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Abstract. Topography and vegetation play a major role in
sub-pixel variability of Arctic snowpack properties but are
not considered in current passive microwave (PMW) satellite
SWE retrievals. Simulation of sub-pixel variability of snow
properties is also problematic when downscaling snow and
climate models. In this study, we simplified observed vari-
ability of snowpack properties (depth, density, microstruc-
ture) in a two-layer model with mean values and distribu-
tions of two multi-year tundra dataset so they could be in-
corporated in SWE retrieval schemes. Spatial variation of
snow depth was parameterized by a log-normal distribution
with mean (µsd) values and coefficients of variation (CVsd).
Snow depth variability (CVsd) was found to increase as a
function of the area measured by a remotely piloted aircraft
system (RPAS). Distributions of snow specific surface area
(SSA) and density were found for the wind slab (WS) and
depth hoar (DH) layers. The mean depth hoar fraction (DHF)
was found to be higher in Trail Valley Creek (TVC) than
in Cambridge Bay (CB), where TVC is at a lower latitude
with a subarctic shrub tundra compared to CB, which is a
graminoid tundra. DHFs were fitted with a Gaussian process
and predicted from snow depth. Simulations of brightness
temperatures using the Snow Microwave Radiative Transfer
(SMRT) model incorporating snow depth and DHF variation
were evaluated with measurements from the Special Sensor
Microwave/Imager and Sounder (SSMIS) sensor. Variation
in snow depth (CVsd) is proposed as an effective parameter
to account for sub-pixel variability in PMW emission, im-

proving simulation by 8 K. SMRT simulations using a CVsd
of 0.9 best matched CVsd observations from spatial datasets
for areas> 3 km2, which is comparable to the 3.125 km pixel
size of the Equal-Area Scalable Earth (EASE)-Grid 2.0 en-
hanced resolution at 37 GHz.

1 Introduction

Snow cover is known to be highly variable at the local scale
(10–1000 m) due to wind redistribution, sublimation (Liston
and Sturm, 1998; Winstral et al., 2013) and vegetation trap-
ping (Sturm et al., 2001). Physical properties of snow such
as measurement of stratigraphy (Fierz et al., 2009) can be
aggregated into layers, but their spatial distribution is highly
variable given their dependence on total depth and surface
roughness (Liljedahl et al., 2016; Rutter et al., 2014). Such
variability leads to uncertainties in the retrievals of snow state
variables such as snow water equivalent (SWE) using mi-
crowave remote sensing from local scales (King et al., 2018;
Rutter et al., 2019) to global scales (Pulliainen et al., 2020).
Improving our empirical understanding of the processes gov-
erning this variability would improve spaceborne snow mon-
itoring, especially in Arctic regions where ground measure-
ments and weather station networks are sparse.

Measurement of SWE using passive microwave satellite
data (Larue et al., 2018; Pulliainen, 2006) is possible us-
ing a radiative transfer model to simulate snow emission at
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various frequencies, from which an inversion of the model
can produce global estimates of snow depth (Takala et al.,
2011). More specifically, passive microwave brightness tem-
peratures (TB) are governed by radiometric properties of the
layered snowpack. As such, each layer has its own absorption
and scattering properties; the amount of scattering is propor-
tional to snow total mass where the scattering and emission is
frequency-dependent (Kelly et al., 2003). Scattering at higher
frequencies such as 37 GHz, will lead to lower TB, so differ-
ences between TB at two frequencies (37–19 GHz) are related
to snow mass (Chang et al., 1982). Arctic snowpack mainly
consists of two distinct layers (wind slab and depth hoar),
where each layer has unique scattering properties (Derksen
et al., 2010). Complexity of the layered properties (density,
temperature and microstructure) strongly influences radiative
transfer modeling (King et al., 2015; Rutter et al., 2014). Fur-
thermore, recent developments in radiative transfer model-
ing (SMRT: Picard et al., 2018; DMRT: Tsang et al., 2000;
and MEMLS: Wiesmann and Mätzler, 1999), microstructure
representation (Royer et al., 2017) and in situ measurement
of snowpack properties (Gallet et al., 2009; Montpetit et al.,
2012; Proksch et al., 2015) have provided significant agree-
ment between models and in situ measurements. However,
spatial distribution and heterogeneity of total snow depth and
stratigraphy remain challenging to implement and are not
considered for large-scale monitoring of SWE in tundra envi-
ronments. Rutter et al. (2019) and Saberi et al. (2020), using
three- and two-layer models respectively, demonstrated a re-
lationship between the ratio of depth hoar and wind slab with
respect to total depth, enabling the usage of the proportion of
these two layers with total snow depth. Working with a sim-
plified layer representation of a snowpack with well-defined
physical properties may adequately characterize snowpack
for large-scale SWE retrievals.

Two dominant processes governing snow depth variabil-
ity in the Arctic are (1) wind redistribution with topogra-
phy (Sturm and Wagner, 2010; Winstral et al., 2002) and
(2) vegetation trapping (Domine et al., 2018; Sturm et al.,
2001). Liston (2004) described snow depth heterogeneity us-
ing a log-normal distribution with a coefficient of variation
of snow depth (CVsd), the ratio between standard deviation
(σsd) and the mean of snow depth (µsd), indicating the extent
and spread of a distribution (i.e., high variability over thin
snow will lead to high values of CVsd). Also, Liston (2004)
proposed nine categories of CVsd with values ranging from
0.9 to 0.06 for midlatitude treeless mountains to ephemeral
snow, where arctic tundra type was 0.4. Snow depth vari-
ability is based on a parametrization of µsd and CVsd on
the log-normal distribution scale parameters (λ, ζ ). Gisnås et
al. (2016) adapted that approach using scale parameters (α,
β) of the gamma distribution. In all cases, CVsd is used to
describe sub-grid variability (Clark et al., 2011), but its value
remains challenging to quantify given that regional trends are
linked to topography, vegetation and climate (Winstral and
Marks, 2014). In this context, CVsd is used to quantify spa-

tial heterogeneity of snow in climate modeling but so far has
not been used in microwave SWE retrievals.

In SWE retrievals, snow depth is assumed to be uniform,
and the mean depth is used to optimize brightness tempera-
ture and derive SWE from depth and assumed density (Kelly,
2009). There is potential for CVsd to be used as an effective
parameter to estimate sub-pixel variability in brightness tem-
perature. Bayesian frameworks are used in inversion schemes
for SWE retrievals (Durand and Liu, 2012; Pan et al., 2017;
Saberi et al., 2020) using a priori information (density, mi-
crostructure and temperature) from regional snowpack char-
acteristics and inversion of radiative transfer models (Saberi
et al., 2020). An iterative approach based on Bayesian theory
is used (Takala et al., 2011) to match observed brightness
temperature with modeled brightness temperature by iterat-
ing a priori information of the snowpack in order to derive
snow depth and SWE. Saberi et al. (2020) conducted a case
study for snow depth retrievals using a two-layer model from
airborne microwave observations using a Bayesian frame-
work (or Markov chain Monte Carlo) over tundra snow.
However, high uncertainty (21.8 cm) in retrieved snow depth
(via TB) resulted, which suggested the use of a term involving
variation in snow depth and microstructure within the foot-
print instead of a uniform snow depth.

To address this research gap, we used a multi-year snow
dataset from two Arctic locations to quantify sub-pixel vari-
ability of snow depth and microstructure and used CVsd as
an effective parameter that controls snow sub-pixel variabil-
ity. Firstly, we evaluate tundra snow depth spatial variability
using probability density functions (log-normal and gamma)
and its parameters, µsd and CVsd. Secondly, we present from
in situ observations distinct snow microstructure and density
values of both tundra main layers (depth hoar and wind slab),
mean ratios of layer thickness, and the depth hoar fraction
(DHF) relative to snow depth. Finally, we perform a Gaus-
sian process fit to estimate DHF from snow depth and used
probability density functions of snow depth to add variation
of snow depth and microstructure within the footprint. Then
we compare mean pixel snow properties simulations with
simulations of sub-pixel variation in snow properties to eval-
uate biases between measured TB from a satellite sensor at
19 and 37 GHz and TB simulated by inversion of a radiative
transfer model.

2 Methods

2.1 Study site

Data were collected in two regions of the Canadian Arctic,
with different topography and vegetation yielding different
snow depth distributions. Trail Valley Creek (TVC) research
watershed, Northwest Territories (68◦44′ N, 133◦33′W), lo-
cated at the southern edge of arctic shrub tundra, is dom-
inated by herbaceous tundra and dwarf shrubs and char-
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acterized by gently rolling hills with steep slopes. Greiner
Lake watershed, Cambridge Bay (CB), Nunavut (69◦13′ N,
104◦53′W), located within arctic tundra, is characterized by
dwarf shrub and calcareous tills on upland sites with gently
rolling hills and small ponds and lakes. TVC is considered
to have more subarctic attributes with predominant vegeta-
tion than CB given its proximity to the northern edge of the
boreal forest. Topographic maps (Fig. 1; ArcticDEM) show
slightly higher variation in elevation at TVC with plateau and
steep slopes compared to CB, which is dominated by ponds
and small variation in topography.

2.2 Data

Snow pits (315) at each site (TVC: 68, CB: 248) provided in-
formation on snow layering, vertical profiles of geophysical
properties (includes temperature, grain type classification,
hardness, density, microstructure and depth). Measurements
of visual stratigraphy and grain type classification were con-
ducted following Fierz et al. (2009). Density was measured
using 100 cm3 density cutters and digital scales. Snow spe-
cific surface area (SSA) was measured using an InfraRed In-
tegrating Sphere (IRIS) (Montpetit et al., 2012) in Cambridge
Bay and an A2 Photonic Sensors IceCube in TVC, both
based on 1300 nm laser reflectometry (Gallet et al., 2009).
Snow depth measurements, linear transects and circular tran-
sect around snow pits used a magnaprobe from SnowHydro
LLC (Sturm and Holmgren, 2018), which is equipped with a
standard GPS unit. Measured snow depth distributions were
used to identify subsequent pit locations (on site) from a pre-
defined transect across CB watershed in order to ensure the
snow pit locations were representative of wider spatial vari-
ability (Table 1). For TVC, pit locations were chosen based
on previous snow depth distribution (2016), slope and ele-
vation. Multiple snow depth maps at 1 m resolution from re-
motely piloted aircraft system (RPAS) surveys derived from
photogrammetry conducted in March 2018 (Walker et al.,
2020a) were used to estimate snow depth distribution in
TVC with total spatial coverage of 5.3 km2. An airborne lidar
dataset of TVC snow depths (93 km2 at 10 m resolution) col-
lected by an aircraft in April 2013 (Rutter et al., 2019) was
also used. Monte Carlo simulations of both the µsd and CVsd
were performed on each snow depth map. Simulations ran-
domly selected pixels as the center of a circular mask with a
random radius. The mask was used to select all pixels within
the circle so the statistical parameters (µsd and CVsd) could
be calculated. Also, a small RPAS map was available for CB
with spatial coverage of 0.2 km2 at 1 m resolution. Maps of
normalized difference vegetation index (NDVI) were created
from Sentinel-2 (10 m resolution) images from late summer
(1 September 2019 for TVC and 8 September 2019 for CB).

2.3 Measured brightness temperatures and Snow
Microwave Radiative Transfer (SMRT)

Microwave TB values were used to evaluate simulations
from SMRT at 37 and 19 GHz from the Special Sensor
Microwave/Imager and Sounder (SSMIS) sensor, with the
Equal-Area Scalable Earth (EASE)-Grid 2.0 resampled at
3.125 km (6.25 km for 19 GHz) resolution (Brodzik et al.,
2018), for both TVC and CB regions. TB values were es-
timated by averaging all pixels within snow pit area (CB:
24 pixels, TVC: 8 pixels for 37 GHz). Each pixel with at least
one snow pit inside was used. Since all snow pits were aggre-
gated to obtain mean value and distribution of snow proper-
ties for SMRT, averaged TB covering the snow pits area was
used.

The area was also filtered to remove any contribution from
sea or deep lakes, as pixels with liquid water exhibit large bi-
ases even if the signal at 37 GHz is mostly sensitive to snow
(Derksen et al., 2012). For CB, an area with the same spa-
tial coverage but a slightly different location was used since
the snow pit area was within 25 km (full resolution of SS-
MIS) from the ocean. TB values were temporally averaged to
match times of field measurements, representing peak win-
ter snow accumulation (Table 2). Also, TB values were cor-
rected for atmospheric contributions using the linear relation
with precipitable water from the 29 atmospheric NARR lay-
ers (Vargel et al., 2020; Roy et al., 2013).

A multi-layered snowpack radiative transfer model
(SMRT, Picard et al., 2018) was used to simulate snow emis-
sion at 19 and 37 GHz. Model inputs are snow tempera-
ture, density and microstructure of each snow layer. Corre-
lation length of snow microstructure in each layer was es-
timated from mean density and SSA measurements of each
layer when available (wind slab: WS; depth hoar: DH) using
Debye’s equation scaled by a factor (κ37 = 1.39,κ19 = 1.71)
for arctic snow as suggested by Eqs. (3b) and (4) in Vargel
et al. (2020) with the improved Born approximation (IBA-
Exp) configuration. Soil emission was simulated using the
Wegmüller and Mätzler (1999) model with permittivity and
roughness values from a field study of frozen soil emission
based in CB (Meloche et al., 2020). The soil parameters from
CB (Meloche et al., 2020) closely match values from a study
in TVC (King et al., 2018) and were used for both site simu-
lations. The lakes in CB shown in Fig. 1 were not considered
in the soil emission contribution because most of the water
was frozen (ε′ ≈ 4–6) (Mironov et al., 2010), which had a
similar permittivity to frozen soil (ε′ ≈ 2–4) (Mavrovic et al.,
2021) than liquid water (ε′ >25).

The basal layer temperature was set to the mean soil–
DH interface measurements from snow pits of each site. The
temperature of the WS layer was estimated from the North
American Regional Reanalysis (NARR) air surface tempera-
ture, which closely matched snow pit surface layer tempera-
ture. NARR air surface temperatures were used because they
provide a global estimate that matches spatial coverage of
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Figure 1. Locations of study areas in the Canadian Arctic, Cambridge Bay and Trail Valley Creek site. Grid shown is the enhanced 3.125 km
EASE-Grid 2.0 (Brodzik et al., 2018) used for satellite data. The ArcticDEM used to show elevation has a 2 m resolution (Porter et al., 2018)
derived from stereo high-resolution visible imagery for the entire Arctic domain, which is freely available.

Table 1. Summary of the number of snow depth measurements (magnaprobe and RPAS) and snow pit sites per year. The availability of SSA
and density measurements across sites and years is also noted (×). See Table 2 for full dates.

Site Date Depth measurement Snow pit SSA Density

TVC 15–25 March 2019 8541 32 × ×

15–23 March 2018 7190 36 × ×

TVC18-RPAS 12 March–22 April 2018 Pixels: 6 325 365; resolution: 1 m
TVC13-Lidar April 2013 Pixels: 969 168; resolution: 10 m

CB18-RPAS 15 April 2018 Pixels: 72 902; resolution: 1 m

CB 15–29 April 2019 982 64 × ×

12–24 April 2018 – 50 × ×

1–8 May 2017 4045 51 ×

2–10 April 2016 3403 35 ×

9–16 April 2015 12 282 48 ×

the EASE-Grid 2.0, which is continuous (spatially and tem-
porally) compared to the sparse snow pit observations.

2.4 Gaussian processes

Gaussian processes (GP) are a non-parametric Bayesian
method used in regression models. These processes are
effective and flexible tools to fit complex functions with
small training datasets (Quiñonero-Candela and Rasmussen,
2005). Gaussian processes provide uncertainties on predic-
tions, using training data and prior distributions to produce
posterior distributions for predictions. Mean (m(x)) and co-
variance (k(xx′)) functions from the multi-variate Gaussian

distribution are used to fit data (x: snow depth, y: ratio of
layer, DHF). Them(x) function describes the expected value
of the distribution, and the k(xx′) describes the shape of the
correlation between data points (xi). Different mean and co-
variance kernels can be chosen to fit the data. From the Bayes
rule in Eq. (1), where y (DHF) and X (snow depth) are ob-
served data and f the GP function, posterior predictions of
DHF can be produced. Posterior predictions were calculated
using the standard method of Markov chain Monte Carlo
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Table 2. Summary of mean basal and air surface temperatures for SMRT simulations, precipitable water (PWAT) used for atmospheric
correction, and measured (corrected) TB at both vertical (V) and horizontal (H) polarization by the SSMIS sensor (platform F18).

Sites Tbase Tsurface PWAT TB37 TB37
(K) NARR (K) (mm) H (K) V (K)

CB (15–29 April 2019) 257 261.5 3.61 195.3 211.0
CB (12–24 April 2018) 257 260.1 3.72 179.3 195.7
CB (1–8 May 2017) 263 261.3 3.33 187.1 205.0
CB (2–10 April 2016) 256 258.8 2.80 190.1 215.4
CB (9–16 April 2015) 254 256.2 2.34 193.0 215.9
TVC (15–25 March 2019) 266 261.8 7.04 177.0 199.5
TVC (15–23 March 2018) 264 261.8 4.21 176.6 197.6

(MCMC) sampling using PyMC3 (Salvatier et al., 2016).

Posterior=
likelihood · prior

marginal likelihood

= p(f |y, X)=
p(y|X, f ) ·p(f )

p(y|X)
, (1)

f (x)∼ GP
(
m(x), k

(
x, x′

)
, φ(x

)
). (2)

Equation (2) defined f as a function of m(x), k
(
x, x′

)
. A

mean function m(x), following an inverse logic function (φ)
(Eq. 3), was chosen due to the close fit with observations.
The covariance function k

(
x, x′

)
is a Gaussian white noise

covariance function and is defined with noise (σ ) and the
Kronecker delta function (δx,x) (Eq. 4), to best fit the ob-
servations. By using a scaling function (φ), the covariance
function (uniform noise in this case) can be modified as a
function of x. The scaling function used is also an inverse
logic function (φ) that takes the same form as Eq. (3). Fi-
nally, a deterministic transformation is applied to the prior
(GP) to constrain values to a ratio (0, 1). The likelihood of
DHF observations is defined by a Beta distribution (0, 1).

m(x)= φ (x)= c+ b

[
ea(x−x0)

1+ ea(x−x0)

]
(3)

k(xx′)= σ 2δx, x′φ(x) (4)

3 Results

3.1 Snow depth distribution

Distributions of snow depth are needed when integrating over
large areas to calculate sub-grid snow variability for dis-
tributed models (Clark et al., 2011; Liston, 2004). The µsd
and the CVsd of snow depth are used as parameters in prob-
ability density functions to estimate the shape of the log-
normal and gamma distributions. To find which distribution
best fits the depth observations, we tested the log-normal and
gamma distributions using the Kolmogorov–Smirnov two-
sample test with snow depth observations (shown in blue in
Fig. 2). The statistical fits for each distribution are shown in

Table 3. Kolmogorov–Smirnov (KS) test for two samples of proba-
bility distribution function (PDF).

Site PDF KS stats p value

TVC log-normal 0.029 0.41
gamma 0.039 0.11

CB log-normal 0.024 0.63
gamma 0.017 0.95

Figure 2. Log-normal and gamma distribution fit to the measured
snow depths.

Table 3. For both the log-normal and gamma distributions the
null hypothesis is validated at the 5 % significance level from
p value> 0.05 (i.e., the two samples were drawn from the
same distribution), which agrees with previous assessments
of Arctic snow (Clark et al., 2011; Gisnås et al., 2016).

Distributions with parameterization using measured µsd
and CVsd (Fig. 2) differ from the best fit with regular pa-
rameters, especially compared with the log-normal distribu-
tion in CB (black dashed line in Fig. 2b). Liston (2004) re-
ported a CVsd of 0.4 for Arctic tundra snow, which is in close
agreement with the values of 0.43 for TVC and 0.56 for
CB. These values were obtained from spatially distributed
snow depth measurements around snow pits. For compari-
son, maps of snow depth from RPAS for TVC (n= 6 325 365
with total spatial coverage of 5.3 km2) showed a much
larger CVsd = 0.78 than magnaprobe data (n= 15 731) with
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Table 4. Statistical parameters of snow depth distributions. Bold
font represents multi-year average.

Site n µ (m) σ (m) CVsd

TVC19 8541 0.44 0.14 0.33
TVC18 7190 0.39 0.21 0.54

TVC 15 731 0.42 0.19 0.43

TVC18-RPAS 6 325 365 0.46 0.36 0.78
TVC13-Lidar 969 168 0.40 0.23 0.58

CB19 982 0.42 0.17 0.40
CB18 577 0.34 0.18 0.53
CB18-RPAS 7290 0.39 0.19 0.49
CB17 4045 0.42 0.19 0.46
CB16 3403 0.28 0.16 0.61
CB15 12 282 0.32 0.18 0.57

CB 20 712 0.36 0.18 0.52

CVsd = 0.43 (Table 4). A RPAS dataset was also available
for CB but with a much smaller spatial coverage (0.2 km2)
showing a CVsd of 0.49. In Figs. 3 and 4, we investigated the
relationship between spatial coverage of sampling and the
CVsd parameter. Datasets include RPAS-derived data at TVC
(TVC18-RPAS) containing six areas with various size from
1–3 km2, a CB18-RPAS map of 0.2 km2 and the larger lidar-
derived snow map in TVC (TVC13-Lidar). Figure 3a shows
snow accumulation of TVC13-Lidar and TVC18-RPAS with
snow drift visible in dark blue, and a sub-grid of 1 km2

showed areas with high CVsd (Fig. 3b) containing more
drift. For both areas, 500 Monte Carlo simulations were per-
formed by randomly selecting subregions within each do-
main (Fig. 4) so the mean and variability as a function of
coverage could be investigated. Simulations showed subsam-
pling of µsd and CVsd converged to the values of the full
area. The mean of each area was similar in value with less
variation in the simulations compared to CVsd. A difference
of 0.2 between the full CVsd of the RPAS (5 km2) and lidar
(93 km2) maps (Fig. 4) was found. Also included in Fig. 4 are
in situ CVsd estimates with variable high-density sampling
(magnaprobe) over different spatial extents at Daring Lake,
NWT (Derksen et al., 2009; Rees et al., 2014); Puvirnituq,
QC (Derksen et al., 2010); and at Eureka, NU (Saberi et al.,
2017). The two points at the limit coverage scale correspond
to areas of respectively 625 km2 (CVsd = 1, Daring Lake site;
Chris Derksen, personal communication, 2009) and 198 km2

(CVsd = 0.89, Eureka site; Saberi et al., 2007).

3.2 Analysis of SSA and density per layer

After combining measurements from all snow pits at TVC
and CB (n= 315) the mean proportion of DH layer thick-
ness was 46 % and WS was 54 %. The goal was to classify
DH as large grain snow (large facets, depth hoar cups and

Table 5. Parameters for best fitting distribution of SSA and density
for layers of DH and WS.

Snow property Best fit PDF µ σ

SSA (m2 kg−1) log-normal DH 11.1 3.8
WS 19.7 7.8

µ σ

Density (kg m−3) normal DH 266.3 48.9
WS 335.2 57.1

chains) and then all other snow layers above the DH as wind
slab (WS). Some layers were more difficult to classify as
they contained mixed crystals or were a transitional slab-to-
hoar layer (also referred to as indurated hoar) (Derksen et al.,
2009). Slab that contained small faceted crystals (< 2 mm)
were classified as WS. Indurated hoar, a wind slab metamor-
phosed into depth hoar, was classified into DH with a typical
density ∼ 300 kg m−3. For this reason, the peak of each dis-
tribution appeared close to each other in Fig. 5c and d. For
retrieval of snow properties using satellite remote sensing,
a two-layer model using WS and DH can be used to sim-
plify much of the layer complexity found in arctic snowpacks
(Rutter et al., 2019; Saberi et al., 2017). A small amount of
surface fresh snow (SS) was present in some pits but was not
included in this calculation as this type of snow was a short-
lived layer, combining fresh precipitation that rapidly trans-
formed into rounded grains due to destructive metamorphism
and defragmentation by wind. Distributions of SSA are more
distinct between layers than density (Fig. 5a and b); see Rut-
ter et al. (2019). Figure 5c and d show that the mean values
for density of WS (335 kg m−3) and DH (266 kg m−3) were
closer together. SSA distributions also showed a gap between
both mean values (WS: 19.7 m2 kg−1; DH: 11.1 m2 kg−1)
(Fig. 5, Table 5). Even if snow properties can show high het-
erogeneity at local scales, simple distributions approximate
this variability well. Temporal (year) and spatial (regional be-
tween site) variation is low, and snow properties (density and
SSA) can be approximated by a distribution for each distinct
layer, WS and DH as in Fig. 5. Therefore, snow properties
were simplified in distributions for each layer (WS and DH)
representing tundra snow.

Parr et al. (2020) found a key threshold of µsd+ 1σsd to
define snow drifts in tundra environments. This threshold
(> 0.6–0.8 m), based on data presented in Table 4, is an im-
portant metric in Fig. 6 since above this depth the variability
and the mean DHF are greatly reduced as the snowpack is
dominated by wind slab for larger depth (drift). As defined in
Parr et al. (2020), the transported snow from wind accumu-
lates at these particular locations (drift) where it was scoured
from wind affected area yielding lower depth with high DHF.

Vegetation also strongly influences variability of DHF in
shallower snowpacks, where arctic shrubs and tussocks pro-
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Figure 3. RPAS and lidar dataset of snow depth at TVC (TVC13-Lidar and TVC18-RPAS). TVC13-Lidar is the largest dataset covering
93 km2. TVC18-RPAS is a smaller dataset within the area of TVC13-Lidar. Panel (a) shows the snow depth map at 10 m resolution from
2013. Panel (b) shows a sub-grid of 1 km with CVsd for each cell; (c) same as panel (b) but for µsd.

Figure 4. Snow depth mean (µsd) (a, b) and variability (CVsd) (c, d) as a function of coverage for sampling area: (a, c) small area; (b,
d) large area. Monte Carlo simulations were done using the two datasets in TVC. CB18-RPAS was also added in panels (a) and (c) because
of the similar coverage. The µsd and CVsd of both full areas are shown by the black dotted and dashed line.
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Figure 5. SSA and density variability of surface snow (SS), wind slab (WS) and depth hoar (DH) for the two studied sites (TVC and CB)
and different dates (see Table 5). In panel (c) the best log-normal fit distribution is shown in black; (d) same as panel (c) but for the normal
fit distribution. In panels (c) and (d), the kernel density estimates (KDEs) of the histogram of each layer are also shown (in color).

Figure 6. (a) Depth hoar fraction (DHF) as a function of total depth for snow pit data from 2015–2019 in Cambridge Bay and 2018–2019
for Trail Valley Creek. Both datasets were separated in equal bins (10 cm) to estimate the mean value shown with the dashed line. The black
line represents the mean for both sites with the 95 % confidence interval. (b) DHF is shown as a function of NDVI from the snow pit area
with the mean DHF and NDVI per site shown by dashed lines and the Gaussian distributions of DHF by the solid lines.

mote depth hoar formation (Domine et al., 2016; Royer et
al., 2021; Sturm et al., 2001). However, there is no clear
link between DHF and NDVI (a proxy for vegetation type)
at local scales (Fig. 6b). Since shrubs provide shelter to
snow up to their own height (Gouttevin et al., 2018), veg-
etation height rather than type would be required. How-
ever, at the regional scale, differences were evident between
both regions, where mean NDVI and DHF are greater at
TVC (NDVI= 0.5, DHF= 0.54) than CB (NDVI= 0.27,
DHF= 0.38). This finding is in agreement with Royer et
al. (2021) over a northeastern latitudinal gradient, showing
that sites with shrubs and tussocks have a greater DHF than
those without.

3.3 DHF predictions using snow depth with Gaussian
processes

The impact on microwave scattering of variability of layer
microstructures with snow depth was previously accounted
for in Saberi et al. (2020) by defining two categories, a high
scattering thin snow layer (high DHF) and a thicker self-
emitting layer (low DHF). Instead, using GP, DHFs were fit-
ted and predicted based on snow depth values (Fig. 7). In
order to use GP, the mean function m(x), following an in-
verse logic function (φ1 : Eq. 3), was chosen with parame-
ters a =−5, x0 = 0.6, b = 0.35 and c = 0.2 to best match
the mean line observation for both sites in Fig. 6. The mean
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Figure 7. Prediction on DHF (cyan) using a GP fit trained on ob-
served data (black). Snow depth is from samples from a log-normal
distribution with parameters from Table 4. The GP fit is illustrated
in red, where darker red represents a high posterior probability that
follows the mean function.

function set the mean value across the snow depth range. The
correlation function was set to a uniform noise, but this noise
was reduced from depth> 40 cm by using a scaling function
(φ2 : a =−5, x0 = 0.6, b = 1.5 and c = 0.25). An inverse
logic function (φ1, φ2) was used twice in the fitting (1) for
the mean value and (2) to reduce the variability (noise) as
snow depth increased. The snow pit dataset (n= 315, Fig. 6)
was used to build posterior predictions using MCMC sam-
pling.

For prediction of DHF, any number of snow depths can
feed into the posterior prediction or GP fit. Snow depths
were generated from a log-normal distribution with param-
eters (µsd, CVsd) from the previous section in Table 4. Poste-
rior predictions of DHF were similar to observed data (Fig. 7)
and followed closely the posterior probability representa-
tion in red (GP fit). Again, higher variability in DHF was
reproduced for depths< 0.5 m, which was then reduced for
depths> 0.5 m following the red posterior prediction repre-
sentation in Fig. 7.

3.4 SMRT simulation of sub-grid variability within
sensor footprint

SMRT simulations using measured snowpack properties
were compared with the satellite measurements of TB. Two
simulations were evaluated using (1) mean measured depth,
each layer’s density and SSA, and DHF and (2) a log-
normal distribution of snow depth and the GP fit (predicted
DHF). We hypothesized that the EASE 2.0 grid pixels can
be separated into n smaller sub-grid pixels. Sub-grid pixels
(n= 500) represent the observed snow variability, where n
snow depths will follow a log-normal distribution with pa-
rameters µsd and CVsd. The ratio of each layer is predicted
using the GP fit with depth as input from the log-normal dis-
tribution. Mean SSA (DH: 11 m2 kg−1; WS: 20 m2 kg−1) and
density (DH: 266 kg m−3; WS: 335 kg m−3) per layer were
determined from measurements (Fig. 5).

For one standard EASE-Grid 2.0 pixel, a distribution of
sub-grid TB was simulated to reproduce a realistic distri-
bution of TB within the radiometer footprint. This variabil-
ity was derived from spatially distributed observations from
snow pits and snow depths observation. Snow depths fol-
lowed a log-normal distribution with the mean measured
depth (µsd) of each region (Table 4) and a depth variabil-
ity (CVsd) that was evaluated from a range of 0.1 to 1. The
GP mean function from Fig. 7 was used to predict the DHF
for each region. When using CVsd = 0.7 , the simulated dis-
tribution showed a wide sub-pixel variability (±40 K) with a
mean value of TB37V = 194.7 K (blue line in Fig. 8a), which
is very close to the satellite-measured TB37V of 196.5 K
(green dotted line in Fig. 8a). In this case, the TB value sim-
ulated from the mean measured snow depth and mean DHF
was slightly lower (190.7 K, i.e., a bias of 5.8 K) (black dot-
ted line in Fig. 8a). To represent the signal measured by the
sensor, the mean of the simulated TB was chosen, and it was
assumed that the sub-pixel effect combined linearly at this
scale. Because the simulated TB37V distribution was not ex-
actly a normal distribution, it appeared that the mean TB of
this distribution increased when CVsd increased (Fig. 8b).
This meant that snow depth variability (CVsd) must be ac-
counted for when estimating the average TB at 37 GHz, in
addition to the mean snow depth values. The influence of the
GP simulation on the mean simulated TB37V was approxi-
mately 10 K (Fig. 8b) as CVsd varies from 0.1 to 1. The ad-
dition of snow variability in simulation (Fig. 8c and d) of
19 GHz has negligible effect on TB19 and shows a constant
simulation across the CVsd range of 0.1 to 1. Simulation of
TB19 shows higher biases at horizontal polarization than at
vertical polarization.

GP simulation reduced biases by 5 K with a higher opti-
mized CVsd (intersection of red/blue–green line, Fig. 8b). A
similar pattern was observed for CB (not shown here), but
the measured TB at CB was much higher than the GP sim-
ulation, resulting in a large bias for CB (∼ 20 K) compared
to TVC (Table 6). Both sites suggested a larger CVsd, which
agreed with a CVsd for larger spatial coverage measured in
Fig. 4. Observed large biases at CB vary over the years from
5 to 29 K. The total RMSE of both sites and years linearly de-
creased as a function of CVsd (Fig. 9). Total RMSE is mini-
mized with higher CVsd (0.8–0.9) typical of a large sampling
scale (over 4 km2) as shown in Fig. 4.

4 Discussion

We show that as spatial coverage increased, the CVsd param-
eter converged to the full area values (Fig. 4). Monte Carlo
simulations of snow depth distribution and coverage show
high variation in CVsd (from 0.1 to 2) for areas< 10 km2.
Snow accumulation varied at the mesoscale (100 m to 10 km)
due to topography and vegetation (Pomeroy et al., 2002) by
varying wind-flow direction (Liston and Sturm, 1998). At the
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Figure 8. Brightness temperature variability simulation distribution (a, c) of simulated TB within a pixel, where vertical lines represent
the mean of this distribution for V pol (blue), measured by satellite (green), and TB value simulated from the mean measured snow depth
and mean DHF (black). In panels (b) and (d), the mean of the simulated TB for H pol (red) and V pol (blue) as a function of CVsd with
mean values (dotted black lines). The CVsd that minimized biases is located at the red/blue–green intersection. Shaded blue and red areas
correspond to a 2σ range representing uncertainty inherent from our Bayesian simulations in estimating the mean of simulated TB for the
pixel.

Table 6. Bias between SMRT simulated and measured TB from the SSMIS sensor at each site.

Bias (K)

CB TVC RMSE (K)

SMRT simulation type Year H pol V pol H pol V pol H pol V pol

Mean depth and DHF 2019 28.2 25.9 6.9 10.3 17.8 19.1
2018 8.0 5.3 5.1 6.8
2017 19.9 18.9 – –
2016 16.9 23.2 – –
2015 24.7 29.1 – –

GP simulation CV= 0.9 2019 18.6 15.7 −4.4 −1.2 9.7 10.4
2018 −3.7 −6.2 −4.9 −3.2
2017 10.4 9.3 – –
2016 7.1 13.5 – –
2015 10.0 13.9 – –

mesoscale, variability in CVsd was high due to topographic
differences; plateau, slope and valley create favorable condi-
tions from wind-flow direction to promote snowdrift, scour
and sublimation processes (Parr et al., 2020; Rutter et al.,
2019). Vegetation facilitates snow holding capacities by de-
creasing wind speed near the ground within and downwind
of shrub (Marsh et al., 2010; Sturm et al., 2001). Some ar-
eas include both extreme drifts and thin snow, resulting in

high CVsd (dark green areas in Fig. 3b), which are com-
monly found in TVC (Walker et al., 2020a). CVsd was lower
for areas without drifts (light green areas in Fig. 3b). In ar-
eas >10 km2 (Fig. 4d), variation in CVsd was reduced and
yielded higher values> 0.6.

Convergence to higher CVsd as spatial coverage increased
matched the PMW optimized values found in this study us-
ing GP simulation (0.8–1.0). Our analysis in Fig. 4d showed
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Figure 9. Overall RMSE (year and site) with the mean simulation
(dashed black line) and the GP simulation in blue as a function of
the coefficient of variation of snow depth.

that CVsd of TVC13-Lidar converged to 0.6 at 93 km2, but
two in situ points from other studies at 625 km2 had higher
CVsd (0.9–1) due to larger coverage or different site charac-
teristics. This indicates that a CVsd between 0.6–1.0 is more
suitable to represent snow depth variability in SWE retrievals
for PMW SWE products at 25 km for the EASE-Grid 2.0 and
625 km2 for GlobSnow 3.0 (Pulliainen et al., 2020). For ac-
tive sensors (resolution< 1 km), the high variability in CVsd
under 1 km2 due to high variation in snow depth (Fig. 4b)
can affect back scattering since the active sensor at the Ku
band is also sensitive to volume scattering (King et al., 2018).
The need for prediction of µsd and CVsd based on topogra-
phy could become essential at these scales not only for mi-
crowave remote sensing but also to improve snow modeling
or land data assimilation (Kim et al., 2021).

Spatial complexities of Arctic snowpacks can be ad-
equately characterized with distributions of snow depth
(Fig. 2) and simplified by considering density and SSA of
two main layers (Fig. 5). Such simplifications could be po-
tentially useful for satellite SWE retrievals across Arctic
tundra regions. Since Bayesian SWE optimization needs a
strong first guess from regional a priori information, multi-
ple distributions of snow depth, density and SSA presented
here can be used for tundra type snow in MCMC sampling
(Pan et al., 2017; Saberi et al., 2020). Additionally, a simi-
lar approach to our GP simulation can be added so the CVsd
parameter can also be used as a priori information with a
distribution from 0.8 to 1, since it improved TB RMSE by
∼ 8 K (Fig. 9). This approach improved TB simulation com-
pared to using only mean values of snowpack properties by
adding variability within the footprint. The CVsd parameter
(describing variation in snow depth) has a considerable effect
on brightness temperature (10 K) when used as an effective
parameter to account for sub-pixel variability of snow depth.
The amount of scatterers (snow grain and structure) within
the radiometer’s footprint is adjusted via the DHF predicted
from snow depth (CVsd). The relationship found in Fig. 6
used to predict DHF (Fig. 7) could also be used deterministi-

cally with the mean function (φ1) or with a linear relation of
DHF decreasing from 50 % to 20 %. However, the Bayesian
Gaussian process was used because SWE retrievals are cur-
rently implemented in a Bayesian framework (Takala et al.,
2011).

Considering that the difference between 19 and 37 GHz is
used in SWE retrievals (Takala et al., 2011), using the CVsd
to account for variability of scatterers only affected simula-
tion of 37 GHz with a weak effect on 19 GHz (Fig. 8). If stan-
dard deviation of snow increases (more drift), then relatively
fewer large scatterers from depth hoar are present within the
footprint due to a low DHF generally observed in large drifts.
The net result is then an increase in TB at 37 GHz resulting
from an increase in CVsd (Fig. 8).

This idea of modulating the amount of scatterers based of
DHF prediction and a distribution of snow depth (µsd and
CVsd) can be extended to a future active Ku-band mission
(Garnaud et al., 2019; King et al., 2018) as it is known that
microwave spatial variability affects backscatter signal (King
et al., 2015) and SWE retrievals (Vander Jagt et al., 2013).
The CVsd parameter is proposed as an effective parameter
to account for variability inside the grid cell, while the mean
depth (µsd) is assimilated by in situ measurements at weather
stations in data assimilation schemes (Takala et al., 2011) or
by the physical snow model (Larue et al., 2018). The CVsd
could be optimized or predicted using relationships with spa-
tial coverage (Fig. 4) and statistical topographic regression
(Grünewald et al., 2013). Future works would need a dataset
covering a large area where µsd and CVsd could be investi-
gated with topography in smaller sub-areas.

5 Conclusion

This study evaluated the use of parameters controlling Arctic
snow depth distributions to improve passive microwave SWE
retrievals by characterizing tundra snow sub-pixel variabil-
ity. In shrub and graminoid tundra environments, mean val-
ues of snow depths (µsd = 0.33–0.44 m) and coefficient of
variations (CVsd = 0.4–0.8) were similar to those previously
reported in Arctic tundra (Derksen et al., 2014; Liston, 2004;
Derksen et al., 2009). Monte Carlo simulations were applied
to investigate µsd and CVsd as a function of spatial cover-
age. An increase in CVsd matched increased spatial coverage
of snow depth sampling, indicating that a higher CVsd (0.6–
0.9) is more suited to estimate snow depth variation at the
3.125 km resolution EASE-Grid 2.0. Also, simulations show
high variation in CVsd (> 0.9) for areas< 10 km2, suggest-
ing a need for topography-based prediction of µsd and CVsd
at this scale. The CVsd is shown to be an effective parameter
to account for snow depth variability in simulation of snow
TB. A two-layer snowpack model (depth hoar and surface
wind slab), which simplifies snowpack properties into dis-
tributions, was used to initialize the SMRT model via a GP
fit of the DHF related to snow depth. DHF is fitted to snow
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depth using a Bayesian Gaussian process, which accounts for
variation in snow scattering using CVsd. SMRT simulation
was used successfully to simulate satellite TB, but there are
still substantial uncertainties in the simulated values which
are likely linked to microstructural properties not captured by
SSA (Krol and Löwe, 2016). SMRT simulations of TB were
reduced by 8 K after optimizing CVsd to higher values (0.8–
1.0), thereby matching CVsd of spatially distributed snow
depth from TVC18-RPAS accounting for variation in snow
properties inside the footprint of satellite sensor. The CVsd
parameter is proposed as an effective parameter to account
for variability inside the footprint to minimize the difference
between microwave measurements and simulations in SWE
retrievals algorithm. This would be beneficial to the data as-
similation scheme of the European Space Agency GlobSnow
product (Takala et al., 2011) and to model the large-scale cli-
mate trend of tundra snow (Mortimer et al., 2020; Pulliainen
et al., 2020).

Code and data availability. Data and code for the Gaussian pro-
cess fit and GP simulation are available at https://github.
com/JulienMeloche/Gaussian_process_smrt_simulation (last ac-
cess: 27 December 2021; https://doi.org/10.5281/zenodo.5806672,
Meloche, 2021). The RPAS map and magnaprobe from TVC are
available at https://doi.org/10.5683/SP2/PWSKKG (Walker et al.,
2020b).
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