Articles | Volume 16, issue 9
https://doi.org/10.5194/tc-16-3517-2022
https://doi.org/10.5194/tc-16-3517-2022
Research article
 | 
02 Sep 2022
Research article |  | 02 Sep 2022

Automated avalanche mapping from SPOT 6/7 satellite imagery with deep learning: results, evaluation, potential and limitations

Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler

Related authors

Interactive Snow Avalanche Segmentation from Webcam Imagery: results, potential and limitations
Elisabeth Doris Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
EGUsphere, https://doi.org/10.5194/egusphere-2024-498,https://doi.org/10.5194/egusphere-2024-498, 2024
Short summary
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023,https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023,https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Mapping avalanches with satellites – evaluation of performance and completeness
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021,https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019,https://doi.org/10.5194/tc-13-3225-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Mapping surface hoar from near-infrared texture in a laboratory
James Dillon, Christopher Donahue, Evan Schehrer, Karl Birkeland, and Kevin Hammonds
The Cryosphere, 18, 2557–2582, https://doi.org/10.5194/tc-18-2557-2024,https://doi.org/10.5194/tc-18-2557-2024, 2024
Short summary
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign
Steven J. Pestana, C. Chris Chickadel, and Jessica D. Lundquist
The Cryosphere, 18, 2257–2276, https://doi.org/10.5194/tc-18-2257-2024,https://doi.org/10.5194/tc-18-2257-2024, 2024
Short summary
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024,https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024,https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx'17
Siddharth Singh, Michael Durand, Edward Kim, and Ana P. Barros
The Cryosphere, 18, 747–773, https://doi.org/10.5194/tc-18-747-2024,https://doi.org/10.5194/tc-18-747-2024, 2024
Short summary

Cited articles

Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations, Nat. Hazards, 97, 517–534, https://doi.org/10.1007/s11069-019-03655-8, 2019. a, b
Barton, P. and Hafner, E. D.: aval-e/DeepLab4Avalanches: Code to automatically identify avalanches in SPOT 6/7 imagery (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7014498, 2022. a
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems – State of research and implications for management, Forest Ecology Manag., 257, 1883–1892, https://doi.org/10.1016/j.foreco.2009.01.050, 2009. a
Bianchi, F. M., Grahn, J., Eckerstorfer, M., Malnes, E., and Vickers, H.: Snow Avalanche Segmentation in SAR Images With Fully Convolutional Neural Networks, IEEE J. Sel. Top. Appl. Earth Obs., 14, 75–82, https://doi.org/10.1109/JSTARS.2020.3036914, 2021. a
Bründl, M. and Margreth, S.: Integrative Risk Management, in: Snow and Ice-Related Hazards, edited by: Haeberli, W. and Whiteman, C., Risks Disast., 2015, 263–301, https://doi.org/10.1016/B978-0-12-394849-6.00009-3, 2015. a
Download
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.