Articles | Volume 6, issue 6
https://doi.org/10.5194/tc-6-1561-2012
https://doi.org/10.5194/tc-6-1561-2012
Research article
 | 
21 Dec 2012
Research article |  | 21 Dec 2012

Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model

F. Gillet-Chaulet, O. Gagliardini, H. Seddik, M. Nodet, G. Durand, C. Ritz, T. Zwinger, R. Greve, and D. G. Vaughan

Related authors

The stability of present-day Antarctic grounding lines – Part A: No indication of marine ice sheet instability in the current geometry
Benoît Urruty, Emily A. Hill, Ronja Reese, Julius Garbe, Olivier Gagliardini, Gael Durand, Fabien Gillet-Chaulet, G. Hilmar Gudmundsson, Ricarda Winkelmann, Mondher Chekki, David Chandler, and Petra M. Langebroek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-104,https://doi.org/10.5194/tc-2022-104, 2022
Preprint under review for TC
Short summary
The stability of present-day Antarctic grounding lines – Part B: Possible commitment of regional collapse under current climate
Ronja Reese, Julius Garbe, Emily A. Hill, Benoît Urruty, Kaitlin A. Naughten, Olivier Gagliardini, Gael Durand, Fabien Gillet-Chaulet, David Chandler, Petra M. Langebroek, and Ricarda Winkelmann
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-105,https://doi.org/10.5194/tc-2022-105, 2022
Revised manuscript accepted for TC
Short summary
Seasonal evolution of basal environment conditions of Russell sector, West Greenland, inverted from satellite observation of surface flow
Anna Derkacheva, Fabien Gillet-Chaulet, Jeremie Mouginot, Eliot Jager, Nathan Maier, and Samuel Cook
The Cryosphere, 15, 5675–5704, https://doi.org/10.5194/tc-15-5675-2021,https://doi.org/10.5194/tc-15-5675-2021, 2021
Short summary
Basal traction mainly dictated by hard-bed physics over grounded regions of Greenland
Nathan Maier, Florent Gimbert, Fabien Gillet-Chaulet, and Adrien Gilbert
The Cryosphere, 15, 1435–1451, https://doi.org/10.5194/tc-15-1435-2021,https://doi.org/10.5194/tc-15-1435-2021, 2021
Short summary
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Vincent Peyaud, Coline Bouchayer, Olivier Gagliardini, Christian Vincent, Fabien Gillet-Chaulet, Delphine Six, and Olivier Laarman
The Cryosphere, 14, 3979–3994, https://doi.org/10.5194/tc-14-3979-2020,https://doi.org/10.5194/tc-14-3979-2020, 2020
Short summary

Related subject area

Ice Sheets
A model of the weathering crust and microbial activity on an ice-sheet surface
Tilly Woods and Ian J. Hewitt
The Cryosphere, 17, 1967–1987, https://doi.org/10.5194/tc-17-1967-2023,https://doi.org/10.5194/tc-17-1967-2023, 2023
Short summary
Polar Firn Properties in Greenland and Antarctica and Related Effects on Microwave Brightness Temperatures
Haokui Xu, Brooke Medley, Leung Tsang, Joel T. Johnson, Kenneth Jezek, Macro Brogioni, and Lars Kaleschke
EGUsphere, https://doi.org/10.5194/egusphere-2022-698,https://doi.org/10.5194/egusphere-2022-698, 2022
Short summary
PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022,https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections
Heiko Goelzer, Brice P. Y. Noël, Tamsin L. Edwards, Xavier Fettweis, Jonathan M. Gregory, William H. Lipscomb, Roderik S. W. van de Wal, and Michiel R. van den Broeke
The Cryosphere, 14, 1747–1762, https://doi.org/10.5194/tc-14-1747-2020,https://doi.org/10.5194/tc-14-1747-2020, 2020
Short summary
Brief communication: On calculating the sea-level contribution in marine ice-sheet models
Heiko Goelzer, Violaine Coulon, Frank Pattyn, Bas de Boer, and Roderik van de Wal
The Cryosphere, 14, 833–840, https://doi.org/10.5194/tc-14-833-2020,https://doi.org/10.5194/tc-14-833-2020, 2020
Short summary

Cited articles

Alley, R. B. and Joughin, I.: Modeling ice-sheet flow, Science, 336, 551–552, https://doi.org/10.1126/science.1220530, 2012.
Arthern, R. J. and Gudmundsson, G. H.: Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56, 527–533, 2010.
Bamber, J. L., Layberry, R. L., and Gogineni, S. P.: A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors, J. Geophys. Res., 106, 33773–33780, 2001.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GL038110, 2009.
Favier, L., Gagliardini, O., Durand, G., and Zwinger, T.: A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf, The Cryosphere, 6, 101–112, https://doi.org/10.5194/tc-6-101-2012, 2012.