Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1381-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-1381-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling the timing of Patagonian Ice Sheet retreat in the Chilean Lake District from 22–10 ka
Joshua Cuzzone
CORRESPONDING AUTHOR
Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, USA
Matias Romero
Department of Geoscience, University of Wisconsin, Madison, USA
Shaun A. Marcott
Department of Geoscience, University of Wisconsin, Madison, USA
Related authors
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025, https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the northeastern United States. A complex thermal history existed for the LIS that caused high erosion across most of the NE USA but prevented erosion across high-elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Joshua K. Cuzzone, Aaron Barth, Kelsey Barker, and Mathieu Morlighem
The Cryosphere, 19, 1559–1575, https://doi.org/10.5194/tc-19-1559-2025, https://doi.org/10.5194/tc-19-1559-2025, 2025
Short summary
Short summary
We use an ice sheet model to simulate the Last Glacial Maximum conditions of the Laurentide Ice Sheet (LIS) across the northeastern United States. A complex thermal history existed for the LIS that caused high erosion across most of the NE USA but prevented erosion across high-elevation mountain peaks and areas where ice flow was slow. This has implications for geologic studies which rely on the erosional nature of the LIS to reconstruct its glacial history and landscape evolution.
Jamie Barnett, Felicity Alice Holmes, Joshua Cuzzone, Henning Åkesson, Mathieu Morlighem, Matt O'Regan, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2025-653, https://doi.org/10.5194/egusphere-2025-653, 2025
Short summary
Short summary
Understanding how ice sheets have changed in the past can allow us to make better predictions for the future. By running a state-of-the-art model of Ryder Glacier, North Greenland, over the past 12,000 years we find that both a warming atmosphere and ocean play a key role in the evolution of the Glacier. Our conclusions stress that accurately quantifying the ice sheet’s interactions with the ocean are required to predict future changes and reliable sea level rise estimates.
Matias Romero, Shanti B. Penprase, Maximillian S. Van Wyk de Vries, Andrew D. Wickert, Andrew G. Jones, Shaun A. Marcott, Jorge A. Strelin, Mateo A. Martini, Tammy M. Rittenour, Guido Brignone, Mark D. Shapley, Emi Ito, Kelly R. MacGregor, and Marc W. Caffee
Clim. Past, 20, 1861–1883, https://doi.org/10.5194/cp-20-1861-2024, https://doi.org/10.5194/cp-20-1861-2024, 2024
Short summary
Short summary
Investigating past glaciated regions is crucial for understanding how ice sheets responded to climate forcings and how they might respond in the future. We use two independent dating techniques to document the timing and extent of the Lago Argentino glacier lobe, a former lobe of the Patagonian Ice Sheet, during the late Quaternary. Our findings highlight feedbacks in the Earth’s system responsible for modulating glacier growth in the Southern Hemisphere prior to the global Last Glacial Maximum.
Andrew G. Jones, Shaun A. Marcott, Andrew L. Gorin, Tori M. Kennedy, Jeremy D. Shakun, Brent M. Goehring, Brian Menounos, Douglas H. Clark, Matias Romero, and Marc W. Caffee
The Cryosphere, 17, 5459–5475, https://doi.org/10.5194/tc-17-5459-2023, https://doi.org/10.5194/tc-17-5459-2023, 2023
Short summary
Short summary
Mountain glaciers today are fractions of their sizes 140 years ago, but how do these sizes compare to the past 11,000 years? We find that four glaciers in the United States and Canada have reversed a long-term trend of growth and retreated to positions last occupied thousands of years ago. Notably, each glacier occupies a unique position relative to its long-term history. We hypothesize that unequal modern retreat has caused the glaciers to be out of sync relative to their Holocene histories.
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Short summary
We use an ice sheet model to determine what influenced the Greenland Ice Sheet to retreat across a portion of southwestern Greenland during the Holocene (about the last 12 000 years). Our simulations, constrained by observations from geologic markers, show that atmospheric warming and ice melt primarily caused the ice sheet to retreat rapidly across this domain. We find, however, that iceberg calving at the interface where the ice meets the ocean significantly influenced ice mass change.
Nicolás E. Young, Alia J. Lesnek, Josh K. Cuzzone, Jason P. Briner, Jessica A. Badgeley, Alexandra Balter-Kennedy, Brandon L. Graham, Allison Cluett, Jennifer L. Lamp, Roseanne Schwartz, Thibaut Tuna, Edouard Bard, Marc W. Caffee, Susan R. H. Zimmerman, and Joerg M. Schaefer
Clim. Past, 17, 419–450, https://doi.org/10.5194/cp-17-419-2021, https://doi.org/10.5194/cp-17-419-2021, 2021
Short summary
Short summary
Retreat of the Greenland Ice Sheet (GrIS) margin is exposing a bedrock landscape that holds clues regarding the timing and extent of past ice-sheet minima. We present cosmogenic nuclide measurements from recently deglaciated bedrock surfaces (the last few decades), combined with a refined chronology of southwestern Greenland deglaciation and model simulations of GrIS change. Results suggest that inland retreat of the southwestern GrIS margin was likely minimal in the middle to late Holocene.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Cited articles
Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016.
Åkesson, H., Morlighem, M., Nisancioglu, K. H., Svendsen, J. J., and Mangerud, J.: Atmosphere-driven ice sheet mass loss paced by topography: Insights from modelling the south-western Scandinavian Ice Sheet, Quaternary Sci. Rev., 195, 32–47, https://doi.org/10.1016/j.quascirev.2018.07.004, 2018.
Andersen, B., Denton, G. H., and Lowell, T. V.: Glacial geomorphologic maps of Llanquihue drift in the area of the southern Lake District, Chile, Geogr. Ann. A, 81, 155–166, 1999.
Bendle, J. M., Palmer, A. P., Thorndycraft, V. R., and Matthews, I. P.: Phased Patagonian Ice Sheet response to Southern Hemisphere atmospheric and oceanic warming between 18 and 17 ka, Sci. Rep.-UK, 9, 4133, https://doi.org/10.1038/s41598-019-39750-w, 2019.
Bentley, M. J.: The role of lakes in moraine formation, Chilean Lake District, Earth Surf. Proc. Land., 21, 493–507, https://doi.org/10.1002/(SICI)1096-9837(199606)21:6<493::AID-ESP612>3.0.CO;2-D, 1996.
Bentley, M. J.: Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District, J. Quaternary Sci., 12, 25–33, https://doi.org/10.1002/(SICI)1099-1417(199701/02)12:1<25::AID-JQS289>3.0.CO;2-A, 1997.
Berman, L., Silvestri, G., and Tonello, M. S.: On differences between Last Glacial Maximum and Mid-Holocene climates in southern South America simulated by PMIP3 models, Quaternary Sci. Rev., 185, 113–121, https://doi.org/10.1016/j.quascirev.2018.02.003, 2018.
Blatter, H.: Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, https://doi.org/10.3189/S002214300001621X, 1995.
Boex, J., Fogwill, C., Harrison, S., Glasser, N.F., Hein, A., Schnabel, C., and Xu, S.: Rapid Thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies, Sci. Rep.-UK, 3, 2118, https://doi.org/10.1038/srep02118, 2013.
Boisier, J. P., Alvarez-Garretón, C., Cepeda, J., Osses, A., Vásquez, N., and Rondanelli, R.: CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile, Zenodo [data set], https://doi.org/10.5281/zenodo.7529682, 2018.
Bondzio, J. H., Seroussi, H., Morlighem, M., Kleiner, T., Rückamp, M., Humbert, A., and Larour, E. Y.: Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland, The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, 2016.
Briner, J. P., Cuzzone, J. K., Badgeley, J. A., Young, N. E., Steig, E. J., Morlighem, M., Schlegel, N.-J., Hakim, G., Schaefer, J. Johnson, J. V., Lesnek, A. L., Thomas, E. K., Allan, E., Bennike, O., Cluett, A. A., Csatho, B., de Vernal, A., Downs, J., Larour, E., and Nowicki, S.: Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century, Nature, 6, 70–74, https://doi.org/10.1038/s41586-020-2742-6, 2020.
Budd, W. F., Keage, P. L., and Blundy, N. A.: Empirical studies of ice sliding, J. Glaciol., 23, 157–170, https://doi.org/10.3189/S0022143000029804, 1979.
Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G.: GIA model statistics for GRACE hydrology, cryosphere and ocean science, Geophys. Res. Lett., 45, 2203–2212, https://doi.org/10.1002/2017GL076644, 2018.
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a primary driver of Greenland ice sheet mass loss over the next century, Commun. Earth Environ., 2, 1–9, https://doi.org/10.1038/s43247-021-00092-z, 2021.
Clark, P. U., He, F., Golledge, N. R., Mitrovica, J. X., Dutton, A., Hoffman, J. S., and Dendy, S.: Oceanic forcing of penultimate deglacial and last interglacial sea-level rise, Nature, 577, 660–664, https://doi.org/10.1038/s41586-020-1931-7, 2020.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford, ISBN 9780123694614, 2010.
Cuzzone, J. K., Schlegel, N.-J., Morlighem, M., Larour, E., Briner, J. P., Seroussi, H., and Caron, L.: The impact of model resolution on the simulated Holocene retreat of the southwestern Greenland ice sheet using the Ice Sheet System Model (ISSM), The Cryosphere, 13, 879–893, https://doi.org/10.5194/tc-13-879-2019, 2019.
Cuzzone, J. K., Young, N. E., Morlighem, M., Briner, J. P., and Schlegel, N.-J.: Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings, The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022, 2022.
Davies, B. J., Darvill, C. M., Lovell, H., Bendle, J. M., Dowdeswell, J. A., Fabel, D., and Gheorghiu, D. M.: The evolution of the Patagonian ice sheet from 35 ka to the present day (PATICE), Earth Sci. Rev., 204, 103152, https://doi.org/10.1016/j.earscirev.2020.103152, 2020.
Darvill, C. M., Stokes, C. R., Bentley, M. J., Evans, D. J. A., and Lovell, H.: Dynamics of former ice lobes of the southernmost Patagonian Ice Sheet based on glacial landsystems approach, J. Quaternary Sci., 32, 857–876, https://doi.org/10.1002/jqs.2890, 2017.
Denton, G. H., Lowell, T. V., Heusser, C. J., Schlüchter, C., Andersen, B. G., Heusser, L. E., Moreno, P. I., and Marchant, D. R.: Geomorphology, Stratigraphy, and Radiocarbon Chronology of LlanquihueDrift in the Area of the Southern Lake District, Seno Reloncav., and Isla Grande de Chilo, Chile, Geogr. Ann. A, 81, 167–229, 1999.
Denton, G. H., Heusser, J., Lowell, T. V., Moreno, P. I., Andersen, B. G., Heusser, L. E., Schlühter, C., and Marchant, D. R.: Interhemispheric Linkage of Paleoclimate During the Last Glaciation, Geogr. Ann., 81, 107–153, 1999.
Dias dos Santos, T., Morlighem, M., and Brinkerhoff, D.: A new vertically integrated MOno-Layer Higher-Order (MOLHO) ice flow model, The Cryosphere, 16, 179–195, https://doi.org/10.5194/tc-16-179-2022, 2022.
Díaz, C., Moreno, P. I., Villacís, L. A., Sepúlveda-Zúñiga, E. A., and Maidana, N. I.: Freshwater diatom evidence for Southern Westerly Wind evolution since ∼ 18 ka in northwestern Patagonia, Quaternary Sci. Rev., 316, 108231, https://doi.org/10.1016/j.quascirev.2023.108231, 2023.
Fernandez, A. and Mark, B. G.: Modeling modern glacier response to climate changes along the Andes Cordillera: A multiscale review, J. Adv. Model. Earth Sy., 8, 467–495, https://doi.org/10.1002/2015MS000482, 2016.
García, J. L., Maldonado, A., De Porras, M. E., Delaunay, A. N., Reyes, O., Ebensperger, C. A., Binnie, Lüthgens, C., S. A., and Méndez, C.: Early deglaciation and paleolake history of Río Cisnes glacier, Patagonian ice sheet (44 S), Quaternary Res., 91, 194–217, https://doi.org/10.1017/qua.2018.93, 2019.
GEBCO Bathymetric Compilation Group 2021: The GEBCO_2021 Grid – a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre NOC, https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Glasser, N. F., Jansson, K. N., Harrison, S., and Kleman, J.: The glacial geomorphology and Pleistocene history of South America between 38S and 56S, Quaternary Sci. Rev., 27, 365–390, 2008.
Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. Lond. A, 228, 519–538, https://doi.org/10.1098/rspa.1955.0066, 1955.
Golledge, N. R., Thomas, Z. A., Levy, R. H., Gasson, E. G. W., Naish, T. R., McKay, R. M., Kowalewski, D. E., and Fogwill, C. J.: Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma, Clim. Past, 13, 959–975, https://doi.org/10.5194/cp-13-959-2017, 2017.
Hartmann, D. and Lo, F.: Wave-Driven Zonal Flow Vacillation in the Southern Hemisphere, J. Atmos. Sci., 55, 1303–1315, https://doi.org/10.1175/1520-0469(1998)055<1303:WDZFVI>2.0.CO;2, 1998.
He, F. and Clark, P. U.: Freshwater forcing of the Atlantic Meridional Overturning Circulation revisited, Nat. Clim. Change, 12, 449–454, https://doi.org/10.1038/s41558-022-01328-2, 2022.
He, F., Shakun, J. D., Clark, P. U., Carlson, A. E., Liu, Z., Otto-Bliesner, B. L., and Kutzbach, J. E.: Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation, Nature, 494, 81–85, https://doi.org/10.1038/nature11822, 2013.
Heirman, K., De Batist, M., Charlet, F., Moernaut, J., Chapron, E., Brümmer, R., Pino, M., and Urrutia, R.: Detailed seismic stratigraphy of Lago Puyehue: implications for the mode and timing of glacier retreat in the Chilean Lake District, J. Quaternary Sci., 26, 665–674, https://doi.org/10.1002/jqs.1491, 2011.
Hinck, S., Gowan, E. J., Zhang, X., and Lohmann, G.: PISM-LakeCC: Implementing an adaptive proglacial lake boundary in an ice sheet model, The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, 2022.
Hubbard, A., Hein, A. S., Kaplan, M. R., Hulton, N. R. J., and Glasser, N.: A modelling reconstruction of the last glacial maximum ice sheet and its deglaciation in the vicinity of the northern patagonian icefield, south America, Geogr. Ann. A, 87, 375–391, https://doi.org/10.1111/j.0435-3676.2005.00264.x, 2005.
Hulton, N. R. J., Purves, R., McCulloch, R., Sugden, D. E., and Bentley, M. J.: The last glacial maximum and deglaciation in southern south America, Quaternary Sci. Rev., 21, 233–241, https://doi.org/10.1016/S0277-3791(01)00103-2, 2002.
Ivins, E. R., Watkins, M. M., Yuan, D., Dietrich, R., Casassa, G., and Rulke, A.: On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009, J. Geophys. Res., 116, B02403, https://doi.org/10.1029/2010JB007607, 2011.
Jiang, N. and Yan, Q.: Evolution of the meridional shift of the subtropical and subpolar westerly jet over the Southern Hemisphere during the past 21,000 years, Quaternary Sci. Rev., 246, 1–13, https://doi.org/10.1016/j.quascirev.2020.106544, 2020.
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021.
Kaplan, M. R., Ackert Jr., R. P., Singer, B. S., Douglass, D. C., and Kurz, M. D.: Cosmogenic nuclide chronology of millennial-scale glacial advances during O-isotope stage 2 in Patagonia, Geol. Soc. Am. Bull., 116, 308–321, https://doi.org/10.1130/B25178.1, 2004.
Kaplan, M. R., Fogwill, C. J., Sugden, D. E., Hulton, N. R. J., Kubik, P. W., and Freeman, S. P. H. T.: Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate, Quaternary Sci. Rev., 27, 284–294, https://doi.org/10.1016/j.quascirev.2007.09.013, 2008.
Kilian, R. and Lamy, F.: A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49e55 S), Quaternary Sci. Rev., 53, 1–23, https://doi.org/10.1016/j.quascirev.2012.07.017, 2012.
Kohfeld, K. E., Graham, R. M., Boer, A. M. de, Sime, L. C., Wolff, E. W., Quere, C. L., and Bopp, L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis, Quaternary Sci. Rev., 68, 76–95, https://doi.org/10.1016/j.quascirev.2013.01.017, 2013.
Lamy, F., Kilian, R., Arz, H. W., Francois, J.-P., Kaiser, J., Prange, M., and Steinke, T.: Holocene changes in the position and intensity of the southern westerly wind belt, Nat. Geosci., 3, 695–699, https://doi.org/10.1038/ngeo959, 2010.
Larour, E., Seroussi, H., Morlighem, M., and Rignot, E.: Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), J. Geophys. Res.-Earth, 117, F01022, https://doi.org/10.1029/2011JF002140, 2012.
Leger, T. P., Hein, A. S., Bingham, R. G., Rodés, Á., Fabel, D., and Smedley, R. K.: Geomorphology and 10Be chronology of the Last Glacial Maximum and deglaciation in northeastern Patagonia, 43° S–71° W, Quaternary Sci. Rev., 272, 107194, https://doi.org/10.1016/j.quascirev.2021.107194, 2021a.
Leger, T. P. M., Hein, A. S., Goldberg, D., Schimmelpfennig, I., Van Wyk de Vries, M. S., Bingham, R. G., and ASTER Team: Northeastern Patagonian Glacier Advances (43° S) Reflect Northward Migration of the Southern Westerlies Towards the End of the Last Glaciation, Front. Earth Sci., 9, 751987, https://doi.org/10.3389/feart.2021.751987, 2021b.
Le Morzadec, K., Tarasov, L., Morlighem, M., and Seroussi, H.: A new sub-grid surface mass balance and flux model for continental-scale ice sheet modelling: testing and last glacial cycle, Geosci. Model Dev., 8, 3199–3213, https://doi.org/10.5194/gmd-8-3199-2015, 2015.
Liu, Z., Otto-Bliesner, B., He, F., Brady, E., Tomas, R., Clark, P., Carlson, A., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.: Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming, Science, 325, 310–314, https://doi.org/10.1126/science.1171041, 2009.
Lowry, D. P., Golledge, N. R., Menviel, L., and Bertler, N. A. N.: Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations, Clim. Past, 15, 189–215, https://doi.org/10.5194/cp-15-189-2019, 2019.
Lowell, T., Heusser, C., Andersen, B., Moreno, P., Hauser, A., Heusser, L., Schlüchter, C., Marchant, D., and Denton, G.: Interhemispheric correlation of late Pleistoceneglacial events, Science, 269, 1541–1549, https://doi.org/10.1126/science.269.5230.1541, 1995.
Martin, J., Davies, B. J., Jones, R., and Thorndycraft, V.: Modelled sensitivity of Monte San Lorenzo ice cap, Patagonian Andes, to past and present climate, Front. Earth Sci., 10, 831631, https://doi.org/10.3389/feart.2022.831631, 2022.
McCulloch, R. D., Bentley, M. J., Purves, R. S., Hulton, N. R., Sugden, D. E., and Clapperton, C. M.: Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America, J. Quaternary Sci., 15, 409–417, https://doi.org/10.1002/jqs.608, 2000.
McCulloch, R. D., Fogwill, C. J., Sugden, D. E., Bentley, M. J., and Kubik, P. W.: Chronology of the last glaciation in central Strait of Magellan and Bahía Inútil, southernmost South America, Geogr. Ann. A, 87, 289–312, https://doi.org/10.1111/j.0435-3676.2005.00260.x, 2005.
Menviel, L., Timmermann, A., Mouchet, A., and Timm, O.: Climate and marine carbon cycle response to changes in the strength of the Southern Hemispheric westerlies, Paleoceanography, 23, PA4201, https://doi.org/10.1029/2008PA001604, 2008.
Mercer, J. H.: Chilean glacial chronology 20,000 to 11,000 carbon-14 years ago:some global comparisons, Science, 176, 1118–1120, https://doi.org/10.1126/science.176.4039.1118, 1972.
Moreno, P. I., Lowell, T. V., Jacobson Jr., G. L., and Denton, G. H.: Abrupt vegetation and climate changes during the last glacial maximumand last termination in the chilean lake district: a case study from canal de la puntilla (41 s), Geogr. Ann. A, 81, 285–311, 1999.
Moreno, P. I., Denton, G. H., Moreno, H., Lowell, T. V., Putnam, A. E., and Kaplan, M. R.: Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia, Quaternary Sci. Rev., 122, 233e249, https://doi.org/10.1016/j.quascirev.2015.05.027, 2015.
Moreno, P. I., Videla, J., Valero-Garc es, B. L., Alloway, B. V., and Heusser, L. E.: A continuous record of vegetation, fire-regime and climatic changes in northwestern Patagonia spanning the last 25,000 years, Quaternary Sci. Rev., 198, 15–36, https://doi.org/10.1016/j.quascirev.2018.08.013, 2018.
Morlighem, M., Bondzio, J., Seroussi, H., Rignot, E., Larour, E., Humbert, A., and Rebuffi, S.: Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing, Geophys. Res. Lett., 43, 2659–2666, https://doi.org/10.1002/2016GL067695, 2016.
Muir, R., Eaves, S., Vargo, L., Anderson, B., Mackintosh, A., Sagredo, E., and Soteres, R.: Late glacial climate evolution in the Patagonian Andes (44-47° S) from alpine glacier modelling, Quaternary Sci. Rev., 305, 1–17, https://doi.org/10.1016/j.quascirev.2023.108035, 2023.
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108, 2382, https://doi.org/10.1029/2002JB002329, 2003.
Pedro, J. B., Bostock, H. C., Bitz, C. M., He, F., Vandergoes, M. J., Steig, E. J., Chase, B. M., Krause, C. E., Rasmussen, S. O., Bradley, M. R., and Cortese, G.: The spatial extent and dynamics of the Antarctic Cold Reversal, Nat. Geosci., 9, 51–55, https://doi.org/10.1038/ngeo2580, 2016.
Peixoto, J. P. and Oort, A. H.: Physics of Climate, American Institute of Physics, 520 pp., https://doi.org/10.1103/RevModPhys.56.365, 1992.
Peltier, W. R.: Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Planet. Sc., 32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004
Peltier, C., Kaplan, M. R., Birkel, S. D., Soteres, R. L., Sagredo, E. A., Aravena, J. C., Aras, J., Moreno, P. I., Schwartz, R., and Schaefer, J. M.: The large MIS 4 and long MIS 2 glacier maxima on the southern tip of South America, Quaternary Sci. Rev., 262, 106858, https://doi.org/10.1016/j.quascirev.2021.106858, 2021.
Peltier, C., Kaplan, M. R., Sagredo, E. A., Moreno, P. I., Araos, J., Birkel, S. D., Villa-Martinez, R., Schwartz, R., Reynhout, S. A., and Schaefer, J. M.: The last two glacial cycles in central Patagonia: A precise record from the Ñirehuao glacier lobe, Quaternary Sci. Rev., 304, 107873, https://doi.org/10.1016/j.quascirev.2022.107873, 2023.
Pollard, D. and DeConto, R. M.: Description of a hybrid ice sheet-shelf model, and application to Antarctica, Geosci. Model Dev., 5, 1273–1295, https://doi.org/10.5194/gmd-5-1273-2012, 2012.
Porter, S. C.: Pleistocene glaciation in the southern Lake District of Chile, Quaternary Res., 16, 263–292, https://doi.org/10.1016/0033-5894(81)90013-2, 1981.
Quiquet, A., Dumas, C., Paillard, D., Ramstein, G., Ritz, C., and Roche, D. M.: Deglacial Ice Sheet Instabilities Induced by Proglacial Lakes, Geophys. Res. Lett., 48, e2020GL092141, https://doi.org/10.1029/2020GL092141, 2021.
Rojas, M.: Sensitivity of southern Hemisphere circulation to LGM and 4 CO2 climates, Geophys. Res. Lett., 40, 965e970, https://doi.org/10.1002/grl.50195, 2013.
Rojas, M., Moreno, P., Kageyama, M., Crucifix, M, Hewitt, C., Abe-Ouchi, A., Ohgaito, R., Brady, E. C., and Hop, P.: The Southern Westerlies during the last glacial maximumin PMIP2 simulations, Clim. Dynam., 32, 525–548, https://doi.org/10.1007/s00382-008-0421-7, 2009.
Seguinot, J., Rogozhina, I., Stroeven, A. P., Margold, M., and Kleman, J.: Numerical simulations of the Cordilleran ice sheet through the last glacial cycle, The Cryosphere, 10, 639–664, https://doi.org/10.5194/tc-10-639-2016, 2016.
Shakun, J., Clark, P., He, Marcott, S. A., Mix, A. C., Liu, A., Otto-Bliesner, B., Schmittner, A., and Bards, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484, 49–54, https://doi.org/10.1038/nature10915, 2012.
Shakun, J. D., Lea, D. W., Lisiecki, L. E., and Raymo, M. E.: An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling, 426, 58-68, https://doi.org/10.1016/j.epsl.2015.05.042, 2015.
Sime, L. C., Kohfeld, K. E., Le Quéré, C., Wolff, E. W., de Boer, A. M., Graham, R. M., and Bopp, G. L.: Southern Hemisphere westerly wind changes during the Last Glacial Maximum: Model–data comparison, Quaternary Sci. Rev., 64, 104–120, https://doi.org/10.1016/j.quascirev.2012.12.008, 2013.
Soteres, R., Sagredo, E. A., Kaplan, M. R., Martini, M. A., Moreno, P. I., Reynhout, S. C., Schwartz, R., and Schaefer, J. M.: Glacier fluctuations in the northern Patagonian Andes (44°S) imply wind-modulated interhemispheric in-phase climate shifts during Termination 1, Sci. Rep.-UK, 12, 10842, https://doi.org/10.1038/s41598-022-14921-4, 2022.
Sugden, D. E., Hulton, N. R. J., and Purves, R. S.: Modelling the inception of the Patagonian icesheet, Quatern. Int., 95–96, 55–64, https://doi.org/10.1016/S0277-3791(01)00103-2, 2002.
Sutherland, J. L., Carrivick, J. L., Gandy, N., Shulmeister, J., Quincey, D. J., and Cornford, S. L.: Proglacial Lakes Control Glacier Geometry and Behavior During Recession, Geophys. Res. Lett., 47, e2020GL088865, https://doi.org/10.1029/2020GL088865, 2020.
Tarasov, L. and Peltier, R. W.: Impact of thermomechanical ice sheet coupling on a model of the 100 kyr ice age cycle, J. Geophys. Res.-Atmos., 104, 9517–9545, 1999.
Tigchelaar, M., Timmermann, A., Friedrich, T., Heinemann, M., and Pollard, D.: Nonlinear response of the Antarctic Ice Sheet to late Quaternary sea level and climate forcing, The Cryosphere, 13, 2615–2631, https://doi.org/10.5194/tc-13-2615-2019, 2019.
Toggweiler, J. R., Russell, J. L., and Carson, S. R.: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages, Paleoceanogr. Paleocl., 21, 1–15, https://doi.org/10.1029/2005PA001154, 2006.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olsen, S. C., Beale, J. R., and Wessel, P.: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+, Earth Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019EA000658, 2019.
Troch, M., Bertrand, S., Lange, C. B., Cardenas, P., Arz, H., Pantoja-Gutierrez, S., De Pol-Holz R., and Kilian, R.: Glacial isostatic adjustment near the center of the former Patagonian Ice Sheet (48S) during the last 16.5 kyr, Quaternary Sci. Rev., 277, 107346, https://doi.org/10.1016/j.quascirev.2021.107346, 2022.
Yan, Q., Wei, T., andZhang, Z.: Modeling the climate sensitivity of Patagonian glaciers and their responses to climatic change during the global last glacial maximum, Quaternary Sci. Rev., 288, 107582, https://doi.org/10.1016/j.quascirev.2022.107582, 2022.
Zech, J., Terrizzano, C. M., García Morabito, E., Veit, H., and Zech, R.: Timing and extent of late Pleistocene glaciation in the arid Central Andes of Argentina and Chile (22°–41° S), Geogr. Res. Lett., 43, 697–718, https://doi.org/10.18172/cig.3235, 2017.
Short summary
We simulate the retreat history of the Patagonian Ice Sheet (PIS) across the Chilean Lake District from 22–10 ka. These results improve our understanding of the response of the PIS to deglacial warming and the patterns of deglacial ice margin retreat where gaps in the geologic record still exist, and they indicate that changes in large-scale precipitation during the last deglaciation played an important role in modulating the response of ice margin change across the PIS to deglacial warming.
We simulate the retreat history of the Patagonian Ice Sheet (PIS) across the Chilean Lake...