Articles | Volume 18, issue 1
https://doi.org/10.5194/tc-18-475-2024
https://doi.org/10.5194/tc-18-475-2024
Research article
 | 
01 Feb 2024
Research article |  | 01 Feb 2024

Cloud- and ice-albedo feedbacks drive greater Greenland Ice Sheet sensitivity to warming in CMIP6 than in CMIP5

Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis

Related authors

Diverging runoff drives uncertainty in Antarctic surface mass balance projections under a high emission scenario
Benjamin Heurgue, Charles Amory, Christoph Kittel, Fredrik Boberg, Gaël Durand, Vincent Favier, Xavier Fettweis, Quentin Glaude, Heiko Goelzer, Nicolaj Hansen, Nicolas C. Jourdain, Ruth Mottram, Martin Olesen, Willem Jan Van de Berg, Michiel R. Van den Broeke, and René R. Wijngaard
EGUsphere, https://doi.org/10.5194/egusphere-2026-624,https://doi.org/10.5194/egusphere-2026-624, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
PIXAL: A Physics-Informed Explainable Machine Learning Architecture for Greenland Ice Albedo Modeling
Raf Antwerpen, Marco Tedesco, Pierre Gentine, Willem Jan van de Berg, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2025-6143,https://doi.org/10.5194/egusphere-2025-6143, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
NorESM2–DIAM: a coupled model for investigating global and regional climate-economy interactions
Jenny Bjordal, Anthony A. Smith Jr., Henri Cornec, and Trude Storelvmo
Geosci. Model Dev., 19, 1337–1365, https://doi.org/10.5194/gmd-19-1337-2026,https://doi.org/10.5194/gmd-19-1337-2026, 2026
Short summary
The Modèle Atmosphérique Régional – Intelligence Artificielle (MAR-IA): surface meltwater over Greenland
Marco Tedesco, Racheet Matai, and Xavier Fettweis
EGUsphere, https://doi.org/10.5194/egusphere-2026-490,https://doi.org/10.5194/egusphere-2026-490, 2026
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Shortening of the Arctic cold air outbreak season detected by a phenomenological machine learning approach
Filip Severin von der Lippe, Tim Carlsen, Trude Storelvmo, and Robert Oscar David
Atmos. Chem. Phys., 26, 1565–1585, https://doi.org/10.5194/acp-26-1565-2026,https://doi.org/10.5194/acp-26-1565-2026, 2026
Short summary

Cited articles

Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. a, b
Bennartz, R., Shupe, M. D., Turner, D. D., Walden, V. P., Steffen, K., Cox, C. J., Kulie, M. S., Miller, N. B., and Pettersen, C.: July 2012 Greenland melt extent enhanced by low-level liquid clouds, Nature, 496, 83–86, https://doi.org/10.1038/nature12002, 2013. a, b, c
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839, https://doi.org/10.5194/tc-6-821-2012, 2012. a, b
Box, J. E., Wehrlé, A., van As, D., Fausto, R. S., Kjeldsen, K. K., Dachauer, A., Ahlstrøm, A. P., and Picard, G.: Greenland Ice Sheet Rainfall, Heat and Albedo Feedback Impacts From the Mid-August 2021 Atmospheric River, Geophys. Res. Lett., 49, https://doi.org/10.1029/2021GL097356, 2022. a, b
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a, b
Download
Short summary
The latest generation of climate models (Coupled Model Intercomparison Project Phase 6 – CMIP6) warm more over Greenland and the Arctic and thus also project a larger mass loss from the Greenland Ice Sheet (GrIS) compared to the previous generation of climate models (CMIP5). Our work suggests for the first time that part of the greater mass loss in CMIP6 over the GrIS is driven by a difference in the surface mass balance sensitivity from a change in cloud representation in the CMIP6 models.
Share