Articles | Volume 16, issue 1
https://doi.org/10.5194/tc-16-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-87-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche
CORRESPONDING AUTHOR
Centre d'Applications et de Recherche en Télédétection,
Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
Centre d'études Nordiques, Université Laval, Québec, G1V
0A6, Canada
Alexandre Langlois
Centre d'Applications et de Recherche en Télédétection,
Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
Centre d'études Nordiques, Université Laval, Québec, G1V
0A6, Canada
Nick Rutter
Department of Geography and Environmental Sciences, Northumbria
University, Newcastle upon Tyne, NE1 8ST, UK
Alain Royer
Centre d'Applications et de Recherche en Télédétection,
Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
Centre d'études Nordiques, Université Laval, Québec, G1V
0A6, Canada
Josh King
Environment and Climate Change Canada, Climate Research Division,
Toronto, M3H 5T4, Canada
Branden Walker
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Philip Marsh
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Evan J. Wilcox
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
N2L 3C5, Canada
Related authors
No articles found.
Charles Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-172, https://doi.org/10.5194/essd-2021-172, 2023
Preprint under review for ESSD
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 4 million km2 in Alaska and northwestern Canada during 2017, 2018, and 2019. This paper summarizes those results and gives details on ~80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Francis Meloche, Francis Gauthier, and Alexandre Langlois
EGUsphere, https://doi.org/10.5194/egusphere-2023-1586, https://doi.org/10.5194/egusphere-2023-1586, 2023
Short summary
Short summary
Snow avalanches are a dangerous natural hazard. Backcountry recreationists and avalanche practitioners try to predict the avalanche hazard based on the stability of the snow cover. However, the snow cover is variable in space and snow stability observations can vary within several meters. We measure the snow stability several times on a small slope to create high-resolution maps of snow cover stability. These results help us to understand the snow variation for scientists and practitioners.
Paul Billecocq, Alexandre Langlois, and Benoit Montpetit
EGUsphere, https://doi.org/10.5194/egusphere-2023-1152, https://doi.org/10.5194/egusphere-2023-1152, 2023
Short summary
Short summary
Snow covers a vast part of the globe, making Snow Water Equivalent (SWE) crucial for climate science and hydrology. SWE can be measured by satellite, but the snow's complex structure highly affects the signal and thus an educated first guess is mandatory. In this study, a subgridding framework was developped to model snow at the local scale from model weather data. The framework enhanced both weather parameters and snow modeling, paving the way for SWE inversion algorithms from satellite data.
Alex Mavrovic, Oliver Sonnentag, Juha Lemmetyinen, Carolina Voigt, Nick Rutter, Paul Mann, Jean-Daniel Sylvain, and Alexandre Roy
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-92, https://doi.org/10.5194/bg-2023-92, 2023
Preprint under review for BG
Short summary
Short summary
We present an analysis of soil CO2 emission in boreal and tundra regions during the non-growing season. We show that when the soil is completely frozen, soil temperature is the main control on CO2 emissions. When the soil is around freezing point, with a mix of liquid water and ice, the liquid water content is the main control on CO2 emissions. This study highlight that the vegetation-snow-soil interactions must be considered to understand soil CO2 emission during the non-growing season.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Jean Emmanuel Sicart, Victor Ramseyer, Ghislain Picard, Laurent Arnaud, Catherine Coulaud, Guilhem Freche, Damien Soubeyrand, Yves Lejeune, Marie Dumont, Isabelle Gouttevin, Erwan Le Gac, Frederic Berger, Jean Matthieu Monnet, Laurent Borgniet, Eric Mermin, Nick Rutter, Clare Webster, and Richard Essery
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-174, https://doi.org/10.5194/essd-2023-174, 2023
Revised manuscript under review for ESSD
Short summary
Short summary
Forests strongly modify the accumulation, metamorphism and melting of snow in mid and high-latitude regions. Two field campaigns, during the winters 2016–17 and 2017–18, were conducted in a coniferous forest in the French Alps to study the interactions between snow and vegetation. This paper presents the field site, instrumentation, and collection methods. The observations include forest characteristics, meteorology, snow cover, and snow interception by the canopy during precipitation events.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Oliver Sonnentag, Gabriel Hould Gosselin, Melody Sandells, Chris Derksen, Branden Walker, Gesa Meyer, Richard Essery, Richard Kelly, Phillip Marsh, Julia Boike, and Matteo Detto
EGUsphere, https://doi.org/10.5194/egusphere-2023-772, https://doi.org/10.5194/egusphere-2023-772, 2023
Short summary
Short summary
We undertake a sensitivity study of three different parameters on the simulation of net ecosystem exchange during the snow-covered non-growing season at an Arctic tundra site. Simulations are compared to eddy covariance measurements, with near-zero NEE simulated despite observed CO2 release. We then consider how to parameterise the model better in Arctic tundra environments on both sub-seasonal timescales and cumulatively throughout the snow-covered non-growing season.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2023-878, https://doi.org/10.5194/egusphere-2023-878, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks, at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide input snow profiles to emissivity simulations.
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
EGUsphere, https://doi.org/10.5194/egusphere-2023-696, https://doi.org/10.5194/egusphere-2023-696, 2023
Short summary
Short summary
Satellite microwave observations are used for weather forecasting. In Arctic regions this is complicated by natural emission from the snow. By simulating airborne observations from in situ measurements of snow, this study shows how snow properties affect the signal within the atmosphere. Fresh snowfall between flights changed the airborne measurements. Good knowledge of snow layering and structure can be used to account for the effects of snow, and could unlock these data to improve forecasts.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Anton Jitnikovitch, Philip Marsh, Branden Walker, and Darin Desilets
The Cryosphere, 15, 5227–5239, https://doi.org/10.5194/tc-15-5227-2021, https://doi.org/10.5194/tc-15-5227-2021, 2021
Short summary
Short summary
Conventional methods used to measure snow have many limitations which hinder our ability to document annual cycles, test predictive models, or analyze the impact of climate change. A modern snow measurement method using in situ cosmic ray neutron sensors demonstrates the capability of continuously measuring spatially variable snowpacks with considerable accuracy. These sensors can provide important data for testing models, validating remote sensing, and water resource management applications.
Alain Royer, Alexandre Roy, Sylvain Jutras, and Alexandre Langlois
The Cryosphere, 15, 5079–5098, https://doi.org/10.5194/tc-15-5079-2021, https://doi.org/10.5194/tc-15-5079-2021, 2021
Short summary
Short summary
Dense spatially distributed networks of autonomous instruments for continuously measuring the amount of snow on the ground are needed for operational water resource and flood management and the monitoring of northern climate change. Four new-generation non-invasive sensors are compared. A review of their advantages, drawbacks and accuracy is discussed. This performance analysis is intended to help researchers and decision-makers choose the one system that is best suited to their needs.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Alex Mavrovic, Renato Pardo Lara, Aaron Berg, François Demontoux, Alain Royer, and Alexandre Roy
Hydrol. Earth Syst. Sci., 25, 1117–1131, https://doi.org/10.5194/hess-25-1117-2021, https://doi.org/10.5194/hess-25-1117-2021, 2021
Short summary
Short summary
This paper presents a new probe that measures soil microwave permittivity in the frequency range of satellite L-band sensors. The probe capacities will allow for validation and calibration of the models used to estimate landscape physical properties from raw microwave satellite datasets. Our results show important discrepancies between model estimates and instrument measurements that will need to be addressed.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
Joshua King, Stephen Howell, Mike Brady, Peter Toose, Chris Derksen, Christian Haas, and Justin Beckers
The Cryosphere, 14, 4323–4339, https://doi.org/10.5194/tc-14-4323-2020, https://doi.org/10.5194/tc-14-4323-2020, 2020
Short summary
Short summary
Physical measurements of snow on sea ice are sparse, making it difficulty to evaluate satellite estimates or model representations. Here, we introduce new measurements of snow properties on sea ice to better understand variability at distances less than 200 m. Our work shows that similarities in the snow structure are found at longer distances on younger ice than older ice.
Paul Donchenko, Joshua King, and Richard Kelly
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-283, https://doi.org/10.5194/tc-2020-283, 2020
Publication in TC not foreseen
Short summary
Short summary
Estimating Arctic sea ice surface elevation from the CryoSat-2 instrument may not fully compensate for the incomplete penetration of radar through the snow cover and overestimate the ice thickness. This study investigates the accuracy of the ice surface measurement and how it is affected by the properties snow and ice properties. It was found that deep or salty snow, and rough ice can make the surface appear higher, but including these properties in the calculation may improve the estimate.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
David M. W. Pritchard, Nathan Forsythe, Greg O'Donnell, Hayley J. Fowler, and Nick Rutter
The Cryosphere, 14, 1225–1244, https://doi.org/10.5194/tc-14-1225-2020, https://doi.org/10.5194/tc-14-1225-2020, 2020
Short summary
Short summary
This study compares different snowpack model configurations applied in the western Himalaya. The results show how even sparse local observations can help to delineate climate input errors from model structure errors, which provides insights into model performance variation. The results also show how interactions between processes affect sensitivities to climate variability in different model configurations, with implications for model selection in climate change projections.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Michael Prince, Alexandre Roy, Ludovic Brucker, Alain Royer, Youngwook Kim, and Tianjie Zhao
Earth Syst. Sci. Data, 10, 2055–2067, https://doi.org/10.5194/essd-10-2055-2018, https://doi.org/10.5194/essd-10-2055-2018, 2018
Short summary
Short summary
This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze–thaw product (FT-AP) distributed on the EASE-Grid 2.0 with a resolution of 36 km. To evaluate the product, we compared it with the resampled 37 GHz FT Earth Science Data Record during the overlapping period between 2011 and 2014. The FT-AP ensures, with the SMAP mission that is still in operation, an L-band passive FT monitoring continuum with NASA’s space-borne radiometers, for a period beginning in August 2011.
Fanny Larue, Alain Royer, Danielle De Sève, Alexandre Roy, and Emmanuel Cosme
Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, https://doi.org/10.5194/hess-22-5711-2018, 2018
Short summary
Short summary
A data assimilation scheme was developed to improve snow water equivalent (SWE) simulations by updating meteorological forcings and snowpack states using passive microwave satellite observations. A chain of models was first calibrated to simulate satellite observations over northeastern Canada. The assimilation was then validated over 12 stations where daily SWE measurements were acquired during 4 winters (2012–2016). The overall SWE bias is reduced by 68 % compared to original SWE simulations.
Alex Mavrovic, Alexandre Roy, Alain Royer, Bilal Filali, François Boone, Christoforos Pappas, and Oliver Sonnentag
Geosci. Instrum. Method. Data Syst., 7, 195–208, https://doi.org/10.5194/gi-7-195-2018, https://doi.org/10.5194/gi-7-195-2018, 2018
Short summary
Short summary
To improve microwave satellite and airborne observation products in forest environments, a precise and reliable estimation of the permittivity of trees is required. We developed a probe suitable to measure the permittivity of tree trunks at L band in the field. The system is easily transportable in the field, low energy consuming, operational at low temperatures and weatherproof. The permittivity of seven tree species in both frozen and thawed states was measured, showing important contrast.
Ron Kwok, Nathan T. Kurtz, Ludovic Brucker, Alvaro Ivanoff, Thomas Newman, Sinead L. Farrell, Joshua King, Stephen Howell, Melinda A. Webster, John Paden, Carl Leuschen, Joseph A. MacGregor, Jacqueline Richter-Menge, Jeremy Harbeck, and Mark Tschudi
The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017, https://doi.org/10.5194/tc-11-2571-2017, 2017
Short summary
Short summary
Since 2009, the ultra-wideband snow radar on Operation IceBridge has acquired data in annual campaigns conducted during the Arctic and Antarctic springs. Existing snow depth retrieval algorithms differ in the way the air–snow and snow–ice interfaces are detected and localized in the radar returns and in how the system limitations are addressed. Here, we assess five retrieval algorithms by comparisons with field measurements, ground-based campaigns, and analyzed fields of snow depth.
Sabrina Marx, Katharina Anders, Sofia Antonova, Inga Beck, Julia Boike, Philip Marsh, Moritz Langer, and Bernhard Höfle
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-49, https://doi.org/10.5194/esurf-2017-49, 2017
Revised manuscript has not been submitted
Short summary
Short summary
Global climate warming causes permafrost to warm and thaw, and, consequently, to release the carbon into the atmosphere. Terrestrial laser scanning is evaluated and current methods are extended in the context of monitoring subsidence in Arctic permafrost regions. The extracted information is important to gain a deeper understanding of permafrost-related subsidence processes and provides highly accurate ground-truth data which is necessary for further developing area-wide monitoring methods.
Yann Blanchard, Alain Royer, Norman T. O'Neill, David D. Turner, and Edwin W. Eloranta
Atmos. Meas. Tech., 10, 2129–2147, https://doi.org/10.5194/amt-10-2129-2017, https://doi.org/10.5194/amt-10-2129-2017, 2017
Short summary
Short summary
Multiband thermal measurements of zenith sky radiance were used in a retrieval algorithm, to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. The retrieval technique was validated using a synergy lidar and radar data. Inversions were performed across three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of thin ice clouds.
Peter Toose, Alexandre Roy, Frederick Solheim, Chris Derksen, Tom Watts, Alain Royer, and Anne Walker
Geosci. Instrum. Method. Data Syst., 6, 39–51, https://doi.org/10.5194/gi-6-39-2017, https://doi.org/10.5194/gi-6-39-2017, 2017
Short summary
Short summary
Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers used for monitoring essential climate variables. A 385-channel hyperspectral L-band radiometer system was designed with the means to quantify the strength and type of RFI. The compact design makes it ideal for mounting on both surface and airborne platforms to be used for calibrating and validating measurement from spaceborne sensors.
Melody Sandells, Richard Essery, Nick Rutter, Leanne Wake, Leena Leppänen, and Juha Lemmetyinen
The Cryosphere, 11, 229–246, https://doi.org/10.5194/tc-11-229-2017, https://doi.org/10.5194/tc-11-229-2017, 2017
Short summary
Short summary
This study looks at a wide range of options for simulating sensor signals for satellite monitoring of water stored as snow, though an ensemble of 1323 coupled snow evolution and microwave scattering models. The greatest improvements will be made with better computer simulations of how the snow microstructure changes, followed by how the microstructure scatters radiation at microwave frequencies. Snow compaction should also be considered in systems to monitor snow mass from space.
Xicai Pan, Daqing Yang, Yanping Li, Alan Barr, Warren Helgason, Masaki Hayashi, Philip Marsh, John Pomeroy, and Richard J. Janowicz
The Cryosphere, 10, 2347–2360, https://doi.org/10.5194/tc-10-2347-2016, https://doi.org/10.5194/tc-10-2347-2016, 2016
Short summary
Short summary
This study demonstrates a robust procedure for accumulating precipitation gauge measurements and provides an analysis of bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada. It highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.
Tom Watts, Nick Rutter, Peter Toose, Chris Derksen, Melody Sandells, and John Woodward
The Cryosphere, 10, 2069–2074, https://doi.org/10.5194/tc-10-2069-2016, https://doi.org/10.5194/tc-10-2069-2016, 2016
Short summary
Short summary
Ice layers in snowpacks introduce uncertainty in satellite-derived estimates of snow water equivalent, have ecological impacts on plants and animals, and change the thermal and vapour transport properties of the snowpack. Here we present a new field method for measuring the density of ice layers. The method was used in the Arctic and mid-latitudes; the mean measured ice layer density was significantly higher than values typically used in the literature.
Stephen E. L. Howell, Frédéric Laliberté, Ron Kwok, Chris Derksen, and Joshua King
The Cryosphere, 10, 1463–1475, https://doi.org/10.5194/tc-10-1463-2016, https://doi.org/10.5194/tc-10-1463-2016, 2016
Short summary
Short summary
The Canadian Ice Service record of observed landfast ice and snow thickness represents one of the longest in the Arctic that spans over 5 decades. We analyze this record to report on long-term trends and variability of ice and snow thickness within the Canadian Arctic Archipelago (CAA). Results indicate a thinning of ice at several sites in the CAA. State-of-the-art climate models still have difficultly capturing observed ice thickness values in the CAA and should be used with caution.
Alexandre Roy, Alain Royer, Olivier St-Jean-Rondeau, Benoit Montpetit, Ghislain Picard, Alex Mavrovic, Nicolas Marchand, and Alexandre Langlois
The Cryosphere, 10, 623–638, https://doi.org/10.5194/tc-10-623-2016, https://doi.org/10.5194/tc-10-623-2016, 2016
Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli
The Cryosphere, 10, 371–384, https://doi.org/10.5194/tc-10-371-2016, https://doi.org/10.5194/tc-10-371-2016, 2016
Short summary
Short summary
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014 workshop, different approaches (box-, wedge- and cylinder-type density cutters, micro-computed tomography) to measure snow density were applied in a controlled laboratory environment and in the field. In general, results suggest that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably.
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
G. Picard, A. Royer, L. Arnaud, and M. Fily
The Cryosphere, 8, 1105–1119, https://doi.org/10.5194/tc-8-1105-2014, https://doi.org/10.5194/tc-8-1105-2014, 2014
G. Picard, L. Brucker, A. Roy, F. Dupont, M. Fily, A. Royer, and C. Harlow
Geosci. Model Dev., 6, 1061–1078, https://doi.org/10.5194/gmd-6-1061-2013, https://doi.org/10.5194/gmd-6-1061-2013, 2013
A. Roy, A. Royer, B. Montpetit, P. A. Bartlett, and A. Langlois
The Cryosphere, 7, 961–975, https://doi.org/10.5194/tc-7-961-2013, https://doi.org/10.5194/tc-7-961-2013, 2013
Related subject area
Discipline: Snow | Subject: Remote Sensing
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data
How do tradeoffs in satellite spatial and temporal resolution impact snow water equivalent reconstruction?
Exploring the use of multi-source high-resolution satellite data for snow water equivalent reconstruction over mountainous catchments
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR)
Evaluating Snow Microwave Radiative Transfer (SMRT) model emissivities using observations of Arctic tundra snow
Snowmelt characterization from optical and synthetic-aperture radar observations in the La Joie Basin, British Columbia
Topographic and vegetation controls of the spatial distribution of snow depth in agro-forested environments by UAV lidar
Temporal stability of long-term satellite and reanalysis products to monitor snow cover trends
Towards long-term records of rain-on-snow events across the Arctic from satellite data
Implementing spatially and temporally varying snow densities into the GlobSnow snow water equivalent retrieval
Evaluation of E3SM land model snow simulations over the western United States
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Snow stratigraphy observations from Operation IceBridge surveys in Alaska using S and C band airborne ultra-wideband FMCW (frequency-modulated continuous wave) radar
Measuring the spatiotemporal variability of snow depth in subarctic environments using unmanned aircraft systems (UAS) – Part 2: Snow processes and snow-canopy interactions
Measuring the spatiotemporal variability of snow depth in subarctic environments using unmanned aircraft systems (UAS) – Part 1: Measurements, processing, and accuracy assessment
Brief communication: A continuous formulation of microwave scattering from fresh snow to bubbly ice from first principles
Review article: Global monitoring of snow water equivalent using high-frequency radar remote sensing
Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations
Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States
Mapping avalanches with satellites – evaluation of performance and completeness
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Snow depth time series retrieval by time-lapse photography: Finnish and Italian case studies
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards
Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos
Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry
On the reflectance spectroscopy of snow
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, and Rhae Sung Kim
The Cryosphere, 17, 3915–3931, https://doi.org/10.5194/tc-17-3915-2023, https://doi.org/10.5194/tc-17-3915-2023, 2023
Short summary
Short summary
As a future snow mission concept, active microwave sensors have the potential to measure snow water equivalent (SWE) in deep snowpack and forested environments. We used a modeling and data assimilation approach (a so-called observing system simulation experiment) to quantify the usefulness of active microwave-based SWE retrievals over western Colorado. We found that active microwave sensors with a mature retrieval algorithm can improve SWE simulations by about 20 % in the mountainous domain.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere, 17, 2629–2643, https://doi.org/10.5194/tc-17-2629-2023, https://doi.org/10.5194/tc-17-2629-2023, 2023
Short summary
Short summary
To test the title question, three snow cover products were used in a snow model. Contrary to previous work, higher-spatial-resolution snow cover products only improved the model accuracy marginally. Conclusions are as follows: (1) snow cover and albedo from moderate-resolution sensors continue to provide accurate forcings and (2) finer spatial and temporal resolutions are the future for Earth observations, but existing moderate-resolution sensors still offer value.
Valentina Premier, Carlo Marin, Giacomo Bertoldi, Riccardo Barella, Claudia Notarnicola, and Lorenzo Bruzzone
The Cryosphere, 17, 2387–2407, https://doi.org/10.5194/tc-17-2387-2023, https://doi.org/10.5194/tc-17-2387-2023, 2023
Short summary
Short summary
The large amount of information regularly acquired by satellites can provide important information about SWE. We explore the use of multi-source satellite data, in situ observations, and a degree-day model to reconstruct daily SWE at 25 m. The results show spatial patterns that are consistent with the topographical features as well as with a reference product. Being able to also reproduce interannual variability, the method has great potential for hydrological and ecological applications.
Jack Tarricone, Ryan W. Webb, Hans-Peter Marshall, Anne W. Nolin, and Franz J. Meyer
The Cryosphere, 17, 1997–2019, https://doi.org/10.5194/tc-17-1997-2023, https://doi.org/10.5194/tc-17-1997-2023, 2023
Short summary
Short summary
Mountain snowmelt provides water for billions of people across the globe. Despite its importance, we cannot currently measure the amount of water in mountain snowpacks from satellites. In this research, we test the ability of an experimental snow remote sensing technique from an airplane in preparation for the same sensor being launched on a future NASA satellite. We found that the method worked better than expected for estimating important snowpack properties.
Kirsty Wivell, Stuart Fox, Melody Sandells, Chawn Harlow, Richard Essery, and Nick Rutter
EGUsphere, https://doi.org/10.5194/egusphere-2023-878, https://doi.org/10.5194/egusphere-2023-878, 2023
Short summary
Short summary
Satellite microwave observations improve weather forecasts, but to use these observations in the Arctic, snow emission must be known. This study uses airborne and in situ snow observations to validate emissivity simulations for two- and three-layer snowpacks, at key frequencies for weather prediction. We assess the impact of thickness, grain size and density in key snow layers, which will help inform development of physical snow models that provide input snow profiles to emissivity simulations.
Sara E. Darychuk, Joseph M. Shea, Brian Menounos, Anna Chesnokova, Georg Jost, and Frank Weber
The Cryosphere, 17, 1457–1473, https://doi.org/10.5194/tc-17-1457-2023, https://doi.org/10.5194/tc-17-1457-2023, 2023
Short summary
Short summary
We use synthetic-aperture radar (SAR) and optical observations to map snowmelt timing and duration on the watershed scale. We found that Sentinel-1 SAR time series can be used to approximate snowmelt onset over diverse terrain and land cover types, and we present a low-cost workflow for SAR processing over large, mountainous regions. Our approach provides spatially distributed observations of the snowpack necessary for model calibration and can be used to monitor snowmelt in ungauged basins.
Vasana Dharmadasa, Christophe Kinnard, and Michel Baraër
The Cryosphere, 17, 1225–1246, https://doi.org/10.5194/tc-17-1225-2023, https://doi.org/10.5194/tc-17-1225-2023, 2023
Short summary
Short summary
This study highlights the successful usage of UAV lidar to monitor small-scale snow depth distribution. Our results show that underlying topography and wind redistribution of snow along forest edges govern the snow depth variability at agro-forested sites, while forest structure variability dominates snow depth variability in the coniferous environment. This emphasizes the importance of including and better representing these processes in physically based models for accurate snowpack estimates.
Ruben Urraca and Nadine Gobron
The Cryosphere, 17, 1023–1052, https://doi.org/10.5194/tc-17-1023-2023, https://doi.org/10.5194/tc-17-1023-2023, 2023
Short summary
Short summary
We evaluate the fitness of some of the longest satellite (NOAA CDR, 1966–2020) and reanalysis (ERA5, 1950–2020; ERA5-Land, 1950–2020) products currently available to monitor the Northern Hemisphere snow cover trends using 527 stations as the reference. We found different artificial trends and stepwise discontinuities in all the products that hinder the accurate monitoring of snow trends, at least without bias correction. The study also provides updates on the snow cover trends during 1950–2020.
Annett Bartsch, Helena Bergstedt, Georg Pointner, Xaver Muri, Kimmo Rautiainen, Leena Leppänen, Kyle Joly, Aleksandr Sokolov, Pavel Orekhov, Dorothee Ehrich, and Eeva Mariatta Soininen
The Cryosphere, 17, 889–915, https://doi.org/10.5194/tc-17-889-2023, https://doi.org/10.5194/tc-17-889-2023, 2023
Short summary
Short summary
Rain-on-snow (ROS) events occur across many regions of the terrestrial Arctic in mid-winter. In extreme cases ice layers form which affect wildlife, vegetation and soils beyond the duration of the event. The fusion of multiple types of microwave satellite observations is suggested for the creation of a climate data record. Retrieval is most robust in the tundra biome, where records can be used to identify extremes and the results can be applied to impact studies at regional scale.
Pinja Venäläinen, Kari Luojus, Colleen Mortimer, Juha Lemmetyinen, Jouni Pulliainen, Matias Takala, Mikko Moisander, and Lina Zschenderlein
The Cryosphere, 17, 719–736, https://doi.org/10.5194/tc-17-719-2023, https://doi.org/10.5194/tc-17-719-2023, 2023
Short summary
Short summary
Snow water equivalent (SWE) is a valuable characteristic of snow cover. In this research, we improve the radiometer-based GlobSnow SWE retrieval methodology by implementing spatially and temporally varying snow densities into the retrieval procedure. In addition to improving the accuracy of SWE retrieval, varying snow densities were found to improve the magnitude and seasonal evolution of the Northern Hemisphere snow mass estimate compared to the baseline product.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023, https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary
Short summary
Understanding global snow cover is critical for comprehending climate change and its impacts on the lives of billions of people. Satellites are the best way to monitor global snow cover, yet snow varies at a finer spatial resolution than most satellite images. We assessed subpixel snow mapping methods across a spectrum of conditions using airborne lidar. Spectral-unmixing methods outperformed older operational methods and are ready to to advance snow cover mapping at the global scale.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Leo-Juhani Meriö, Anssi Rauhala, Pertti Ala-aho, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-242, https://doi.org/10.5194/tc-2022-242, 2023
Revised manuscript accepted for TC
Short summary
Short summary
Information on seasonal snow cover is essential to the understanding of snow processes and operational forecasting. We study the spatiotemporal variability of snow depth and snow processes in subarctic, boreal landscape using drones. We identified multiple theoretically known snow processes and interactions between snow and vegetation. The results highlight the potential of the drones to be used for a detailed study of snow depth in multiple land cover types and snow-vegetation interactions.
Anssi Rauhala, Leo-Juhani Meriö, Anton Kuzmin, Pasi Korpelainen, Pertti Ala-aho, Timo Kumpula, Bjørn Kløve, and Hannu Marttila
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-239, https://doi.org/10.5194/tc-2022-239, 2022
Revised manuscript accepted for TC
Short summary
Short summary
Snow conditions in the northern hemisphere are rapidly changing and information on snow depth is important for decision-making. We present snow depth measurements using different drones throughout the winter in a subarctic site. Generally, all drones produced good estimates of snow depth in open areas. However, differences were observed in the accuracies produced by the different drones and a reduction in accuracy was observed when moving from an open mire area to forest covered areas.
Ghislain Picard, Henning Löwe, and Christian Mätzler
The Cryosphere, 16, 3861–3866, https://doi.org/10.5194/tc-16-3861-2022, https://doi.org/10.5194/tc-16-3861-2022, 2022
Short summary
Short summary
Microwave satellite observations used to monitor the cryosphere require radiative transfer models for their interpretation. These models represent how microwaves are scattered by snow and ice. However no existing theory is suitable for all types of snow and ice found on Earth. We adapted a recently published generic scattering theory to snow and show how it may improve the representation of snows with intermediate densities (~500 kg/m3) and/or with coarse grains at high microwave frequencies.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, https://doi.org/10.5194/tc-15-1485-2021, 2021
Short summary
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Carlo Marin, Giacomo Bertoldi, Valentina Premier, Mattia Callegari, Christian Brida, Kerstin Hürkamp, Jochen Tschiersch, Marc Zebisch, and Claudia Notarnicola
The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020, https://doi.org/10.5194/tc-14-935-2020, 2020
Short summary
Short summary
In this paper, we use for the first time the synthetic aperture radar (SAR) time series acquired by Sentinel-1 to monitor snowmelt dynamics in alpine regions. We found that the multitemporal SAR allows the identification of the three phases that characterize the melting process, i.e., moistening, ripening and runoff, in a spatial distributed way. We believe that the presented investigation could have relevant applications for monitoring and predicting the snowmelt progress over large regions.
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Short summary
Ice and snowmelt feed the Indus River and Amu Darya, but validation of estimates from satellite sensors has been a problem until recently, when we were given daily snow depth measurements from these basins. Using these measurements, estimates of snow on the ground were created and compared with models. Estimates of water equivalent in the snowpack were mostly in agreement. Stratigraphy was also modeled and showed 1 year with a relatively stable snowpack but another with multiple weak layers.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019, https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Short summary
We investigate the influence of ocean–atmosphere teleconnections on the start, end, and duration of snow cover in British Columbia, Canada. We do this using daily satellite imagery from 2002 to 2018 and assess the accuracy of our methods using reported snow cover at 60 weather stations. We found that there are very strong relationships that vary by region and elevation. This improves our understanding of snow cover distribution and could be used to predict snow cover from ocean–climate indices.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019, https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
Short summary
The Chinese ski industry is rapidly booming driven by enormous market demand and government support with the coming 2022 Beijing Winter Olympics. We evaluate the locational suitability of ski areas in China by integrating the natural and socioeconomic conditions. Corresponding development strategies for decision-makers are proposed based on the multi-criteria metrics, which will be extended to incorporate potential influences from future climate change and socioeconomic development.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby
The Cryosphere, 12, 3535–3550, https://doi.org/10.5194/tc-12-3535-2018, https://doi.org/10.5194/tc-12-3535-2018, 2018
Short summary
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 12, 3477–3497, https://doi.org/10.5194/tc-12-3477-2018, https://doi.org/10.5194/tc-12-3477-2018, 2018
Short summary
Short summary
A remotely piloted aircraft system (RPAS) is evaluated for mapping seasonal snow depth across an alpine basin. RPAS photogrammetry performs well at providing maps of snow depth at high spatial resolution, outperforming field measurements for resolving spatial variability. Uncertainty and error analysis reveal limitations and potential pitfalls of photogrammetric surface-change analysis. Ultimately, RPAS can be a useful tool for understanding snow processes and improving snow modelling efforts.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Cited articles
Brodzik, M. J., Long, D. G., and Hardman, M. A.: Best practices in crafting the
calibrated, Enhanced-Resolution passive-microwave EASE-Grid 2.0 brightness
temperature Earth System Data Record, Remote Sens., 10, 1793,
https://doi.org/10.3390/rs10111793, 2018.
Chang, A. T. C., Foster, J. L., Hall, D. K., Rango, A., and Hartline, B. K.: Snow
water equivalent estimation by microwave radiometry, Cold Reg. Sci. Technol., 5, 259–267,
https://doi.org/10.1016/0165-232X(82)90019-2, 1982.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B., Cullen,
N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.: Representing spatial
variability of snow water equivalent in hydrologic and land-surface models:
A review, Water Resour. Res., 47, W07539, https://doi.org/10.1029/2011WR010745, 2011.
Derksen, C., Sturm, M., Liston, G. E., Holmgren, J., Huntington, H., Silis,
A., and Solie, D.: Northwest Territories and Nunavut snow characteristics from a
subarctic traverse: Implications for passive microwave remote sensing, J.
Hydrometeorol., 10, 448–463, https://doi.org/10.1175/2008JHM1074.1, 2009.
Derksen, C., Toose, P., Rees, A., Wang, L., English, M., Walker, A., and Sturm,
M.: Development of a tundra-specific snow water equivalent retrieval
algorithm for satellite passive microwave data, Remote Sens. Environ., 114, 1699–1709,
https://doi.org/10.1016/j.rse.2010.02.019, 2010.
Derksen, C., Toose, P., Lemmetyinen, J., Pulliainen, J., Langlois, A.,
Rutter, N., and Fuller, M. C.: Evaluation of passive microwave brightness
temperature simulations and snow water equivalent retrievals through a
winter season, Remote Sens. Environ., 117, 236–248,
https://doi.org/10.1016/j.rse.2011.09.021, 2012.
Derksen, C., Lemmetyinen, J., Toose, P., Silis, A., Pulliainen, J., and Sturm,
M.: Physical properties of Arctic versus subarctic snow: Implications for
high latitude passive microwave snow water equivalent retrievals, J.
Geophys. Res.-Atmos., 119, 7254–7270, https://doi.org/10.1002/2013JD021264,
2014.
Domine, F., Barrere, M., and Morin, S.: The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime, Biogeosciences, 13, 6471–6486, https://doi.org/10.5194/bg-13-6471-2016, 2016.
Domine, F., Picard, G., Morin, S., Barrere, M., Madore, J.-B., and Langlois, A.:
Major Issues in Simulating some Arctic Snowpack Properties Using Current
Detailed Snow Physics Models. Consequences for the Thermal Regime and Water
Budget of Permafrost, J. Adv. Model. Earth Sy., 11, 34–44,
https://doi.org/10.1029/2018MS001445, 2018.
Durand, M. and Liu, D.: The need for prior information in characterizing snow
water equivalent from microwave brightness temperatures, Remote Sens.
Environ., 126, 248–257, https://doi.org/10.1016/j.rse.2011.10.015, 2012.
Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung,
D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The international
classification for seasonal snow on the ground, UNESCO, IHP–VII, Tech. Doc.
Hydrol. No. 83, IACS Contrib. No. 1 80, https://doi.org/10.1016/0020-1383(93)90284-D, 2009.
Gallet, J.-C., Domine, F., Zender, C. S., and Picard, G.: Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm, The Cryosphere, 3, 167–182, https://doi.org/10.5194/tc-3-167-2009, 2009.
Garnaud, C., Bélair, S., Carrera, M. L., Derksen, C., Bilodeau, B.,
Abrahamowicz, M., Gauthier, N., and Vionnet, V.: Quantifying Snow Mass Mission
Concept Trade-Offs Using an Observing System Simulation Experiment, J.
Hydrometeorol., 20, 155–173, https://doi.org/10.1175/jhm-d-17-0241.1, 2019.
Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and Etzelmüller, B.: Small-scale variation of snow in a regional permafrost model, The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, 2016.
Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., and Schneebeli, M.: Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications, The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, 2018.
Grünewald, T., Stötter, J., Pomeroy, J. W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P., and Lehning, M.: Statistical modelling of the snow depth distribution in open alpine terrain, Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, 2013.
Kelly, R.: The AMSR-E Snow Depth Algorithm: Description and Initial
Results, J. Remote Sens. Soc. Japan 29, 307–317,
https://doi.org/10.11440/rssj.29.307, 2009.
Kelly, R. E., Chang, A. T., Tsang, L., and Foster, J. L.: A prototype AMSR-E global
snow area and snow depth algorithm, IEEE T. Geosci. Remote Sens., 41, 230–242,
https://doi.org/10.1109/TGRS.2003.809118, 2003.
Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., Barros, A., Kim, E. J., Forman, B. A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, M., Marshall, H.-P., Cristea, N., Pflug, J. M., Johnston, J., Cao, Y., Mocko, D., and Wang, S.: Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling, The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, 2021.
King, J., Kelly, R., Kasurak, A., Duguay, C., Gunn, G., Rutter, N., Watts,
T., and Derksen, C.: Spatio-temporal influence of tundra snow properties on
Ku-band (17.2 GHz) backscatter, J. Glaciol., 61, 267–279,
https://doi.org/10.3189/2015JoG14J020, 2015.
King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C., Lemmetyinen, J.,
Marsh, P., Montpetit, B., Roy, A., Rutter, N., and Sturm, M.: The influence of
snow microstructure on dual-frequency radar measurements in a tundra
environment, Remote Sens. Environ., 215, 242–254,
https://doi.org/10.1016/j.rse.2018.05.028, 2018.
Krol, Q. and Löwe, H.: Relating optical and microwave grain metrics of snow: the relevance of grain shape, The Cryosphere, 10, 2847–2863, https://doi.org/10.5194/tc-10-2847-2016, 2016.
Larue, F., Royer, A., De Sève, D., Roy, A., and Cosme, E.: Assimilation of passive microwave AMSR-2 satellite observations in a snowpack evolution model over northeastern Canada, Hydrol. Earth Syst. Sci., 22, 5711–5734, https://doi.org/10.5194/hess-22-5711-2018, 2018.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Liston, G. E.: Representing subgrid snow cover heterogeneities in
regional and global models, J. Climate, 17, 1381–1397, https://doi.org/10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2, 2004.
Liston, G. E. and Sturm, M.: A snow-transport model for complex terrain, J.
Glaciol., 44, 498–516, https://doi.org/10.1017/S0022143000002021, 1998.
Marsh, P., Bartlett, P., MacKay, M., Pohl, S., and Lantz, T.: Snowmelt energetics at a shrub tundra site in the western Canadian Arctic, Hydrol. Process., 24, 3603–3620, https://doi.org/10.1002/hyp.7786, 2010.
Mavrovic, A., Pardo Lara, R., Berg, A., Demontoux, F., Royer, A., and Roy, A.: Soil dielectric characterization during freeze–thaw transitions using L-band coaxial and soil moisture probes, Hydrol. Earth Syst. Sci., 25, 1117–1131, https://doi.org/10.5194/hess-25-1117-2021, 2021.
Meloche, J.: JulienMeloche/Gaussian_process_smrt_simulation, Release publication, Zenodo [code] [data set], https://doi.org/10.5281/zenodo.5806672, 2021.
Meloche, J., Royer, A., Langlois, A., Rutter, N., and Sasseville, V.:
Improvement of microwave emissivity parameterization of frozen Arctic soils
using roughness measurements derived from photogrammetry, Int. J. Digit.
Earth, 14, 1380–1396, https://doi.org/10.1080/17538947.2020.1836049, 2020.
Mironov, V. L., De Roo, R. D., and Savin, I. V.: Temperature-dependable microwave
dielectric model for an arctic soil, IEEE T. Geosci. Remote, 48,
2544–2556, https://doi.org/10.1109/TGRS.2010.2040034, 2010.
Montpetit, B., Royer, A., Langlois, A., Cliché, P., Roy, A.,
Champollion, N., Picard, G., Domine, F., and Obbard, R.: New shortwave infrared
albedo measurements for snow specific surface area retrieval, J. Glaciol.,
58, 941–952, https://doi.org/10.3189/2012JoG11J248, 2012.
Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., and Tedesco, M.: Evaluation of long-term Northern Hemisphere snow water equivalent products, The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, 2020.
Pan, J., Durand, M. T., Vander Jagt, B. J., and Liu, D.: Application of a Markov
Chain Monte Carlo algorithm for snow water equivalent retrieval from passive
microwave measurements, Remote Sens. Environ., 192, 150–165,
https://doi.org/10.1016/j.rse.2017.02.006, 2017.
Parr, C., Sturm, M., and Larsen, C.: Snowdrift Landscape Patterns: An Arctic
Investigation, Water Resour. Res., 56, e2020WR027823, https://doi.org/10.1029/2020WR027823,
2020.
Picard, G., Sandells, M., and Löwe, H.: SMRT: an active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1.0), Geosci. Model Dev., 11, 2763–2788, https://doi.org/10.5194/gmd-11-2763-2018, 2018.
Pomeroy, J. W., Gray, D. M., Hedstrom, N. R., and Janowicz, J. R.: Prediction of
seasonal snow accumulation in cold climate forests, Hydrol. Process., 16,
3543–3558, https://doi.org/10.1002/hyp.1228, 2002.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Harvard Dataverse [data set], V1, https://doi.org/10.7910/DVN/OHHUKH, 2018.
Proksch, M., Löwe, H., and Schneebeli, M.: Density, specific surface area,
and correlation length of snow measured by high-resolution penetrometry, J.
Geophys. Res.-Earth, 120, 346–362,
https://doi.org/10.1002/2014JF003266, 2015.
Pulliainen, J.: Mapping of snow water equivalent and snow depth in boreal
and sub-arctic zones by assimilating space-borne microwave radiometer data
and ground-based observations, Remote Sens. Environ., 101, 257–269,
https://doi.org/10.1016/j.rse.2006.01.002, 2006.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J.,
Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg, J.:
Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018,
Nature, 581, 294–298, https://doi.org/10.1038/s41586-020-2258-0, 2020.
Quiñonero-Candela, J. and Rasmussen, C. E.: A unifying view of sparse
approximate Gaussian process regression, J. Mach. Learn. Res., 6, 1939–1959, 2005.
Rees, A., English, M., Derksen, C., Toose, P., and Silis, A.: Observations of
late winter Canadian tundra snow cover properties, Hydrol. Process., 28,
3962–3977, https://doi.org/10.1002/hyp.9931, 2014.
Roy, A., Picard, G., Royer, A., Montpetit, B., Dupont, F., Langlois, A.,
Derksen, C., and Champollion, N.: Brightness Temperature Simulations of the
Canadian Seasonal Snowpack Driven by Measurements of the Snow Specific
Surface Area, IEEE T. Geosci. Remote, 51, 4692–4704,
https://doi.org/10.1109/TGRS.2012.2235842, 2013.
Royer, A., Roy, A., Montpetit, B., Saint-Jean-Rondeau, O., Picard, G.,
Brucker, L., and Langlois, A.: Comparison of commonly-used microwave radiative
transfer models for snow remote sensing, Remote Sens. Environ., 190,
247–259, https://doi.org/10.1016/j.rse.2016.12.020, 2017.
Royer, A., Domine, F., Roy, A., Langlois, A., Marchand, N., and Davesne, G.: New
northern snowpack classification linked to vegetation cover on a latitudinal
mega-transect across northeastern Canada, Écoscience, 28, 225–242,
https://doi.org/10.1080/11956860.2021.1898775, 2021.
Rutter, N., Sandells, M., Derksen, C., Toose, P., Royer, A., Montpetit, B.,
Langlois, A., Lemmetyinen, J., and Pulliainen, J.: Snow stratigraphic
heterogeneity within ground-based passive microwave radiometer footprints:
Implications for emission modeling, J. Geophys. Res.-Earth, 119,
550–565, https://doi.org/10.1002/2013JF003017, 2014.
Rutter, N., Sandells, M. J., Derksen, C., King, J., Toose, P., Wake, L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P., Larsen, C., and Sturm, M.: Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals, The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, 2019.
Saberi, N., Kelly, R., Toose, P., Roy, A., and Derksen, C.: Modeling the
observed microwave emission from shallow multi-layer Tundra Snow using
DMRT-ML, Remote Sens., 9, 1327, https://doi.org/10.3390/rs9121327, 2017.
Saberi, N., Kelly, R., Pan, J., Durand, M., Goh, J., and Scott, K. A.: The Use of
a Monte Carlo Markov Chain Method for Snow-Depth Retrievals: A Case Study
Based on Airborne Microwave Observations and Emission Modeling Experiments
of Tundra Snow, IEEE T. Geosci. Remote, 59, 1876–1889,
https://doi.org/10.1109/TGRS.2020.3004594, 2020.
Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic programming in
Python using PyMC3, PeerJ Comput. Sci., 2, e55, https://doi.org/10.7717/peerj-cs.55,
2016.
Sturm, M. and Holmgren, J.: An Automatic Snow Depth Probe for Field Validation
Campaigns, Water Resour. Res., 54, 9695–9701,
https://doi.org/10.1029/2018WR023559, 2018.
Sturm, M. and Wagner, A. M.: Using repeated patterns in snow distribution
modeling: An Arctic example, Water Resour. Res., 46, 1–15,
https://doi.org/10.1029/2010WR009434, 2010.
Sturm, M., McFadden, J. P., Liston, G. E., Stuart Chapin, F., Racine, C. H.,
and Holmgren, J.: Snow-shrub interactions in Arctic Tundra: A hypothesis with
climatic implications, J. Climate, 14, 336–344,
https://doi.org/10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2, 2001.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J.,
Kärnä, J. P., Koskinen, J., and Bojkov, B.: Estimating northern
hemisphere snow water equivalent for climate research through assimilation
of space-borne radiometer data and ground-based measurements, Remote Sens.
Environ., 115, 3517–3529, https://doi.org/10.1016/j.rse.2011.08.014, 2011.
Tsang, L., Chen, C. Te, Chang, A. T. C., Guo, J., and Ding, K. H.: Dense media
radiative transfer theory based on quasicrystalline approximation with
applications to passive microwave remote sensing of snow, Radio Sci., 35, 731–749,
https://doi.org/10.1029/1999RS002270, 2000.
Vander Jagt, B. J., Durand, M. T., Margulis, S. A., Kim, E. J., and Molotch, N. P.:
The effect of spatial variability on the sensitivity of passive microwave
measurements to snow water equivalent, Remote Sens. Environ., 136, 163–179,
https://doi.org/10.1016/j.rse.2013.05.002, 2013.
Vargel, C., Royer, A., St-jean-rondeau, O., Picard, G., Roy, A., Sasseville,
V., and Langlois, A.: Remote Sensing of Environment Arctic and subarctic snow
microstructure analysis for microwave brightness temperature simulations,
Remote Sens. Environ., 242, 111754,
https://doi.org/10.1016/j.rse.2020.111754, 2020.
Walker, B., Wilcox, E. J., and Marsh, P.: Accuracy assessment of late winter snow
depth mapping for tundra environments using Structure-from-Motion
photogrammetry, Antarct. Sci., 17, 1–17, https://doi.org/10.1139/as-2020-0006,
2020a.
Walker, B., Wilcox, E., and Marsh, P.: Structure-from-Motion Snow Depth Products and In Situ Observations for Late-Winter Tundra Mapping Project, Trail Valley Creek Research Station, Spring 2018, Scholars Portal Dataverse, V1 [data set], https://doi.org/10.5683/SP2/PWSKKG, 2020b.
Wegmüller, U. and Mätzler, C.: Rough bare soil reflectivity model, IEEE
T. Geosci. Remote, 37, 1391–1395,
https://doi.org/10.1109/36.763303, 1999.
Wiesmann, A. and Mätzler, C.: Microwave emission model of layered
snowpacks, Remote Sens. Environ., 70, 307–316,
https://doi.org/10.1016/S0034-4257(99)00046-2, 1999.
Winstral, A. and Marks, D.: Long-term snow distribution observations in a
mountain catchment: Assessing variability, time stability, and the
representativeness of an index site, Water Resour. Res., 50, 293–305,
https://doi.org/10.1002/2012WR013038, 2014.
Winstral, A., Elder, K., and Davis, R. E.: Spatial Snow Modeling of
Wind-Redistributed Snow Using Terrain-Based Parameters, J. Hydrometeorol., 3,
524–538, https://doi.org/10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2, 2002.
Winstral, A., Marks, D., Gurney, R.: Simulating wind-affected snow
accumulations at catchment to basin scales. Adv. Water Resour. 55, 64–79.
https://doi.org/10.1016/j.advwatres.2012.08.011, 2013.
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
To estimate snow water equivalent from space, model predictions of the satellite measurement...