Articles | Volume 12, issue 3
Research article
22 Mar 2018
Research article |  | 22 Mar 2018

Modelling seasonal meltwater forcing of the velocity of land-terminating margins of the Greenland Ice Sheet

Conrad P. Koziol and Neil Arnold

Related authors

fenics_ice 1.0: a framework for quantifying initialization uncertainty for time-dependent ice sheet models
Conrad P. Koziol, Joe A. Todd, Daniel N. Goldberg, and James R. Maddison
Geosci. Model Dev., 14, 5843–5861,,, 2021
Short summary
Incorporating modelled subglacial hydrology into inversions for basal drag
Conrad P. Koziol and Neil Arnold
The Cryosphere, 11, 2783–2797,,, 2017
Short summary

Related subject area

Numerical Modelling
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638,,, 2023
Short summary
Snow cover prediction in the Italian central Apennines using weather forecast and land surface numerical models
Edoardo Raparelli, Paolo Tuccella, Valentina Colaiuda, and Frank S. Marzano
The Cryosphere, 17, 519–538,,, 2023
Short summary
Geothermal heat flux is the dominant source of uncertainty in englacial-temperature-based dating of ice rise formation
Aleksandr Montelli and Jonathan Kingslake
The Cryosphere, 17, 195–210,,, 2023
Short summary
Simulating the current and future northern limit of permafrost on the Qinghai–Tibet Plateau
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846,,, 2022
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657,,, 2022
Short summary

Cited articles

Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83,, 2014. a
Arnold, N., Richards, K., Willis, I., and Sharp, M.: Initial results from a distributed, physically based model of glacier hydrology, Hydrol. Process., 12, 191–219,<191::AID-HYP571>3.0.CO;2-C, 1998. a, b
Arthern, R. J., Hindmarsh, R. C. A., and Williams, C. R.: Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations, J. Geophys. Res.-Earth, 120, 1171–1188,, 2015. a
Banwell, A., Hewitt, I., Willis, I., and Arnold, N.: Moulin density controls drainage development beneath the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121, 2248–2269,, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Bartholomaus, T., Anderson, R., and Anderson, S.: Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion, J. Glaciol., 57, 985–1002,, 2011. a
Short summary
We model the summer acceleration of ice velocities at a land-terminating margin of the Greenland Ice Sheet. Model results compare favourably against GPS data, reflecting positively on the model components and the datasets used. When we run the model into the future, we find that summer velocities increase with increasing levels of surface melt but that changes in annual velocities may be limited.