Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2507-2017
https://doi.org/10.5194/tc-11-2507-2017
Research article
 | 
07 Nov 2017
Research article |  | 07 Nov 2017

The modelled liquid water balance of the Greenland Ice Sheet

Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke

Related authors

HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor
Christian R. Steger, Benjamin Steger, and Christoph Schär
Geosci. Model Dev., 15, 6817–6840, https://doi.org/10.5194/gmd-15-6817-2022,https://doi.org/10.5194/gmd-15-6817-2022, 2022
Short summary
An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021,https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary

Related subject area

Greenland
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Seasonal snow cover indicators in coastal Greenland from in situ observations, a climate model, and reanalysis
Jorrit van der Schot, Jakob Abermann, Tiago Silva, Kerstin Rasmussen, Michael Winkler, Kirsty Langley, and Wolfgang Schöner
The Cryosphere, 18, 5803–5823, https://doi.org/10.5194/tc-18-5803-2024,https://doi.org/10.5194/tc-18-5803-2024, 2024
Short summary
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024,https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary

Cited articles

Aas, K. S., Gisnås, K., Westermann, S., and Berntsen, T. K.: A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models, J. Hydrometeorol., 18, 49–63, https://doi.org/10.1175/JHM-D-16-0026.1, 2017.
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016.
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160, https://doi.org/10.5194/tc-8-1149-2014, 2014.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002.
Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming, J. Climate, 23, 3888–3906, https://doi.org/10.1175/2010JCLI3297.1, 2010.
Download
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.