Articles | Volume 10, issue 5
https://doi.org/10.5194/tc-10-2043-2016
https://doi.org/10.5194/tc-10-2043-2016
Research article
 | 
13 Sep 2016
Research article |  | 13 Sep 2016

Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Bank

Xianwei Wang, David M. Holland, Xiao Cheng, and Peng Gong

Related authors

Seasonal evolution and parameterization of Arctic sea ice bulk density: results from the MOSAiC expedition and ICESat-2/ATLAS
Yi Zhou, Xianwei Wang, Ruibo Lei, Luisa von Albedyll, Donald K. Perovich, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1240,https://doi.org/10.5194/egusphere-2024-1240, 2024
Preprint archived
Short summary

Related subject area

Antarctic
Weak relationship between remotely detected crevasses and inferred ice rheological parameters on Antarctic ice shelves
Cristina Gerli, Sebastian Rosier, G. Hilmar Gudmundsson, and Sainan Sun
The Cryosphere, 18, 2677–2689, https://doi.org/10.5194/tc-18-2677-2024,https://doi.org/10.5194/tc-18-2677-2024, 2024
Short summary
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024,https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary
Sources of low-frequency variability in observed Antarctic sea ice
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024,https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 1: Event detection for cryoseismology
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, and J. Paul Winberry
The Cryosphere, 18, 2061–2079, https://doi.org/10.5194/tc-18-2061-2024,https://doi.org/10.5194/tc-18-2061-2024, 2024
Short summary
Towards the systematic reconnaissance of seismic signals from glaciers and ice sheets – Part 2: Unsupervised learning for source process characterization
Rebecca B. Latto, Ross J. Turner, Anya M. Reading, Sue Cook, Bernd Kulessa, and J. Paul Winberry
The Cryosphere, 18, 2081–2101, https://doi.org/10.5194/tc-18-2081-2024,https://doi.org/10.5194/tc-18-2081-2024, 2024
Short summary

Cited articles

Abshire, J. B., Sun, X., Riris, H., Sirota, J. M., McGarry, J. F., Palm, S., Yi, D., and Liiva, P.: Geoscience laser altimeter system (GLAS) on the ICESat mission: On-orbit measurement performance, Geophys. Res. Lett., 32, L21S02, https://doi.org/10.1029/2005GL024028, 2005.
BAS (British Antarctic Survey): Bedmap-2 data, available at: https://secure.antarctica.ac.uk/data/bedmap2/, last access: August 2016.
Beaman, R. J. and Harris, P. T.: Seafloor morphology and acoustic facies of the George V Land shelf, Deep-Sea Res. Pt. II, 50, 1343–1355, 2003.
Beaman, R. J., O'Brien, P. E., Post, A. L., and De Santis, L.: A new high-resolution bathymetry model for the Terre Adélie and George V continental margin, East Antarctica, Antarct. Sci., 23, 95–103, 2011.
Berthier, E., Raup, B., and Scambos, T.: New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery, J. Glaciol., 49, 503–511, 2003.
Download
Short summary
MIT was reported to have calved subsequent to being rammed by a large iceberg. However from remote sensing, the ice fronts being rammed did not move out first which led us to detect the influence of seafloor on instability of MIT. Using Firn Air Content extracted from slightly grounded icebergs, laser altimetry, remote sensing, and seafloor topography data, grounding of the MIT caused by Mertz Bank is extracted. Mertz Bank is confirmed to control calving of the MIT at a cycle of ~70 years.