Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1381-2024
https://doi.org/10.5194/tc-18-1381-2024
Research article
 | 
26 Mar 2024
Research article |  | 26 Mar 2024

Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka

Joshua Cuzzone, Matias Romero, and Shaun A. Marcott

Related authors

Simulating the Holocene evolution of Ryder Glacier, North Greenland
Jamie Barnett, Felicity A. Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
The Cryosphere, 19, 3631–3653, https://doi.org/10.5194/tc-19-3631-2025,https://doi.org/10.5194/tc-19-3631-2025, 2025
Short summary
Ice sheet model simulations reveal that polythermal ice conditions existed across the northeastern USA during the Last Glacial Maximum
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025,https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022,https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021,https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary

Cited articles

Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016. 
Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. J., and Mangerud, J.: Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet, Quaternary Sci. Rev., 195, 32–47, https://doi.org/10.1016/j.quascirev.2018.07.004, 2018. 
Andersen, B., Denton, G. H., and Lowell, T. V.: Glacial geomorphologic maps of Llanquihue drift in the area of the southern Lake District, Chile, Geogr. Ann. A, 81, 155–166, 1999. 
Bendle, J. M., Palmer, A. P., Thorndycraft, V. R., and Matthews, I. P.: Phased Patagonian Ice Sheet response to Southern Hemisphere atmospheric and oceanic warming between 18 and 17 ka, Sci. Rep.-UK, 9, 4133, https://doi.org/10.1038/s41598-019-39750-w, 2019. 
Bentley, M. J.: The role of lakes in moraine formation, Chilean Lake District, Earth Surf. Proc. Land., 21, 493–507, https://doi.org/10.1002/(SICI)1096-9837(199606)21:6<493::AID-ESP612>3.0.CO;2-D, 1996. 
Download
Short summary
We simulate the retreat history of the Patagonian Ice Sheet (PIS) across the Chilean Lake District from 22–10 ka. These results improve our understanding of the response of the PIS to deglacial warming and the patterns of deglacial ice margin retreat where gaps in the geologic record still exist, and they indicate that changes in large-scale precipitation during the last deglaciation played an important role in modulating the response of ice margin change across the PIS to deglacial warming.
Share