Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-933-2024
https://doi.org/10.5194/tc-18-933-2024
Research article
 | 
29 Feb 2024
Research article |  | 29 Feb 2024

Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model

Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen

Related authors

Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-142,https://doi.org/10.5194/tc-2023-142, 2023
Preprint under review for TC
Short summary
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
EGUsphere, https://doi.org/10.5194/egusphere-2023-634,https://doi.org/10.5194/egusphere-2023-634, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024,https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024,https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024,https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024,https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary

Cited articles

Blackford, J. R.: Sintering and microstructure of ice: a review, J. Phys. D, 40, R355, https://doi.org/10.1088/0022-3727/40/21/R02, 2007. a
Curry, J., Schramm, J., and Ebert, E.: Sea Ice-Albedo Climate Feedback Mechanism, J. Climate, 8, 240–247, 1995. a
Ding, Y., Cheng, X., Liu, J., Hui, F., Wang, Z., and Chen, S.: Retrieval of melt pond fraction over Arctic sea ice during 2000–2019 using an ensemble-based deep neural network, Remote Sens., 12, 2746, https://doi.org/10.3390/RS12172746, 2020. a, b, c, d
Dorn, W., Rinke, A., Köberle, C., Dethloff, K., and Gerdes, R.: HIRHAM–NAOSIM 2.0: The upgraded version of the coupled regional atmosphere-ocean-sea ice model for Arctic climate studies, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2018-278, 2018. a, b
Eicken, H., Grenfell, T. C., Perovich, D. K., Richter-Menge, J. A., and Frey, K.: Hydraulic controls of summer Arctic pack ice albedo, J. Geophys. Res.-Oceans, 109, C08007, https://doi.org/10.1029/2003JC001989, 2004. a, b
Download
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.