Articles | Volume 9, issue 4
The Cryosphere, 9, 1633–1648, 2015
https://doi.org/10.5194/tc-9-1633-2015
The Cryosphere, 9, 1633–1648, 2015
https://doi.org/10.5194/tc-9-1633-2015

Research article 20 Aug 2015

Research article | 20 Aug 2015

Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core

J.-L. Tison et al.

Related authors

Impact of coastal East Antarctic ice rises on surface mass balance: insights from observations and modeling
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020,https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017,https://doi.org/10.5194/bg-14-4545-2017, 2017
The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis
Célia J. Sapart, Natalia Shakhova, Igor Semiletov, Joachim Jansen, Sönke Szidat, Denis Kosmach, Oleg Dudarev, Carina van der Veen, Matthias Egger, Valentine Sergienko, Anatoly Salyuk, Vladimir Tumskoy, Jean-Louis Tison, and Thomas Röckmann
Biogeosciences, 14, 2283–2292, https://doi.org/10.5194/bg-14-2283-2017,https://doi.org/10.5194/bg-14-2283-2017, 2017
Short summary
Ice core evidence for a 20th century increase in surface mass balance in coastal Dronning Maud Land, East Antarctica
Morgane Philippe, Jean-Louis Tison, Karen Fjøsne, Bryn Hubbard, Helle A. Kjær, Jan T. M. Lenaerts, Reinhard Drews, Simon G. Sheldon, Kevin De Bondt, Philippe Claeys, and Frank Pattyn
The Cryosphere, 10, 2501–2516, https://doi.org/10.5194/tc-10-2501-2016,https://doi.org/10.5194/tc-10-2501-2016, 2016
Short summary
Imaging air volume fraction in sea ice using non-destructive X-ray tomography
Odile Crabeck, Ryan Galley, Bruno Delille, Brent Else, Nicolas-Xavier Geilfus, Marcos Lemes, Mathieu Des Roches, Pierre Francus, Jean-Louis Tison, and Søren Rysgaard
The Cryosphere, 10, 1125–1145, https://doi.org/10.5194/tc-10-1125-2016,https://doi.org/10.5194/tc-10-1125-2016, 2016
Short summary

Related subject area

Ice Cores
Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021,https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Brief communication: New radar constraints support presence of ice older than 1.5 Myr at Little Dome C
David A. Lilien, Daniel Steinhage, Drew Taylor, Frédéric Parrenin, Catherine Ritz, Robert Mulvaney, Carlos Martín, Jie-Bang Yan, Charles O'Neill, Massimo Frezzotti, Heinrich Miller, Prasad Gogineni, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 15, 1881–1888, https://doi.org/10.5194/tc-15-1881-2021,https://doi.org/10.5194/tc-15-1881-2021, 2021
Short summary
Pervasive diffusion of climate signals recorded in ice-vein ionic impurities
Felix S. L. Ng
The Cryosphere, 15, 1787–1810, https://doi.org/10.5194/tc-15-1787-2021,https://doi.org/10.5194/tc-15-1787-2021, 2021
Short summary
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021,https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Giant dust particles at Nevado Illimani: a proxy of summertime deep convection over the Bolivian Altiplano
Filipe G. L. Lindau, Jefferson C. Simões, Barbara Delmonte, Patrick Ginot, Giovanni Baccolo, Chiara I. Paleari, Elena Di Stefano, Elena Korotkikh, Douglas S. Introne, Valter Maggi, Eduardo Garzanti, and Sergio Andò
The Cryosphere, 15, 1383–1397, https://doi.org/10.5194/tc-15-1383-2021,https://doi.org/10.5194/tc-15-1383-2021, 2021
Short summary

Cited articles

Alley, R. B., Perepezko, J. H., and Bentley, C. R.: Grain growth in polar ice, I. Theory, J. Glaciol., 32, 415–424, 1986.
Baker, I. and Cullen, D.: SEM/EDS observations of impurities in polar ice: artefacts or not?, J. Glaciol., 49, 184–190, 2003.
Bender, M. L.: Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth Planet. Sci. Lett., 204, 275–289, 2002.
Boulton, G. S.: Processes of erosion on different substrata, J. Glaciol., 23, 15–38, 1979.
Download
Short summary
The oldest paleoclimatic information is buried within the lowermost layers of deep ice cores. It is therefore essential to judge how deep these records remain unaltered. We study the bottom 60 meters of the EPICA Dome C ice core from central Antarctica to show that the paleoclimatic signal is only affected at the small scale (decimeters) in terms of some of the global ice properties. However our data suggest that the time scale has been considerably distorted by mechanical stretching.