Surface/h 12 Wet sedge tundra and shrub Organic overlying layers
(BPW) tundra of fine sand and silts
Betty Pingo upland – Surface/h Marshy drier more tundra
(BPU)
Franklin Bluff 69◦53′31.8′′ 148◦46′4.8′′ 1 Surface/h 78 Grasses and sedges rooted in Organic materials of variable
(FB) mosses and lichens thickness overlie silt loam textured

mineral soils poorly drained
Sagwon 69◦25′27.5′′ 148◦41′45.1′′ 1 Surface/d 299 Tussock tundra Loamy with peaty surface
(SAG) layer poorly drained
West Kuparuk 69◦25′34.3′′ 150◦20′25.3′′ 1 2/d 158 Moist acidic tundra, Loamy with peaty surface
(WK) tussock tundra layer poorly drained
Upper Kuparuk 68◦38′24.5′′ 149◦24′23.4′′ 1 5/d 774 Tussock tundra –
(UK)
Imnavait Basin 68◦36′58.6′′ 149◦18′13.0′′ 1 Surface/d 937 Tussock tundra mosses Soils cold wet poorly drained sil
(IB) lichens shrubs loams with a high organic content

and include many glacial erratic
Imnavait Ridge 68◦37′27.9′′ 149◦19′22.3′′ – Surface/d – – –
(IR)
Ivotuk Shrub 68◦29′12′′ 155◦44′34′′ 1 2.5/3h

570
Shrub lichen tussock –

(IvShrb)
Ivotuk Moss (IvMoss) 68◦26′58.6′′ 155◦44′71′′ 1 1/3h Moss lichen tussock –

Québec

Sila 62◦11′41.9′′ 75◦38′12.8′′ 2 3/h 45 Moss lichen tussock Organic overlying very shallow
thickness of silt on till

Tiki 62◦12′14.1′′ 75◦41′11.6′′ 2 3/h 35 lichen Bed rock, nor organic matter
Salluit airport 62◦11′1.44′′ 75◦39′54.9′′ 2 – – – Rock, asphalt
(SalA)
Kangiqsuallujjuaq 58◦41′7.83′′ 65◦55′6.43′′ 2 3/h 110 Lichen and shrub of birch Organic overlying shallow
(Kangiq) till on bed rock
Kuujjuaq 58◦06′31.62′′ 68◦24′42.44′′ 1.5 – 39 – –
(Env. Can.)

* h : measured each hour; d : mean daily temperature; – No Data.

Northern Qúebec sits on the Canadian Shield. The soils
overlying the glacially eroded bedrock are generally thin.
Landforms of glacial origin are characterized by till-covered
rocky plateaus, coastlines with sands of marine origin, and
coastal valley bottoms with glaciomarine clays. At Salluit,
vegetation on bedrock and dry soils is composed of mosses
and lichens whereas herbaceous plants dominate in the val-
leys over fine grained soils. Occasional scattered shrubs dot
slopes that are sheltered from the wind and covered by snow
in the winter. Aerial views show a predominance of mosses
and lichens interspersed with islands of bare soil or low
shrubs. The meteorological stations at Salluit (Sila, Tiki and
SalA) are situated in environments exposed to wind, which
reduces the accumulation of winter snow to a thin (5–10 cm)
cover. The Sila stationis located 1.75 km from the coast at
an altitude of 45 m. It is installed on a small till hill sur-
rounded by clay soils. Tiki is located 110 m from the coast
on a rocky promontory advancing into a fjord at an altitude of
35 m. The area surrounding the meteorological station con-
sists primarily of lichen-covered bedrock and thin gravelly

soils. The Salluit airport meteorological station (SalA) is lo-
cated on the top of a plateau surrounding the village at an alti-
tude of 225 m. The area around the tower consists of bedrock
covered with patches of till. Kangiqsualujjuaq is a village at
the limit between continuous and discontinuous permafrost.
Trees with upright growth forms become more prevalent on
hill slopes about one kilometer south of the station. Palsas are
found at the southern edge of the village. The area immedi-
ately surrounding the Kangiqsualujjuaq meteorological sta-
tion is composed of bedrock and till that support lichens and
prostrate scrub, i.e. dwarf birch 20–30 cm high. (Bouchard,
1990; Gah́e, 1987) colonizing a thin till overlying gneissic
rock (Table 1). The Kuujjuaq meteorological station is lo-
cated in an open forest and shrub region at an elevation of
39 m a.s.l.; the station is on gravelly soils and lichen covered
bedrock outcrops occur in the surroundings.
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Fig. 1. Location of field sites and MODIS tiles for the North Slope of Alaska and Nunavik (Québec) in a Lambert conic conformal projection.

2.2.2 Stations on the North Slope of Alaska, USA

Sites in the Kuparuk River watershed and adjacent areas ex-
tend along a 250 km north-south ecological transect (Fig. 1).
The transect is characterized from north to south by moss
and lichen vegetation at Betty Pingo (northernmost station),
herbaceous vegetation at Franklin Bluff and shrub vegeta-
tion at Sagwon (southernmost station). All data from the
Alaskan stations were retrieved from the Water and Environ-
mental Research Center (WERC) website2 where an in-depth
description of the sites can be found. In addition, Jia and
Epstein. (2004) provide a general description of the Alaska
North Slope region in which the Greater Kuparuk River basin
is located.

2.2.3 GST andT air measurements at stations

The GST is measured at a depth of 3–5 cm in the ground
(for the thermistor to be protected from bad weather and di-
rect solar radiation). Six of the ground-based stations were
equipped with data loggers measuring hourly ground temper-
atures (Sila, Tiki, Betty Pingo Upland, Betty Pingo Wetland,
Franklin Bluff and Sagwon) while at Ivotuk moss soil tem-
peratures were recorded every 3 h. At West Kuparuk and Im-
navait Basin only daily average temperatures were recorded.

2http://www.uaf.edu/water/

There were no GST data available at West Dock, Upper Ku-
paruk, Ivotuk Shrub, Salluit Airport (SalA), and Kuujjuaq
(Table 1).Tair was measured at 1–3 m above the ground for
all stations, except at Betty Pingo Upland where it is not mea-
sured. When hourly measurements coincident with the time
of MODIS data acquisitions were available, it was possible
to compare theTair and GST measurements with those ac-
quired at the time of Terra and Aqua overpasses above the
stations.

2.3 Location of MODIS pixels corresponding to the
meteorological stations

We assume that the LST values correspond to measurements
of the ∼1 km2 pixel footprint, taking into account poten-
tial geolocation errors of up to 50 m for the center of the
footprint and some variations in footprint area (Wan, 2007;
MOD11 User guide). These small errors can contribute to
lengthen somewhat the footprint at high latitudes where no
Ground Control Points (GCPs) were tested (Wolfe et al.,
2002). MODIS pixels centered on or located close to the
meteorological stations were selected for temperature com-
parisons. The presence of water bodies of different sizes
in the proximity of certain stations can result in a mixed
MODIS pixel over a given station. For example, a 1 km2

pixel containing a water fraction larger than that of land can
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introduce some difficulties when comparing a satellite pixel
with a measurement from the meteorological station which
is located solely on land.

For meteorological stations located along the shore of wa-
ter bodies that have an area greater than 1 km2 (West Dock,
Franklin Bluff, Western Kuparuk, Imnavait Basin, Tiki, and
Kangiqsuallujjuaq), two MODIS pixels, one which contains
the geographic coordinates of the station (“1” is added after
the station name) and another one within 2 km of the station
(“2” is added after the station name), were chosen (Table 2).

For the Northern Qúebec sites, the water fraction within
each MODIS pixel was determined using the Canada-wide
1 km water fraction data product from National Topographic
Data Base Maps (NTDB) (Fernandes et al., 2002). This
raster product gives a percentage for the fraction of water
contained in each 1 km2 pixel. The surface category types
were established using NTDB maps at the scale of 1/50 000
and 1/250 000. “The majority of NTDB source maps was
surveyed within the growing season (post snow melt) and
should therefore be relatively unbiased during the grow-
ing season in the absence of drought or severe precipitation
events”3. Only the open water category was retained for the
determination of water fraction within each 1 km grid cell
(i.e. humid zones, wetlands, and small ponds are excluded).
Thus, one must keep in mind that the LST for some sites
may be influenced by variations in surface wetness/moisture
(seasonally and annually) even if the water fraction given in
the NTDB raster product corresponds to 0 %. MODIS pix-
els corresponding to the coordinates of the stations Tiki, Sila
and Salluit airport contained 100 %, 9.7 %, and 0 % of wa-
ter, respectively. The pixel containing the Sila tower is called
Sila1, the one that includes the Tiki station is referred to as
Tiki1 and the one with Salluit airport station is called SalA1
(Table 2). The pixel named Tiki2 is situated one pixel south
of Tiki1 and contains less water (17.5 %). At Kangiqsual-
lujjuaq, the pixel centered on the station has a water fraction
value of 10.4 % (Kangiq1). An adjacent pixel with 8.9 % wa-
ter coverage was chosen (Kangiq2) to test the reproducibility
of measurements over similar terrain further away from the
reference station. At Kuujjuaq, the pixel corresponding to
the village coordinates had 0 % water on the Water fraction
map (site Kuujjuaq1). Unfortunately, it had no LST values
recorded from 2000 to 2008. Thus, two other pixels were
chosen with also 0 % of water. One is situated at the pixel
on the left and down of the original position (Kuujjuaq2)
whereas the second one is on the right (Kuujjuaq3).

A map of land surface types of the North Slope of Alaska
was used as an aid for selecting pixels corresponding to sta-
tions located in the Greater Kuparuk River watershed. The
map used is the Land-Cover Map of the North Slope of
Alaska3 which represents soil and vegetation types. Nine
categories were found in this map; one of them corresponded

3This map is accessible via the NSIDC website:
http://nsidc.org/data/arcss020.html

to “water”. The map was derived from the classification of
a mosaic of Landsat MSS images resampled at 100× 100 m
spatial resolution. The Landsat images were acquired during
the snow-free period. Water bodies could readily be iden-
tified and water fraction determined for each MODIS pixel
(i.e. 100 Landsat pixels within one MODIS pixel). The wa-
ter fraction, expressed in percent, was determined for each
site: West Dock (WD1: 57.5 %−WD2: one pixel south with
28.1 % water), Betty Pingo Upland (BPU1: 1.5 %) and Wet-
land (BPW1: 17.9 %), Upper Kuparuk (UK1: 2.2 %), West
Kuparuk (WK1: no standing water; but as the vegetation is
very wet, another pixel with a lesser percentage of wet vege-
tation was taken – WK2: one pixel north with 7.2 % water).
For the same reason, two pixels were selected for Franklin
Bluff (FB1 and FB2) even though both of them had 0 % wa-
ter fraction reported (Table 2).

2.4 Statistics used for comparisons between LST, and
GST andT air measurements at meteorological
stations

Three statistical parameters were computed to compare LST
with GST andTair from meteorological stations: the Pear-
son correlation coefficient (R), the mean difference (MD)
and the standard deviation of the MD (SD).R was used as
a measure of the temporal coherence (co-variation in time)
between LST and station temperature measurements (GST
andTair). The mean difference (Tair – LST or GST – LST)
was used as a measure of the difference between the two sets
of data. It is equal to zero when the mean LST is equal to
the Tair mean or the GST mean. If the MD is negative, the
mean LST is larger (warmer) than the meanTair or GST. In-
versely, if the MD is positive, then the mean LST is lower
than the meanTair or GST. The SD was used to verify how
large the variability around the mean MD was. It is impor-
tant to note prior to analyzing the results that the LSTs are
being verified/compared, not validated, against the tempera-
ture measurements from the meteorological stations. Strictly
defined, validation would require the deployment of thermal
infrared radiometers (TIR) within the 1 km2 resolution of the
MODIS pixels that encompass the field sites.

The two overpass times for each satellite allow for the
possibility of four temperature measurements per day, under
clear-sky conditions. Each MODIS LST data series (Aqua-
LST-day, Aqua-LST-night, Terra-LST-day, and Terra-LST-
night) was compared with GST andTair taken at each sta-
tion when possible within the hour of the satellite overpass.
To avoid any confusion, overpass hours corresponding to the
LST-Day are called daytime, the ones corresponding to LST-
Night are nighttime, and the mean of LST-Day and LST-
Night is considered as the daily average. At least one mea-
surement of LST-Day (either from Aqua or Terra) and one
measurement of LST-Night (either from Aqua or Terra), were
required to calculate a daily average for LST, otherwise there
was no daily value calculated for this day. Thus, in some
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Table 2. Correspondence between stations and MODIS pixels used for comparison. Pixel description refers to the coordinates of the station
within the tile and the NTDB superimposed into a Geographical Information System. % of water corresponds to the NTDB value, if it is
small we kept the pixel including the station coordinates. When the percent of water is high, we took the closest pixel with less % of water.
Example: For BPW, the twelve closest pixels to the station had more than 17.9 % of water. As a result, we kept the pixel including the station
coordinates.

Station Name Time period of station Pixel Name Pixel center coordinate MODIS tile Pixel position description
measurements Latitude (N) Longitude (W)

Alaska

West Dock Tair: 03/02/2000 to 29/10/2008 WD1 70◦22′50′′ 148◦33′39′′ h13v01 Near the coast (57.5 % water)
WD2 70◦22′20.33′′ 148◦34′16.24′′ h13v01 One pixel south of WD1 (28.1 % water)

Betty Bingo (upland) – GST GST: 01/01/2000 to 19/10/2008 BPU1 70◦16′46.3′′ 148◦53′44.5′′ h12v01 One pixel of water (1.5 % water), same pixel kept
Betty Pingo (wetland) – Tair Tair: 01/01/2000 to 31/12/2008 BPW1 70◦16′46.7′′ 148◦53′46′′ h12v01 Twelve pixels of water around the station

(17.9 % water), same pixel kept
Eastern Kuparuk Tair: 01/01/2000 to31/12/2007 FB1 69◦53′31.8′′ 148◦46′4.8′′ h12v02 Close to a river (60 % of wet graminoid)
(Franklin Bluff)

GST: 29/04/2001 to 31/12/2007 FB2 69◦53′27.12′′ 148◦46′59.95′′ h12v02 One pixel east of FrB1 (50 % of wet graminoid)
Eastern Kuparuk Tair: 01/01/2000 to 31/12/2008 SAG1 69◦25′27.5′′ 148◦41′45.1′′ h12v02 No water, same pixel kept
(Sagwon)

GST: 01/01/2003 to 28/12/2008
West Kuparuk Tair: 25/04/2000 to 22/09/2008 WK1 69◦25′34.3′′ 150◦20′25.3′′ h12v02 No water, same pixel kept

GST: 25/04/2000 to 16/09/2008 WK2 69◦26′09.62′′ 150◦19′47.70′′ h12v02 One pixel north west of WK1 (7.2 % water)
Upper Kuparuk Tair: 01/03/2000 to 14/09/2008 UK1 68◦38′24.56′′ 149◦24′23.4′′ h12v02 One pixel of water (2 % water), same pixel kept
Imnavait Basin Tair: 01/01/2000 to 31/12/2008 IB1 68◦36′58.6′′ 149◦18′13′′ h12v02 No water, same pixel kept

GST: 01/01/2000 to 25/10/2007 IB2 68◦37′2.7′′ 149◦19′2.3′′ h12v02 One pixel north west of IB1 (no water)
Ivotuk Shrub Tair: 01/01/2000 to 31/12/2004 IvShrb1 68◦29′12′′ 155◦44′34′′ h12v02 No water, same pixel kept
Ivotuk Moss Tair: 01/01/2000 to 31/12/2004 IvMoss1 68◦28′49.2′′ 150◦44′42.6′′ h12v02 No water, same pixel kept

Québec

Sila Tair/GST 05/08/2002 to 13/10/2003 Sila1 62◦11′41.9′′ 75◦38′12.8′′ h14v02 Near the coast (9.7 % water), same pixel kept
Tiki Tair/GST 30/07/2002 to 13/10/2003 Tiki1 62◦12′14.1′′ 75◦41′11.6′′ h14v02 In the water (100 % water)

Tiki2 h14v02 One pixel south of Tiki (17.5 % water)
Salluit airport Tair: 28/07/2002 to 14/10/2007 SalA1 62◦11′1.44′′ 75◦39′54.9′′ h14v02 No water, same pixel kept
Kangiqsuallujjuaq Tair: 05/06/2001 to 02/11/2004 Kangiq1 58◦41′28.2′′ 65◦55′23.16′′ h14v03 Near the coast (10.4 % water)

Kangiq2 h14v03 One pixel right (8.9 % water)
Kuujjuaq Tair: 01/01/2000 to 31/12/2008 Kuujjuaq1 58◦06′31.62′′ 68◦24′42.44′′ h14v03 This pixel containing the station had no LST values:

Kuujjuaq2 h14v03 One pixel right and one down (no water)
Kuujjuaq3 h14v03 One pixel left (no water)

1:pixel including station; 2 or 3: other pixel.

cases, the mean daily LST was determined using the LST-
Day retrieved by Aqua and the LST-Night obtained by Terra,
and vice-versa. The intent was to have the maximum num-
ber of LST measurements per day, over a 24 h period, pro-
viding for the calculation of a mean daily temperature that
closely approaches the mean daily temperature measured at
the ground stations.

Firstly, hourly comparisons were made to allow a verifi-
cation of the LST-day and the LST-night for Aqua and Terra
separately.R, MD and SD values between each LST data
series and the hourly temperatures at stations when available
(14 pixels and 10 stations in Alaska, and 6 pixels and 4 sta-
tions in Qúebec forTair; 5 pixels and 4 stations in Alaska, and
2 pixels and 2 stations in Québec for GST, Tables 1 and 2),
were calculated. Secondly, mean daily temperatures (from
the previous stations forTair; and 5 more pixels and 4 more
stations with daily averages for GST, Tables 1 and 2) were
compared with “daily” Terra and “daily” Aqua LSTs (aver-
age LST-day and LST-night) individually. Thirdly, the daily
average temperatures were compared with the daily LSTs
from Terra and Aqua averaged. The results from these three
comparisons are showed on Figs. 2–4 and in Tables 5 and
7. Finally, comparisons were also made seasonally (snow-

free and winter seasons) and on an annual basis (Fig. 5 and
Table 6).

To estimate of first day and last day of snow presence on
the ground in the two study areas, IMS (Interactive Multi-
sensor Snow and Ice Mapping System) images of snow ex-
tent obtained from the National Snow and Ice Data Center
(NSIDC) archive ftp site4 were examined. For the nine years
of this study (2000–2008), the average last day of snow pres-
ence was 14 June in Alaska and 23 June in Northern Québec,
while that of the first day of snow on the ground was 27
September in Alaska and 3 October in Québec.

All cited times are local times. As indicated in Table 3,
the two satellites pass more frequently over Alaska between
10:00 and 12:00 LT and over Northern Québec between
11:00 and 13:00 LT. At their ascending overpasses (LST-
Day), the sensors retrieve LSTs from the warmest hours of
the day (24 h). During their descending overpasses (LST-
Night), Aqua passes over Alaska between 00:00 and 02:00
and over Northern Qúebec between 02:00 and 03:00 (coldest
hours of the day), while Terra passes over Alaska between
19:00 and 21:00 and over Northern Québec between 21:00

4ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02156/
images/

www.the-cryosphere.net/6/51/2012/ The Cryosphere, 6, 51–69, 2012

ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02156/images/
ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02156/images/


58 S. Hachem et al.: Comparison of MODIS-derived land surface temperatures

 51

Fig. 2. Relation between mean daily MODIS LST (combined Terra and Aqua) and mean 
daily GST at (a) Betty Pingo Upland (BPU1), (b) Franklin Bluff (FB1), (c) Western 
Kuparuk (WK1), and (d) Sila (Sila1). 

 

 

 

 

 

 

Fig. 2. Relation between mean daily MODIS LST (combined Terra and Aqua) and mean daily GST at(a) Betty Pingo Upland (BPU1),(b)
Franklin Bluff (FB1),(c) Western Kuparuk (WK1), and(d) Sila (Sila1).

and 22:00. In reality, overpass times are not on the hour.
As a result, the satellite overpass times were rounded to the
nearest full hour (within 30 min) to simplify the compari-
son with station measurements. For example, satellite data
acquired between 10:30 and 11:30 are used for comparison
with hourly station measurements at 11:00.

3 Results

LSTs are not continuously retrieved from MODIS so that
many consecutive days are without values. This is due to last-
ing cloudy conditions over the study areas (Table 4). For the
period when only Terra was in orbit (2000–2001), cloudless
days accounted for only 5 to 19 % (average of 12 %) and 23
to 32 % (average of 28 %) of the MODIS observations over

Northern Qúebec and Alaska, respectively, depending on the
location of the meteorological stations. When MODIS ob-
servations from both Terra and Aqua became available, start-
ing in 2002, the percentage of cloudless days increased to
20 % on average over the Québec stations and about 46 %
over the stations located in Alaska. On average, only 33 days
of daily LST values were available during each snow-free
season from 2000 to 2008 over Alaska and 22 over Québec.
During the snow cover period, 99 such days were retrieved
on average over Alaska and 44 over Québec. This low count
is explained by the high cloudiness over the Arctic, more so
in summer than in winter (Eastman and al., 2010). The low
count in each individual season limits the use of the LST for
calculating directly freezing and thawing indices or n-factors.
Hachem et al. (2009) used a simple sinusoidal model to fill
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Table 3. Frequency of Aqua and Terra satellite overpasses within different hours above the field stations during the period of study (2000–
2008). The most frequent overpass times for the different stations are given in bold.

Aqua overpass hours Terra overpass hours
Day Time (LST-Day) Night time (LST-Night) Day time (LST-Day) Night time (LST-Night)

Pixels Over 9 10 11 12 13 14 0 1 2 3 4 5 10 11 12 13 14 15 18 19 20 21 22 23
Alaska

WD1 0.13 0.25 0.21 0.26 0.10 0.05 0.13 0.35 0.18 0.19 0.11 0.05 0.07 0.29 0.25 0.11 0.10 0.18 0.09 0.25 0.28 0.28 0.09 0.02
WD2 0.13 0.25 0.22 0.27 0.09 0.05 0.13 0.34 0.18 0.18 0.12 0.04 0.07 0.28 0.26 0.11 0.09 0.17 0.09 0.25 0.29 0.28 0.08 0.02
BPU1 0.13 0.30 0.20 0.21 0.11 0.04 0.14 0.36 0.17 0.18 0.11 0.04 0.07 0.27 0.23 0.10 0.13 0.18 0.10 0.25 0.29 0.27 0.08 0.01
BPW1 0.13 0.30 0.20 0.21 0.11 0.04 0.14 0.36 0.18 0.18 0.10 0.04 0.07 0.27 0.23 0.10 0.13 0.19 0.10 0.25 0.29 0.27 0.08 0.01
FB1 0.10 0.28 0.23 0.25 0.10 0.03 0.17 0.38 0.17 0.16 0.08 0.03 0.06 0.32 0.24 0.11 0.13 0.14 0.08 0.26 0.27 0.26 0.11 0.02
FB2 0.10 0.30 0.22 0.23 0.11 0.04 0.16 0.37 0.17 0.17 0.10 0.04 0.06 0.33 0.22 0.09 0.14 0.15 0.08 0.26 0.28 0.26 0.10 0.02
SAG1 0.06 0.30 0.29 0.22 0.09 0.04 0.18 0.39 0.16 0.15 0.08 0.03 0.07 0.35 0.24 0.10 0.13 0.11 0.05 0.29 0.30 0.25 0.10 0.02
WK1 0.06 0.29 0.28 0.20 0.10 0.06 0.19 0.40 0.15 0.15 0.07 0.03 0.07 0.35 0.20 0.10 0.17 0.12 0.06 0.30 0.30 0.24 0.09 0.01
WK2 0.07 0.29 0.27 0.21 0.11 0.06 0.18 0.40 0.15 0.16 0.07 0.04 0.07 0.35 0.20 0.09 0.16 0.12 0.06 0.31 0.29 0.24 0.09 0.01
UK1 – 0.30 0.35 0.22 0.09 0.04 0.18 0.41 0.15 0.16 0.08 0.02 0.11 0.44 0.23 0.08 0.11 0.03 – 0.27 0.36 0.26 0.10 0.02
IB1 – 0.30 0.36 0.21 0.10 0.02 0.17 0.41 0.16 0.16 0.08 0.02 0.10 0.44 0.23 0.08 0.12 0.03 – 0.27 0.37 0.25 0.09 0.02
IB2 – 0.31 0.37 0.20 0.10 0.02 0.16 0.40 0.17 0.16 0.08 0.02 0.10 0.43 0.25 0.09 0.11 0.03 – 0.26 0.37 0.26 0.09 0.02
IvShrb1 – 0.25 0.29 0.20 0.11 0.15 0.18 0.40 0.16 0.16 0.07 0.03 0.09 0.34 0.24 0.08 0.22 0.03 – 0.22 0.34 0.29 0.12 0.03
IvMoss1 – 0.25 0.30 0.20 0.10 0.15 0.18 0.41 0.16 0.16 0.06 0.03 0.08 0.34 0.24 0.08 0.23 0.03 – 0.21 0.34 0.31 0.12 0.02

Pixels Over 9 10 11 12 13 14 0 1 2 3 4 5 10 11 12 13 14 15 18 19 20 21 22 23
Québec

Sila1 – – 0.19 0.40 0.36 0.06 0.09 0.16 0.28 0.40 0.07 – 0.070.41 0.41 0.12 – – – – 0.15 0.47 0.33 0.05
Tiki2 – – 0.18 0.38 0.39 0.06 0.09 0.15 0.29 0.38 0.08 – 0.060.41 0.40 0.13 – – – – 0.15 0.45 0.34 0.06
SalA1 – – 0.18 0.49 0.37 0.06 0.05 0.12 0.36 0.38 0.09 – 0.07 0.41 0.39 0.12 – – – – 0.15 0.46 0.34 0.06
Kangiq1 – – 0.07 0.38 0.43 0.12 0.07 0.12 0.35 0.37 0.08 – 0.09 0.44 0.37 0.10 – – – – 0.09 0.45 0.38 0.08
Kangiq2 – – 0.08 0.38 0.43 0.11 0.07 0.13 0.37 0.35 0.07 – 0.09 0.44 0.37 0.10 – – – – 0.10 0.44 0.38 0.08
Kujjuaq2 – – 0.06 0.38 0.47 0.09 0.10 0.19 0.36 0.28 0.07 – 0.08 0.49 0.36 0.07 – – – – 0.11 0.44 0.36 0.09
Kujjuaq3 – – 0.05 0.37 0.48 0.10 0.07 0.16 0.41 0.31 0.05 – 0.09 0.48 0.35 0.07 – – – – 0.11 0.46 0.34 0.09

in gaps for the small number of daily LST values. Another
approach to compensate for this difficulty would be to add
data from other sensors (e.g. AMSRE for the snow free pe-
riod) or to fill data gaps with data from reanalyzes.

3.1 Ground surface temperature

3.1.1 Comparison of daytime, nighttime and daily mean
GST with LST for Aqua and Terra overpasses
separately on an annual basis

When examining the data on an annual basis, daytime LST
values over Sila and Tiki (Qúebec) are well correlated with
hourly GST readings (R is 0.94 with Aqua and 0.95 with
Terra) and MD is small (around−1◦C) but with a high vari-
ability (SD values above 7◦C) (Table 5). The correlation
is somewhat weaker between LST and GST during night-
time than during daytime. TheR (0.93) is still high but
the MD is large (7.7◦C with Aqua and 7.2◦C with Terra)
for a smaller SD. It reveals that the LSTs retrieved during
daytime are closer to the GSTs than during nighttime with
LSTs only 1◦C higher than GSTs, but the high variability
shows that LSTs are very variable around this 1◦C (from
−8◦C to +7◦C). The LSTs during nighttime are 7◦C lower
than the GSTs with a variability around 4–5◦C, ranging from
around−13◦C to−2◦Cbelow the GST values. For Québec,
the values are quite identical for Aqua and Terra in day-
time and nighttime separately, which suggests that a com-

bination by averaging Aqua and Terra LST measurements
could only help in reaching a greater number of LSTs. In
Alaska, during daytime, only a good agreement (R = 0.85
with Aqua-Day andR = 0.83 with Terra-Day) with a large
offset (4.4◦C< MD < 5.1◦C) and a very large SD (>11◦C)
is found. At nighttime, the correlations are similar to those
of daytime but MDs are larger and SDs lower (Table 5). It
shows that at nighttime, problems appear that do not exist
during daytime (Ackerman et al., 1998). Comparing data ac-
quired within the same hour (not shown in tables) indicates
that 13:00 and 14:00 h are the hours at which the mean dif-
ferences between LST and GST are the smallest and correla-
tions highest, independently of the station in Alaska, while it
is at 12:00 h for the Qúebec stations.

At both the Qúebec and Alaska stations, the daytime com-
parisons show smaller MD than the nighttime ones, and the
SD values are larger at daytime. Despite the good correla-
tion, which indicates that the LST-Day and LST-Night values
from Aqua and Terra oscillate in the same phase as the GST,
the satellite-derived values are far in magnitude from the
GST values (Fig. 2). The LST-day and the LST-night from
Terra compared separately with the ones from Aqua, show
that Aqua and Terra are close to each other for all stations
over the entire study period, despite the different overpass
times of the two satellites. When averaging the two LSTs
(LST-Day and LST-Night) in Qúebec, the correlation turns
out higher between GST and LST than with the separate day-
time and nighttime (R-Daytime = 0.95,R-Nighttime = 0.92
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Table 4. Number of days (percentage) with clear-sky MODIS LST measurements (2000–2008).

Pixel Name 2000 2001 2002 2003 2004 2005 2006 2007 2008

Alaska

WD1 – – 26 % 33 % 40 % 36 % 31 % 38 % 36 %
WD2 – – 29 % 34 % 41 % 39 % 32 % 36 % 36 %
BPW1 23 % 24 % 37 % 41 % 54 % 50 % 47 % 49 % 44 %
FB1 27 % 24 % 39 % 40 % 52 % 40 % 43 % 53 % 41 %
FB2 27 % 27 % 39 % 42 % 53 % 39 % 43 % 54 % 40 %
SAG1 26 % 31 % 42 % 44 % 53 % 48 % 45 % 58 % 41 %
WK1 27 % 28 % 38 % 43 % 53 % 43 % 44 % 56 % 43 %
WK2 26 % 29 % 39 % 45 % 53 % 43 % 46 % 56 % 44 %
UK1 31 % 32 % 38 % 46 % 53 % 51 % 47 % 58 % 48 %
IB1 32 % 32 % 35 % 45 % 54 % 54 % 43 % 59 % 48 %
IB2 33 % 33 % 37 % 46 % 53 % 53 % 45 % 61 % 48 %
IvShrb1 25 % 27 % 42 % 44$ 50 % 51 % 41 % 55 % 44 %
IvMoss1 25 % 27 % 41 % 44 % 63 % 65 % 54 % 69 % 60 %

Québec

Sila1 – – 15 % 18 % 17 % 17 % 19 % 19 % 21 %
Tiki2 – – 15 % 18 % 18 % 18 % 22 % 21 % 22 %
SalA1 – – 17 % 19 % 18 % 16 % 22 % 21 % 23 %
Kangiq1 – 16 % 14 % 17 % 19 % 22 % 20 % 16 % 26 %
Kangiq2 – 16 % 16 % 17 % 18 % 21 % 19 % 14 % 24 %
Kujjuaq2 10 % 19 % 21 % 30 % 28 % 33 % 33 % 28 % 40 %
Kujjuaq3 5 % 9 % 13 % 16 % 14 % 15 % 15 % 14 % 18 %

andR-Daily = 0.96). The mean daily MD (3.1◦C) is situ-
ated in-between the MDs from daytime (−0.3◦C) and night-
time (7.7◦C) and the mean daily SD (4.5◦C) is also lower
(7.4◦C for daytime, 4.8◦C for nighttime). Calculation of the
mean daily LST can therefore be seen as an improvement
over the separate daytime and nighttime values for Québec.
In Alaska, on the other hand, the correlation is more mod-
erate (R = 0.84), and the daily mean MD (7.8◦C) and SD
(10.9◦C) values are high; LST measurements during day-
time and nighttime have the same order of difference with
GST.

When daily mean LST and GST values are plotted against
time (Fig. 2), a similar annual oscillation appears but the
scatter graphs (Fig. 2) show a larger spread for temperatures
below 0◦C than above 0◦C, with LSTs being much colder
(minimum close to−50◦C) than GST (−20◦C for BPU1
and FrB1;−10◦C for Wk1). This difference in wintertime
does not appear at Sila1. In the positive temperature por-
tion of the graph, the correlation looks better with a positive
deviation (LST>GST) from the 1:1 relation line. Also nu-
merous GSTs are found around 0◦C when LSTs are very low
(−40◦C at WK1,−10◦C at Sila1) or positive (+5◦C at Sila1,
+10◦C at BPU1 and FrB1, and up to +20◦C at WK1), which
corresponds to 0◦C September dates at these stations. Over-
all, regionally, the relation between GST and LST is stronger
for the Qúebec stations than the Alaskan stations.

3.1.2 Comparison of daily mean GST with LST for
Terra and Aqua combined during the snow free
and snow cover periods

Table 6 presents results of the comparison between GST and
LST for each station for the complete year and for the snow
free and snow covered periods separately. The snow free pe-
riod shows a higher correlation than the snow cover period.
The MD is negative (−1 to −7◦C) during the snow free pe-
riod, which means that the LST values are higher than the
GST during this period, and positive during the snow cover
period (5 to 17◦C), indicating that the LST values are lower
during this period. SD is not very large (around 4◦C) during
the snow free period in comparison with the snow cover pe-
riod (around 6◦C). This shows that the LST are close to the
GST values only during the snow free period with a tendency
to be 2◦C higher in general. Yet, for some Alaskan stations,
LSTs are always higher (Franklin Bluff, Western Kuparuk
and Ivotuk Moss). The Qúebec stations (Sila and Tiki) re-
spond similarly to the Alaskan stations during the snow free
period but yield a better correlation during the snow cover
period.
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Table 5. Mean Difference (MD), Standard Deviation (SD) and Correlation (R) between GST and LST for daytime, nighttime and daily
average from Aqua and Terra separately, and Aqua/Terra combined.

Daytime mean Nighttime mean Daily mean

Alaska (Ak)

Terra
MD 4.4 8.0 6.9
SD 11.8 9.3 11.5
R 0.83 0.84 0.84

Aqua
MD 5.1 9.8 9.0
SD 11.3 8.2 10.6
R 0.85 0.85 0.84

Terra/Aqua
MD 4.9 8.6 7.8
SD 11.4 8.7 10.9
R 0.84 0.85 0.84

Québec (Qc)

Terra
MD −0.7 7.2 3.4
SD 7.8 4.2 4.6
R 0.95 0.93 0.95

Aqua
MD −0.6 7.7 2.7
SD 7.5 4.8 4.5
R 0.94 0.93 0.97

Terra/Aqua
MD −0.3 7.7 3.1
SD 7.4 4.8 4.5
R 0.95 0.92 0.96

Ak and Qc Terra/Aqua
MD 2.3 8.2 5.4
SD 9.4 6.7 7.7
R 0.89 0.88 0.90

Table 6. Mean Difference (MD), Standard Deviation (SD) and Correlation (R) between GST and LST during complete year, snow free and
snow cover periods for Aqua/Terra combined.

GST–LST Complete years Snow free period Snow cover period

Stations n R MD SD n R MD SD n R MD SD

BPU1 1262 0.89 7.5 8.5 311 0.74−1.1 3.6 947 0.70 10.3 7.7
BPW1 1263 0.86 8.6 9.4 311 0.81−0.9 3.1 948 0.59 11.7 8.6
FB1 935 0.87 5.1 10.5 265 0.79 −5.9 4.2 666 0.67 9.4 8.9
FB2 955 0.86 5.5 10.9 282 0.81 −5.9 4.4 668 0.65 10.3 9.2
SAG1 1014 0.95 4.7 7.2 263 0.90−2.5 3.1 748 0.88 7.2 6.5
WK1 1242 0.75 11.3 14.7 317 0.83 −5.6 4.6 922 0.35 17.1 12.2
WK2 1263 0.75 11.4 14.6 316 0.83 −5.6 4.7 943 0.36 17.0 12.2
IB1 1066 0.90 8.3 9.6 262 0.88 −1.5 3.7 802 0.78 11.4 8.6
IB2 1096 0.90 7.7 9.2 278 0.87 −1.2 3.9 815 0.78 10.7 8.5
IvMoss1 518 0.70 7.8 14.3 153 0.64−6.6 6.0 364 0.46 13.8 12.2

Alaska Stations 1061 0.84 7.8 10.9 276 0.81−3.7 4.1 782 0.62 11.9 9.5

Sila1 77 0.96 3.4 4.4 24 0.88 −0.6 3.9 53 0.95 5.2 3.3
Tiki2 72 0.96 2.8 4.5 26 0.70 −0.8 3.9 46 0.95 4.9 3.3

Québec Stations 75 0.96 3.1 4.5 25 0.79 -0.7 3.9 50 0.95 5.0 3.3

All Stations 568 0.90 5.4 7.7 150 0.80−2.2 4.0 416 0.79 8.5 6.4
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Fig. 3. Comparison between the mean LST (a) combined Terra/Aqua Day acquisitions 
(orange dots), (b) combined Terra/Aqua Night acquisitions (blue dots), and (c) combined 
Terra/Aqua Day/Night acquisitions (green dots), with mean daily Tair (black line) forIB1 
pixel on Imnavait Basin site. 

 

Fig. 3. Comparison between the mean LST(a) com-
bined Terra/Aqua Day acquisitions (orange dots),(b) combined
Terra/Aqua Night acquisitions (blue dots), and(c) combined
Terra/Aqua Day/Night acquisitions (green dots), with mean daily
Tair (black line) forIB1 pixel on Imnavait Basin site.

3.2 Near-surface air temperature

3.2.1 Comparison of daytime and nighttimeT air with
LST for Aqua and Terra overpasses separately on
an annual basis

Comparison of daytime temperatures

The best relation betweenTair and LST is obtained in the
middle of the day in both Alaska and Québec. As shown in
Table 7, on an annual basis the correlation is high in both
Québec and in Alaska for Aqua and Terra (R > 0.94). The
MD is very small (around−1◦C in Qúebec and around +1◦C
in Alaska) but the SD is large (around 6◦C in Qúebec and
5◦C in Alaska), although it is much smaller than for the
LST-GST comparison (Table 5). Table 7 shows the excellent
agreement between LST-Day andTair in Aqua, Terra and the
average of the two satellites. In Figs. 3a and 4a, the daytime
LST values (in orange) are superimposed on the daily mean
Tair curves (in black) of two different stations (IB1 pixel in
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Fig. 4. Comparison between the mean LST (a) combined Terra/Aqua Day acquisitions 
(orange dots), (b) combined Terra/Aqua Nightacquisitions (blue dots), and (c) combined 
Terra/Aqua Day/Night acquisitions (green dots), with mean daily Tair (black line) 
forKuujjuaq2pixel at Kuujjuaq site. 

 

Fig. 4. Comparison between the mean LST(a) com-
bined Terra/Aqua Day acquisitions (orange dots),(b) com-
bined Terra/Aqua Nightacquisitions (blue dots), and(c) combined
Terra/Aqua Day/Night acquisitions (green dots), with mean daily
Tair (black line) forKuujjuaq2pixel at Kuujjuaq site.

Imnavait Basin and Kuujjuaq2 pixel at Kuujjuaq station). A
similar agreement (not shown) is found at the other stations.
These figures confirm the excellent correlation between LST-
Day andTair as the LST (dots in figures) follows closely the
Tair annual oscillations. The LST-Day values are situated
slightly aboveTair, mostly during the summer period.

Comparison of nighttime temperatures

As shown in Table 7, on an annual basis, the correlations are
high (R > 0.91) and better in Alaska than in Québec. The
MD is quite high (3 to 5◦C) in Alaska and even higher in
Québec (about 6◦C), and the SD is similar to the daytime
with 4◦C in Alaska and 6◦C in Qúebec. In Figs. 3b and
4b, the nighttime LSTs (in blue) are superimposed on the
daily meanTair curves of IB1 and Kuujjuaq2. Figs 3b and
4b confirm the excellent correlation between LST-Night and
Tair as the LST follows closely theTair annual oscillations.
Figs. 3b and 4b also show that the LST-Night observations
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are situated slightly belowTair, during the winter period and
are clearly lower thanTair during the summer months.

Comparison of daily mean temperatures from Terra and
Aqua separately and combined

As shown earlier, LST-Day values tend to be higher than
the mean dailyTair while the LST-Night values tend to be
lower. It is therefore worth examining how a mean value
calculated from both LST-Day and LST-Night compares to
the mean dailyTair obtained from station measurements (Ta-
ble 7). As shown in Table 7, on an annual basis, the cor-
relations are very good (R > 0.96) which is still better than
the R values of daytime and nighttime taken separately for
Aqua, Terra and Aqua/Terra in both Alaska and Québec. MD
is reasonable (1.3 to 2.7◦C) although SD stays relatively
large (3.3 to 4.4), being smaller in Alaska than in Québec.
The calculation of the mean greatly reduces the number of
anomalous LST values. In Figs. 3c and 4c, the mean LST-
day/LST-night values (in green) are superimposed on the
daily meanTair curves. In both the positive areas (sum-
mer temperatures) and the negative areas (winter tempera-
tures) of the graphs, clusters of LST values are very close to
Tair. This demonstrates a general tendency of daily mean
LST to be extremely well correlated (in synchrony) with
daily meanTair (R = 0.96, MD = 1.7◦C and SD = 4.3◦C in
Québec;R = 0.98, MD = 1.9◦C and SD = 3.7◦C in Alaska,
see Table 7). In fact, too warm LST-day is evened out by too
low LST-night, as shown in Figs. 3a, b and 4a, b.

3.2.2 Comparison of daily meanT air with LST for
Terra and Aqua combined during the snow free
and snow cover periods

Table 8 presents results of the comparison for each station be-
tweenTair and LST over the complete year and for the snow
free and snow cover periods separately. A stronger correla-
tion exists during the snow cover compared to the snow free
period. The MD is negative (−2 to −0.1◦C) for most sta-
tions (except West Dock, Ivotuk Shrub and Kujjuaq) during
the snow free period; it is positive during the snow cover pe-
riod (1 to 4◦C) for all the stations. SD values are relatively
small (around 4◦C) and similar for the two periods. This il-
lustrates that the LSTs are close to theTair values for both the
snow free and snow cover periods. The correlations are in-
deed higher during the snow cover period (as shown for the
West Dock station in Fig. 5) where only a few LST values
show large differences withTair. Finally, as the snow free
period shows an absolute value of MD lower than the one for
snow cover period (1◦C versus 3◦C) and the SDs are similar
for the two periods, one can conclude that the LSTs are closer
toTair during the snow free period. The LSTs are nonetheless
close toTair during the snow cover period.

4 Discussion

4.1 Cloud detection

The MODIS cloud detection algorithm does not perform per-
fectly over Arctic regions, as already reported in several pa-
pers (Langer et al., 2010, Westermann et al., 2011; Liu et al.,
2010). By calculating the daily LST average using the four
LST data sets available (Aqua/Terra, Day/Night), the num-
ber of anomalous LST values has been greatly reduced. It
is worth noting prior to discussion that occasional anomalies
are related to undetected clouds. Sometimes, one of the two
sensors “observed” a cloud in LST-Day and therefore did not
record a LST, while the other sensor retrieved a very cold
LST, likely the upper- surface temperature of a cloud. It is
not possible to be exactly sure of this, especially in winter
when surface temperatures are also low, but at least the daily
averaging would be compensated by the LST-Night measure-
ments on that day. However, it is also possible that the two
satellites did not identify the presence of clouds, in which
case the mean daily LST would still be calculated and be
anomalously low. Such anomalies are easily detected in sum-
mer when LST values are conspicuously too low for ground
surface temperatures. In the implementation of an algorithm
to map LST, one could set a threshold value to eliminate un-
reasonably low LST values during the snow free period (e.g.
exclude values below−15◦C).

4.2 Comparison of LST with GST

LSTs are clear-sky skin temperatures, i.e. the temperature at
the air-soil (snow-free) or air-snow interface. The GSTs were
taken at 3–5 cm depths in order to provide protection from
the elements (weather and solar radiation) and wildlife. It is
in these first few centimeters that ground temperatures are the
most variable in time and space. Therefore, large differences
between LSTs and GSTs can be expected. However, Québec
stations show very good correlations (see Table 5) that can
be explained by the structure of the soil surface. Around Sila
and Tiki the ground surface is rocky and very little snow ac-
cumulates due to wind erosion; therefore the sensors always
“see” a stable ground surface.

At other stations, the ground surface can be covered by
vegetation (low or high), an organic layer or snow which act
as buffer layers and have an impact on thermal exchanges
with the atmosphere by decreasing or increasing the ground
temperatures, depending on the season. The important insu-
lating role of snow cover is well known. Snow cover extent
and depth contribute by reducing ground cooling in winter
(Goodrich, 1982). During the freezing period, the energy
transfer occurs as release of latent heat. This process takes
some time (i.e. the time necessary to convert all water into
ice), and inversely in spring, during the melting period, when
heat is absorbed to melt the ice in the ground surface layer.
In the fall, this “zero curtain” effect is strongly dependent on
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Table 7. Mean Difference (MD), Standard Deviation (SD) and Correlation (R) betweenTair and LST for daytime, nighttime and daily
average from Aqua and Terra separately, and Aqua/Terra combined.

Daytime mean Nighttime mean Daily mean

Alaska (Ak)

Terra MD 0.7 2.9 1.4
SD 5.1 4.4 4.1
R 0.97 0.96 0.97

Aqua
MD 1.2 4.6 2.7
SD 4.8 3.9 3.3
R 0.97 0.96 0.98

Terra/Aqua
MD 0.9 3.5 1.9
SD 5.0 4.4 3.7
R 0.96 0.95 0.98

Québec (Qc)

Terra MD −0.4 5.6 1.6
SD 5.7 5.4 4.3
R 0.96 0.91 0.96

Aqua
MD −1.3 6.6 1.3
SD 6.3 5.6 4.4
R 0.94 0.92 0.96

Terra/Aqua
MD −0.5 6.1 1.7
SD 5.9 5.6 4.3
R 0.95 0.91 0.96

Ak and Qc Terra/Aqua
MD 0.2 4.8 1.8
SD 5.4 5.0 4.0
R 0.96 0.93 0.97

the arrival of snow. If it is early, before the first frost, the
snow insulates the ground from cold air temperatures. Then,
to decrease the soil temperature, the air temperature must be
sufficiently low for the ground to lose heat through the snow
layer. On the other hand, if snow arrival is late, the soil has
already started to freeze before the snow starts to play its in-
sulation role. As seen in the regression plots of Fig. 2, the
“zero curtain” associated with the effect of snow occurred
when many daily consecutive field temperatures have values
at 0◦C, while MODIS continues to measure temperatures be-
tween−20 and +10◦C. This effect lasts a relatively long pe-
riod, as it persists for approximately one month at the Betty
Pingo, Franklin Bluff and Western Kuparuk sites. The tem-
peratures at Sila were also taken at a depth of 3 cm, and the
“zero curtain” effect is also visible (Fig. 2), but for a much
shorter period of time (less than one week). This is due to
the existence of a more rocky landscape with minimal wa-
ter content in the soil surface layer and with the tempera-
ture probes being located in windy corridors where snow is
blown; this factor results in less time required for water state
changes at the beginning and ending of the thawing season.
Furthermore, the correlation at Sila is especially high (0.96)
because the satellites only acquired a few measurements dur-
ing the time period when this effect occurred (mid-October
to mid may). During spring, the insulation effect of snow is

less efficient because of the thicker snow cover and the likely
presence of ice lenses/crusts due to diurnal freeze and thaw
cycles. The transition period in spring takes less time, about
10 days for the Greater Kuparuk River Basin stations and one
week at Salluit.

4.3 Comparison of LST with T air

The tendency for nighttime LST to be colder thanTair
throughout the year (1.4< MD < 8.8◦C, depending on sta-
tion), with a mean MD night of 4.8◦C (Table 7) occurs as
result of heat transfer (e.g. radiative cooling of the ground
and formation of an inversion layer) from the ground surface
to the air above at night. Also, the role of annual changes in
day length is important in the Arctic. “LST-Day” during win-
ter corresponds to days without sunlight. Actually, overpass
times at 09:00, 10:00, and 15:00 are “nighttime” acquisitions
for many of these stations. This, plus the low sun angle dur-
ing daylight, explains why there is less difference between
day and night temperatures during the snow cover period.
In the free snow period, even though the sun is above the
horizon for much of the day, the zenith angle varies enough
to make “day” temperatures warmer than “night” tempera-
tures (which, for a part of the night hours, are sunlight hours).
Therefore, the separation of the year into two parts (the snow

The Cryosphere, 6, 51–69, 2012 www.the-cryosphere.net/6/51/2012/



S. Hachem et al.: Comparison of MODIS-derived land surface temperatures 65

Table 8. Mean Difference (MD), Standard Deviation (SD) and Correlation (R) betweenTair and LST during complete year, snow free and
snow cover periods for Aqua/Terra combined.

Tair–LST Complete years Snow free period Snow cover period

Stations n R MD SD n R MD SD nn R MD SD

WD1 731 0.98 1.0 2.6 220 0.64 0.3 3.2 510 0.98 1.2 2.3
WD2 831 0.98 1.0 2.6 245 0.68 −0.1 3.0 584 0.98 1.4 2.2
BPW1 1257 0.98 1.1 3.7 333 0.72−1.2 3.7 920 0.95 1.9 3.3
FB1 1103 0.98 0.5 2.9 303 0.87 −1.0 3.0 796 0.97 1.1 2.7
FB2 1124 0.98 1.0 3.1 174 0.92 −1.0 2.8 950 0.98 1.3 3.0
SAG1 1360 0.97 2.3 4.4 354 0.89−1.7 3.3 1001 0.95 3.7 3.9
WK1 1229 0.99 1.1 3.3 302 0.91 −1.8 2.9 923 0.97 2.1 2.9
WK2 1248 0.99 1.2 3.3 300 0.90 −1.7 3.0 943 0.98 2.1 2.9
UK1 1314 0.98 1.9 3.2 309 0.93 −0.6 2.6 1002 0.97 2.7 3.0
IB1 1297 0.97 5.1 4.8 307 0.93 −0.2 2.7 988 0.94 6.8 4.1
IB2 1318 0.97 4.7 4.5 319 0.93 −0.1 2.9 996 0.95 6.2 3.9
IvShb1 585 0.95 2.7 5.0 110 0.95 1.2 2.8 472 0.90 3.1 5.3
IvMoss1 542 0.96 1.1 5.0 123 0.91−0.5 3.3 417 0.92 1.6 5.3

Alaska Stations 1072 0.98 1.9 3.7 261 0.86−0.6 3.0 808 0.96 2.7 3.4
SilaA1 376 0.98 1.4 3.2 113 0.80 −0.9 3.2 262 0.97 2.5 2.7
Sila1 93 0.98 2.6 3.0 24 0.80 −0.1 4.0 69 0.98 3.6 1.9
Tiki2 154 0.97 1.5 3.6 50 0.64 −1.1 4.1 104 0.97 2.7 2.5
Kangiq1 209 0.93 1.3 6.0 84 0.74 −1.5 4.4 125 0.87 3.1 6.2
Kangiq2 214 0.93 1.3 5.8 88 0.75 −1.7 4.2 126 0.88 3.4 5.9
Kujjuaq1 875 0.97 2.5 4.0 286 0.77 0.6 3.3 586 0.96 3.3 3.9
Kujjuaq2 438 0.96 1.6 4.2 143 0.66 0.4 3.6 295 0.94 2.1 4.4

Québec Stations 337 0.96 1.7 4.3 113 0.74−0.6 3.8 224 0.94 3.0 3.9

All Stations 705 0.97 1.8 4.0 187 0.80−0.6 3.4 516 0.95 2.8 3.7

cover and free snow periods) does not take into account the
difference in day lengths. The considered snow free period
corresponds to the growing season at the high latitude. This
period includes the summer solstice (up to 24 h of daylight)
and ends after to the autumn equinox (September 21), which
means that during this period the maximum day length is
reached for meteorological stations above 60◦ N. In turn, dur-
ing this period, nights are very short. On the other hand,
during the cold season, there are less daylight hours. For
instance, Franklin Bluff station (about 69◦53′N) has 24 h of
daylight between 17 May –26 July and no hours between 26
November and 15 January.

There appears to be differences between the LST taken in
snowfree and snow cover periods (Table 8). The transitional
periods of snow melt and soil freezing, which last between
ten days to a month at these latitudes, were included in the
snow cover season. In the middle of winter, the frozen snow-
covered landscape is relatively homogeneous and, as a result,
the complicating effects of soil and surface wetness are ab-
sent; the LST values represent those at the air-snow interface.
However, it is different at the beginning and at the end of the
defined snow cover period determined from the IMS satellite
product (27 September–14 June in Alaska and 3 October–23

June in Qúebec), in particular for the period corresponding to
the beginning of snowmelt and active layer thaw when exten-
sive areas of stagnant water form due to the imperviousness
of the underlying frozen soils. In permafrost areas, due to the
shallow permafrost table, around 50 cm on the Alaskan sites
(Kane et al., 2009), surface water is often stagnant. This wa-
ter modifies the heat exchanges between the ground surface
and the atmosphere, liberating warmer fluxes than frozen wa-
ter. None of the heat exchanges appearing at the ground in-
terface can be measured by the 2 m height air temperature in-
strumentation. As the snow cover period includes the period
of snowmelt, the MD values in the snow free period are fluc-
tuating around 0◦C (−1.7< MD < 0.6 for all stations with a
mean of−0.6◦C) (Table 8). Therefore, we can assume that
during snowmelt the LST better represents the temperature
of the melting snow on the ground than theTair.

As indicated previously, the temperature of undetected
clouds is lower than that ofTair, which provides at least a
partial explanation for the differences during the snow cover
period (1.1< MD < 6.8◦C with a mean of 2.8◦C). Also, in
the snow free period,R values below or equal to 0.75 for
5 stations and 7 pixels (West Dock “WD1 and WD”), Betty
Wet “BPW1”, Tiki “Tiki2”, Kangiqsuallujjuaq “Kangiq1 and
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Fig. 5.Comparison between the mean daily LST (combined Day/Night/Terra/Aqua) and 
mean daily air temperature at West Dock (WD1) for (a) complete year, (b) winter, and (c) 
summer. On left, LST overlayed on meteorological station measurements, and on right 
relation between the two sets of measurements. 

 

Fig. 5. Comparison between the mean daily LST (combined Day/Night/Terra/Aqua) and mean daily air temperature at West Dock (WD1)
for (a) complete year,(b) winter, and(c) summer. On left, LST overlayed on meteorological station measurements, and on right relation
between the two sets of measurements.

Kangiq2” and Kuujjuaq “Kuujjuaq2”), indicate a weaker re-
lation between LST andTair. As an example, in Fig. 5,
the graphs for the WD1 site show the positive and nega-
tive temperature differences. For the other stations,R values
are all above 0.75 (up to 0.95 at Ivotuk Shrub). The pres-
ence of subgrid-scale water (see Table 2) within the MODIS
pixels explains the more moderate relations between LSTs
and 2 m height air temperature measurements at some of
the sites. Globally, the temperature differences are larger in
the snow cover period than in snow free period (Table 8).
Snow free period differences are more frequently below 0◦C
which means that LSTs are higher thanTair during this period
(−1.7< MD < 0.6 for all stations with a mean of−0.6◦C).
During the snow cover period, differences show an opposite
tendency. LSTs are lower thanTair (1.1< MD < 6.8◦C with
a mean of 2.8◦C). In absolute term, the differences in the
snow free period are smaller than during snow cover period
for all stations (Table 8).

At different time scales, it is possible to define different
fluctuation periods. A period of one year corresponds to
the annual solar radiation cycle while a period of one day
corresponds to the diurnal solar radiation cycle. The dif-
ference between LST andTair can be large over a single
day, but it diminishes over a monthly period. Seasonally,
there is a slight tendency to yield a warmer LST temperature
(MD = −0.6◦C) during the snow free period and a colder
temperature (MD = 2.8◦C) in the snow cover period. The
mean annual difference for all stations combined is 1.8◦C,
with a propensity for the LST to be belowTair.

It is clear from Table 8 that calculation of the mean an-
nual LST removes the larger bias of the snow cover period
from that of the snow free period. As a result, LSTs become
closer toTair when averaged over the year but still, the differ-
ences observed show clearly that they are two different vari-
ables (clear-sky satellite “skin” surface-air interface temper-
ature versus 1–3 m height air temperature). The differences
are largely due to the nature and state of the surfaces being
sensed within the MODIS pixels (e.g. vegetation, bare rock,
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surface water, wetness). Overall, regardless of surface type,
LST andTair show a high degree of temporal coherence and
on broad spatial and temporal (over a year) scales they fol-
low the same trajectory. Since mean annual air temperatures
are very important for calculating the thermal regime of per-
mafrost, the annual means of LST, similar toTair, are seen as
useful for permafrost studies.

5 Conclusions

The major findings of this research can be summarized as
follows:

1. LST, as expected, does not closely match GST espe-
cially when the ground is snow covered. However, LST
values are very close to GSTs for stations located on
rocky surfaces without water (in other words, in the ab-
sence of a buffer layer). The weaker correlations ob-
tained between GST and LST are due to the effect of
the different materials on the ground (the buffer layer),
which in part contributes to the zero curtain effect dur-
ing the transition between seasons.

2. LSTs were shown to be close to hourlyTair measure-
ments and even more so to dailyTair. The correlation
between the two sets of measurements is stronger and
MD is smaller when data are averaged on a seasonal ba-
sis. They are still better when averaged over a full year.

3. The mean daily LST yields stronger correlation with
Tair and GST when the data from the two satellites are
combined than when values are taken separately (indi-
vidual satellite, daytime, nighttime). It is therefore sug-
gested to combine all the MODIS LSTs available to pro-
duce LST maps (e.g. mean monthly and annual) over
permafrost regions as it has been tested by Hachem et
al. (2008) over Northern Québec. The high correlation
suggests that LSTs can be used as input in heat trans-
fer models applied at regional to continental scales for
mapping of permafrost. Each individual year showed a
good correlation between annual averages of LST and
Tair. The temporal and spatial coverage as well as the
∼1 km2 footprint are great advantages for improving
mapping precision and for monitoring annually the im-
pacts of climate variations on permafrost.

4. In relation to the previous point, MODIS LSTs do
not retrieve enough data over Arctic regions due to
the abundance and frequency of clouds (Eastman et
al., 2010) as to permit a continuous temporal coverage
throughout a full annual cycle, and to calculate freez-
ing and thawing indices. Filling the gaps in MODIS
LST time series is necessary, either by temporal inter-
polation (Hachem et al., 2009) or by possibly combin-
ing them with temperature values obtained with coarser
resolution passive microwave satellite data (e.g. Kohn

and Royer, 2010; Royer and Poirier, 2010) or with data
from reanalyses.

In summary, MODIS-derived LST is a viable data source
for monitoring the surface thermal regime of regions under-
lain by permafrost and for modeling the seasonal evolution
of the active layer. More investigations are needed to explore
the effect of the buffer layer on LSTs to get the required GST.
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210 pp., 1987.

Galve, J. M., Coll, C., Caselles, V., Valor, E., Niclos, R., Sanchez,
J. M., and Mira, M.: Simulation and validation of land surface
temperature algorithms for MODIS and AATSR data, Tethys, 4,
27–32,doi:10.3369/tethys.2007.4.04, 2007.

Gleason, A. C. R., Prince, S. D., Goetz, S. J., and Small, J.: Ef-
fects of orbital drift on land surface temperature measured by
AVHRR thermal sensors, Remote Sens. Environ., 79, 147–165,
doi:S0034-4257(01)00269-3, 2002.
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plication to Northern Qúebec and Labrador, Canada, Permafrost
Periglac., 20, 407–416,doi:10.1002/ppp.672, 2009.

Hall, D., Key, J., Casey, K., Riggs, G., and Cavalieri, D.: Sea ice
surface temperature product from MODIS, IEEE Geosci. Remote
S., 42, 1076–1087,doi:10.1109/TGRS.2004.825587, 2004.

Han, K.-S., Viau, A. A., and Anctil, F.: An Analysis of
GOES and NOAA derived land surface temperatures estimated
over a boreal forest, Int. J. Remote Sens., 25, 4761–4780,
doi:10.1080/01431160410001680446, 2004.

Heim, B., Bartsch, A., Elger, K., Lantuit, H., Boike, J., Muster,
S., Langer, M., Duguay, C., Hachem, S., Soliman, A., Paulik,
C., Strozzi, T., and Seifert, F. M.: ESA DUE Permafrost: An
earth observation (EO) permafrost monitoring system, EARSeL
eProceedings, 10, 73–82, 2011.

Hinzman, L. D., Goering, D. J., and Kane, D. L.: A distributed
thermal model for calculating soil temperature profiles and depth
of thaw in permafrost regions, J. Geophys. Res., 103, 28975–
28991, 1998.

Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin III, F. S.,
Dyurgerov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D.,
Hope, A., Huntington, H. P., Jensen, A. M., Jia, G. J., Jorgen-
son, T., Kane, D. L., Klein, D. R., Kofinas, G., Lynch, A. H.,
Lloyd, A. H., McGuire, A. D., Nelson, F. E., Oechel, W. C., Os-
terkamp, T. E., Racine, C. H., Romanowsky, V. E., Stone, R. S.,
Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker,
M. D., Walker, D. A., Webber, P. J., Welker, J. M., Winker, K.,
and Yoshikawa, K.: Evidence and implications of recent climate
change in Northern Alaska and other arctic regions, Climatic
Change, 72, 251–298,doi:10.1007/s10584-005-5352-2, 2005.

Hook, S. J., Vaughan, R. G., Tonooka, H., and Schladow, S.
G.: Absolute radiometric inflight validation of mid infrared
and thermal infrared data from ASTER and MODIS on the
Terra Spacecraft using the Lake Tahoe, CA/NV, USA, auto-
mated validation site, IEEE Geosci. Remote S., 45, 1798–1807,
doi:10.1109/TGRS.2007.894564, 2007.

IPCC Report 2007: Contribution of Working Groups I, II and III to
the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, Core Writing Team, edited by: Pachauri, R. K.
and Reisinger, A., IPCC, Geneva, Switzerland, pp.104, 2007.

Jia, G. J. and Epstein, H. E.: Controls over intra-seasonal
dynamics of AVHRR NDVI for the Arctic tundra in
Northern Alaska, Int. J. Remote Sens., 25, 1547–1564,
doi:10.1080/0143116021000023925, 2004.

Jin, M. and Treadon, R. E.: Correcting the orbit drift ef-
fect on AVHRR land surface skin temperature mea-
surements, Int. J. Remote Sens., 24, 4543–4558,
doi:10.1080/0143116031000095943, 2003.

Kane, D. L.: High-latitude hydrology, what do we know?, Hydrol.
Process., 19, 2453–2454,doi:10.1002/hyp.5929, 2005

Kane, D. L. and Hinzman, L. D.: Climate data from the North
Slope Hydrology Research project, University of Alaska Fair-
banks, Water and Environmental Research Center, available at:
http://ine.uaf.edu/werc/projects/NorthSlope/Fairbanks, Alaska,
variously paged, Retrieval August 2009.

Klene, A. E., Nelson, F. E., and Shiklomanov, N. I.: The N-factor
in Natural Landscapes: Variability of Air and Soil-Surface Tem-
peratures, Kuparuk River Basin, Alaska,USA, Arctic and Alpine
Research, 33, 140–148, 2001.

Kohn, J. and Royer, A.: AMSR-E data inversion for soil tempera-
ture estimation under snow cover, Remote Sens. Environ., 114,
2951–2961,doi:10.1016/j.rse.2010.08.002, 2010.

Langer, M., Westermann, S., and Boike, J.: Spatial and tempo-
ral variations of summer surface temperatures of wet polygo-
nal tundra in Siberia – implications for MODIS LST based per-
mafrost monitoring, Remote Sens. Environ., 114, 2059–2069,
doi:10.1016/j.rse.2010.04.012, 2010.

Liu, Y., Ackerman, S., Maddux, B., Key, J., Frey, R.: Errors in cloud
detection over the Arctic using a satellite imager and implications
for observing feedback mechanisms, J. Climate, 23, 1894–1907,
doi:10.1175/2009JCLI3386.1, 2010.

Mialon, A., Royer, A., Fily, M., and Picard, G.: Daily microwave-
derived surface temperature over Canada/Alaska, J. Appl. Mete-
orol. Clim., 46, 591–604,doi:10.1175/JAM2485.1, 2007.

The Cryosphere, 6, 51–69, 2012 www.the-cryosphere.net/6/51/2012/

http://dx.doi.org/10.1016/j.rse.2010.01.005
http://dx.doi.org/10.1016/j.rse.2008.08.013
http://dx.doi.org/10.1175/2010JCLI3492.1
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://globalchange.nasa.gov/KeywordSearch/Metadata.do?Portal=GCMD&KeywordPath=Locations$delimiter "026A30C  $VERTICAL+LOCATION$delimiter "026A30C  $SEA+SURFACE&OrigMetadataNode=CANADA-CGDI&EntryId=Canada_GeoGratis_1kmWatFracNTDB&MetadataView=Full&MetadataType=0&lbnode=mdlb3
http://dx.doi.org/10.3369/tethys.2007.4.04
http://dx.doi.org/10.1002/ppp.672
http://dx.doi.org/10.1109/TGRS.2004.825587
http://dx.doi.org/10.1080/01431160410001680446
http://dx.doi.org/10.1007/s10584-005-5352-2
http://dx.doi.org/10.1109/TGRS.2007.894564
http://dx.doi.org/10.1080/0143116021000023925
http://dx.doi.org/10.1080/0143116031000095943
http://dx.doi.org/10.1002/hyp.5929
http://ine.uaf.edu/werc/projects/NorthSlope/
http://dx.doi.org/10.1016/j.rse.2010.08.002
http://dx.doi.org/10.1016/j.rse.2010.04.012
http://dx.doi.org/10.1175/2009JCLI3386.1
http://dx.doi.org/10.1175/JAM2485.1


S. Hachem et al.: Comparison of MODIS-derived land surface temperatures 69

Marchenko, S., Hachem, S., Romanovsky, V., and Duguay, C.: Per-
mafrost and active layer modeling in the Northern Eurasia using
MODIS Land Surface Temperature as an input data, Geophys.
Res. Abstracts, 11, 2009–11077, 2009.

Romanovsky, V. E., Burgess, M., Smith, S., Yoshikawa, K., and
Brown, J.: Permafrost temperature records: indicators of climate
change, EOS Transactions, 83, 593–594, 2002.

Royer, A. and Poirier, S.: Surface temperature spatial and tem-
poral variations in North America from homogenized satel-
lite SMMR – SSM/I microwave measurements and reanaly-
sis for 1979–2008, J. Geophys. Res.-Atmos., 115, D08110,
doi:10.1029/2009JD012760, 2010.

Sazonova, T. and Romanovsky, V. E.: A model for regional scale es-
timation of temporal and spatial variability of active layer thick-
ness and mean annual ground temperatures, Permafrost Periglac.,
14, 125–139,doi:10.1002/ppp.449, 2003.

Schubert, P., Eklundh, L., Lund, M., and Nilsson, M.: Es-
timations northern peatland CO2 exchange from MODIS
time series data, Remote Sens. Environ., 114, 1178–1189,
doi:10.1175/JAM2485.1, 2010.

Serreze, M. C., Walsh, J. E., Chapin III, F. S., Osterkamp, T. E.,
Dyurgerov, M. B., Romanovsky, V. E., Oechel, W. C., Morison,
J., Zhang, T., and Barry, R. G.: The observational evidence of
recent change in the northern high latitude environment, Climatic
Change, 46, 159–207,doi:10.1023/A:1005504031923, 2000.

Shiklomanov, N. I. and Nelson, F. E.: Active-layer mapping at re-
gional scales: a 13 yr spatial time series for the Kuparuk Re-
gion, North-Central Alaska, Permafrost Periglac., 13, 219–230,
doi:10.1002/ppp.425, 2002.

Shiklomanov, N. I., Anisimov, O. A., Zhang, T., Marchenko, S.,
Nelson, F. E., and Oelke, C.: Comparison of model-produced
active layer fields: results for northern Alaska, J. Geophys. Res.,
112, F02S10,doi:10.1029/2006JF000571, 2007.

Snyder, W. C., Wan, Z., Zhang, Y., and Feng, Y.-Z.: Require-
ments for satellite land surface temperature validation using a
Silt Playa, Remote Sens. Environ., 6, 279–289, 1997.
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