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Abstract. Spatially dense and continuous information on
avalanche occurrences is crucial for numerous safety-related
applications such as avalanche warning, hazard zoning, haz-
ard mitigation measures, forestry, risk management and nu-
merical simulations. This information is today still collected
in a non-systematic way by observers in the field. Current
research has explored the application of remote sensing tech-
nology to fill this information gap by providing spatially con-
tinuous information on avalanche occurrences over large re-
gions. Previous investigations have confirmed the high poten-
tial of avalanche mapping from remotely sensed imagery to
complement existing databases. Currently, the bottleneck for
fast data provision from optical data is the time-consuming
manual mapping. In our study we deploy a slightly adapted
DeepLabV3+, a state-of-the-art deep learning model, to auto-
matically identify and map avalanches in SPOT 6/7 imagery
from 24 January 2018 and 16 January 2019. We relied on
24 778 manually annotated avalanche polygons split into ge-
ographically disjointed regions for training, validating and
testing. Additionally, we investigate generalization ability by
testing our best model configuration on SPOT 6/7 data from
6 January 2018 and comparing it to avalanches we manually
annotated for that purpose. To assess the quality of the model
results, we investigate the probability of detection (POD), the
positive predictive value (PPV) and the F1 score. Addition-
ally, we assessed the reproducibility of manually annotated
avalanches in a small subset of our data. We achieved an av-
erage POD of 0.610, PPV of 0.668 and an F1 score of 0.625
in our test areas and found an F1 score in the same range for

avalanche outlines annotated by different experts. Our model
and approach are an important step towards a fast and com-
prehensive documentation of avalanche periods from opti-
cal satellite imagery in the future, complementing existing
avalanche databases. This will have a large impact on safety-
related applications, making mountain regions safer.

1 Introduction

Information about avalanche occurrences, their location
and dimensions is pivotal for many applications such as
avalanche warning, hazard zoning, hazard mitigation infras-
tructure, forestry, risk management and numerical simula-
tions (e.g., Meister, 1994; Rudolf-Miklau et al., 2015; Bebi
et al., 2009; Bründl and Margreth, 2015; Christen et al.,
2010; Bühler et al., 2022). Currently this information is
reported and collected unsystematically by observers and
(local) avalanche warning services. In recent years differ-
ent groups have proposed to use remote sensing to fill that
gap and provide spatially continuous, complete maps of
avalanche occurrences over some region of interest (Bühler
et al., 2009; Lato et al., 2012; Eckerstorfer et al., 2016; Ko-
rzeniowska et al., 2017). It has been shown that avalanches
can be identified with sufficient reliability from optical data
(e.g., Bühler et al., 2019) or synthetic aperture radar (SAR;
e.g., Eckerstorfer et al., 2016; Abermann et al., 2019), with
varying degrees of completeness depending on the sensor
and the size of the avalanches (Hafner et al., 2021).
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Both optical and SAR data have inherent advantages and
disadvantages which we would like to elaborate on in the fol-
lowing section: for the acquisition of suitable data, SAR is
independent of cloud cover, whereas for optical data a clear
sky is a crucial prerequisite. Consequently, optical data may
only capture avalanche occurrences after a period with ac-
tivity is over (except for avalanches releasing solely due to
the warming during the day), whereas with SAR information
may also be retrieved during an avalanche period. Due to that
independence from low-visibility weather conditions, and in
the case of Sentinel-1 a 12 d repeat cycle at midlatitudes, the
temporal resolution is in the best case daily in northern Nor-
way or about every 6 d in central Europe (numbers for two
Sentinel-1 satellites acquiring data, currently the temporal
resolution is about half as Sentinel-1B has not been acquiring
since 23 December 2021). The optical satellite data currently
known to be suitable for avalanche mapping need to be or-
dered specifically and are therefore only available at isolated
dates in time. Compared to SAR, optical data are however
easier to process and interpret. In our previous work (Hafner
et al., 2021) we compared the performance and completeness
of SAR Sentinel-1, as well as optical SPOT 6/7 and Sentinel-
2, for avalanche mapping. In a detailed analysis of the man-
ual mappings we found the following: the ground sampling
distance of 10m makes Sentinel-2 unsuitable for the mapping
of avalanches. The mapping from SPOT 6/7 is overall more
complete compared to Sentinel-1, which is mostly caused
by the inability to confidently map avalanches of size 3 and
smaller in Sentinel-1 imagery, a characteristic related to the
underlying spatial resolution of approximately 10–15 m for
Sentinel-1 and 1.5 m for SPOT 6/7. Depending on the appli-
cation, practitioners not only want to know when and where
an avalanche occurred but also the outlines. When analyz-
ing which part of an avalanche can typically be identified
using Sentinel-1 we found (in accordance with, among oth-
ers, Eckerstorfer et al., 2022) that it is mostly the deposit but
may include patches from track and release area. When only
using Sentinel-1 data it is therefore not possible to derive the
number of avalanche occurrences (possibly several uncon-
nected patches for one avalanche) or the size of the avalanche
occurrences (size of patches detected does not usually cor-
respond to avalanche size). Consequently, unless unambigu-
ous with respect to the terrain, the origin and release area of
avalanche deposits detected using SAR images remain un-
known. In contrast, except for shaded areas, in SPOT 6/7
avalanches can be identified from release zone to deposit in
almost all cases. Additionally, research suggests SAR to be a
lot less reliable for detecting dry snow avalanches compared
to wet snow avalanches (among others Hafner et al., 2021;
Eckerstorfer et al., 2022). The above statements made about
SPOT 6/7 are transferable to optical data with similar or bet-
ter spatial and spectral resolution.

To bypass the time-consuming manual mapping, several
groups have explored (semi-)automatic mapping approaches.
Bühler et al. (2009) used a processing chain that relies on di-

rectional, textural and spectral information to automatically
detect avalanches in airborne optical data. Lato et al. (2012)
and Korzeniowska et al. (2017) applied object-based clas-
sification techniques to optical high-spatial-resolution data
(0.25–0.5 m). Wesselink et al. (2017) and Eckerstorfer et al.
(2019) have introduced and consequently refined an algo-
rithm to automatically detect avalanches in Sentinel-1 SAR
imagery via changes in the backscatter between pre- and
post-event images. Karbou et al. (2018) also utilized changes
in backscatter to identify avalanche debris. For avalanche de-
tection in RADARSAT-2 imagery, Hamar et al. (2016) used
supervised classification with a random forest classifier. In
contrast, the avalanche mapping from optical satellite data
has so far been exclusively done manually (Bühler et al.,
2019; Hafner et al., 2021; Abermann et al., 2019).

The deployment of machine learning for remote sens-
ing image analysis has seen a surge in the last decade (Ma
et al., 2019). Modern deep learning methods often outper-
form competing ones in complex image understanding tasks
and have been used, for example, to detect rock glaciers
(Robson et al., 2020), landslides (Prakash et al., 2021) and
crop types in fields (Cai et al., 2018). For avalanches, the
use of deep learning has so far focused on Sentinel-1 im-
agery: Waldeland et al. (2018) applied a pre-trained ResNet
(He et al., 2016) for avalanche identification by change de-
tection using manual reference annotations. Bianchi et al.
(2021) segmented avalanches with a fully convolutional U-
Net (Ronneberger et al., 2015), also relying on manual anno-
tations for training the network. Sinha et al. (2019a) proposed
a fully convolutional VGG16 network (Simonyan and Zisser-
man, 2015) that was trained on, and compared against, an in-
ventory of avalanche field observations. With the same inven-
tory, Sinha et al. (2019b) also alternatively used a variational
autoencoder (Kingma and Welling, 2019) for avalanche de-
tection.

In contrast to previous studies, our work is the first to at-
tempt to use deep learning for the detection of avalanches
in optical satellite data. This is of major importance as the
largest avalanche mapping from remotely sensed imagery to
date, with 24 778 single avalanche polygons (Bühler et al.,
2019; Hafner and Bühler, 2019, 2021), relied on optical
SPOT 6/7 satellite imagery. Furthermore, there have been in-
vestigations with external data into the reliability and com-
pleteness of mappings from SPOT 6/7 (Hafner et al., 2021).
Consequently, an automation of the manual mapping from
this imagery would allow for a fast comprehensive documen-
tation of future avalanche periods with background knowl-
edge about how well it works and how much avalanche area
approximately is missed. Without an automation it is not fea-
sible to cover large regions quickly. With manual image in-
terpretation (Hafner et al., 2021) it took approximately 1 h
to manually delineate avalanches in SPOT images cover-
ing a region of ≈ 27.5 km2. Thus, in this work we develop,
describe and apply a deep learning approach for avalanche
mapping based on the SPOT 6/7 sensor with the goal to au-
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tomate the mapping process so as to cover large areas and
eventually operate at country-scale. We developed a vari-
ant of DeepLabV3+ (Chen et al., 2018) that takes as input
SPOT 6/7 images and a digital elevation model (DEM) and
outputs spatially explicit raster maps of avalanches. For our
DeepLabV3+ variant we made the encoder and decoder de-
formable (Dai et al., 2017); thereby our convolutional kernels
adapt according to the underlying terrain, which is essential
in the study of avalanches. In addition to a careful descrip-
tion of the network architecture we evaluate results, compare
them to previous work, examine the reproducibility of the
manually mapped avalanches and discuss the potential and
limitations of our method.

2 Data

For training and validating our proposed mapping system we
utilize SPOT 6/7 top-of-atmosphere reflectance images ac-
quired on 24 January 2018 (referred to as 2018 in the re-
mainder of this paper; Hafner and Bühler, 2019) and 16 Jan-
uary 2019 (referred to as 2019 from now on; Hafner and
Bühler, 2021), together with a set of 24 776 avalanche an-
notations delineated by manual photo-interpretation. In both
cases the images were acquired after periods with very high
avalanche danger, i.e., the maximum level 5 of the Swiss
avalanche warning system (WSL Institute for Snow and
Avalanche Research SLF, 2021). SPOT 6/7 images have a
ground sampling distance (GSD) of 1.5 m and provide infor-
mation in four spectral bands, namely red, green, blue and
near-infrared (R, G, B, NIR), at a radiometric resolution of
12 bits. The dataset covers an area of ≈ 12500 km2 in 2018
and ≈ 9500 km2 in 2019. These two areas partly overlap. As
both were acquired in January, the illumination conditions
exhibit little variability between the two years, but they dif-
fer in terms of snow conditions: in 2019 the snow line was at
a lower altitude, and consequently there was more dry snow,
hardly any wet snow and fewer glide snow avalanches. As
additional input information we use the Swiss national DEM
swissALTI3D. To match the resolution of SPOT imagery, we
resample the DEM (original GSD 2 m) to 1.5 m, aligned with
SPOT 6/7. Its nominal vertical accuracy is 0.5 m below the
treeline (∼ 2100 m a.s.l.) and 1–3 m above the treeline (swis-
stopo, 2018). We did not apply atmospheric corrections as
our main focus is texture and the absolute spectral values do
not matter for avalanche identification.

The 24 776 avalanches were annotated by a single per-
son, an expert, whom we define as somebody very famil-
iar with both satellite image interpretation and avalanches.
For the mapping of avalanches the visual identification of
crown and release areas, track, and deposit through texture
and hue, as well as hints of possible damage, have played a
role (for details on the methodology see Bühler et al., 2019).
For each mapped avalanche polygon the expert also recorded
a score of how well the avalanche was visible, splitting the

annotations in three groups: complete, well visible outline;
mostly well visible outline; and not completely visible out-
line, where significant parts had to be inferred with the help
of domain knowledge (see also Bühler et al., 2019). Further-
more, we validated a subset of the initial mapping with inde-
pendent ground- and helicopter-based photographs as refer-
ence (Hafner et al., 2021). We found that for manual mapping
based on SPOT images the probability of detection (POD;
see Eq. (2); the probability of a true avalanche being anno-
tated) is 0.74 for avalanches larger than size 1 (avalanche size
is categorised on a scale from 1 to 5, with size 5 the largest
and most destructive ones; for more details see WSL Institute
for Snow and Avalanche Research SLF, 2021). The positive
predictive value (PPV; see Eq. 2; probability of an annotated
avalanche having a true counterpart) is 0.88, indicating only
a few false positive annotations (again for size ≥ 2).

Additionally, we used SPOT 7 imagery of the Mattertal,
Val d’Hérens and Val d’Herémence in Valais, Switzerland,
from 6 January 2018 covering ≈ 660 km2 to evaluate our
model. The data were acquired for test purposes after a pe-
riod with high avalanche danger, and the 538 avalanches used
for validation have been manually mapped with the same
methodology as the others used in this work and described
in Bühler et al. (2019). The geographical region with addi-
tional data overlaps with data acquired on 24 January 2018
but served as test area before and did not go into training or
validation (see “Generalitzation Test” areas in Fig. 5). The
images suffer from distortion in steep terrain as they were
part of a suitability study for avalanche mapping from opti-
cal data (for details see Bühler et al., 2019) and orthorectified
by the satellite providers using the height information from
the Shuttle Radar Topography Mission (SRTM; OpenTopog-
raphy, 2013).

3 Method

Many overlapping avalanches exist in the dataset whose
boundaries cannot be precisely distinguished from each other
even by experts. We thus restrict ourselves to identifying all
pixels where avalanches have occurred but do not attempt
to group them into individual avalanche events. In terms of
image analysis this corresponds to a semantic segmentation
task, where each pixel is assigned a class label, avalanche
or background, according to the model confidence. Several
deep learning models have been developed for solving such
problems and have achieved excellent results in various do-
mains, such as U-Net (Ronneberger et al., 2015), HRNetV2
(Sun et al., 2019) and DeepLabV3+ (Chen et al., 2018).

3.1 Model architecture

On their way downwards, avalanches are constrained and
guided by the local terrain. In order to accurately map
avalanches from the input data, we therefore propose a deep
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learning architecture that adapts to the underlying terrain
model. We build on the state-of-the-art model DeepLabV3+
designed for semantic segmentation and add deformable con-
volutions that adapt their receptive field size according to the
input data, i.e., the terrain model in our case.

DeepLabV3+ is a popular, fully convolutional semantic
segmentation model that has been used successfully with a
variety of datasets. It features a dilated ResNet (He et al.,
2016) encoder as a backbone for feature extraction in com-
bination with the Atrous spatial pyramid pooling module
(ASPP). To achieve a wide receptive field able to capture
multi-scale context, ASPP employs dilated convolutions at
different rates. Before being fed into the decoder, the re-
sulting features are concatenated and merged using a 1× 1
convolution. These high-level features are then decoded, up-
sampled and combined with high-resolution, low-level fea-
tures from the first encoder layer. For further details about
DeepLabV3+, see Chen et al. (2018).

Our adaptions to the standard DeepLabV3+ include de-
formable kernels (Dai et al., 2017) in the encoder and de-
coder, as well as a small network with offsets that estimates
the appropriate kernel deformations in a data-driven manner
and modifies the decoder such that it can process features
from all backbone layers (Figs. 1 and 2). These changes add
a modest 1.9 million network weights to the 22.4 million
weights of the standard DeepLabV3+.

The reasoning behind deformable convolution kernels in
the backbone (Fig. 3) is to adapt their receptive fields to the
underlying terrain. To obtain deformable convolutions, we
introduce an additional 18-channel tensor that encodes the
2D offset of each kernel element at each location; i.e., it en-
ables free-form deformations of the kernel, beyond dilation
or rotation. The offsets are not fixed a priori but calculated
as a learned function of the DEM, separately for each fea-
ture resolution, by a small additional network branch. By re-
placing the first convolution in each residual block with a
deformable one, we are able to explicitly include the terrain
shape encoded in the DEM, but without the need to modify
other parts of the architecture, so as to benefit from the pre-
trained weights of the encoder.

The augmented decoder helps our DeepLabV3+ to prop-
agate features along specific directions, in our case this is
the possible downhill flow direction of avalanches which can
be extracted from the DEM. Hence, we alter the ASPP such
that it aggregates features from all backbone layers and in-
creases the receptive field. The new module, which we call
deformable spatial pyramid flow (DSPF, Fig. 4), performs
deformable convolutions at different dilation rates. The de-
formations are again obtained from our small network with
offsets, based on the DEM. In order to propagate information
along the gradient field, we also model the flow direction of
an avalanche in the DSPF module of the decoder.

3.1.1 Sampling and data split

Given the proposed model architecture and the available
computational resources (CPU: 20 Intel Core 3.70 GHz;
GPU: 1 NVIDIA GeForce RTX 2080 Ti), we are unable to
process an entire orthomosaic at once. Therefore, we pro-
cess squared image subsets, called patches, of up to 512×
512 pixels at training time, which translates into an area of
589 824 m2 at the spatial resolution of SPOT 6/7 imagery.
With our model and computational resources we can simul-
taneously process batches of two image patches per GPU.

For supervised machine learning approaches it is vitally
important that all desired classes are present in the patches
the model learns from. As classes are usually not evenly dis-
tributed, class imbalance is a frequent challenge. Our dataset
is very imbalanced: avalanches cover only 1/1785 of the en-
tire area covered by SPOT 6/7 imagery. Re-balancing of class
frequencies is necessary to make sure our model adequately
captures the variability of the avalanche class. We use the
following pragmatic strategy to ensure a training set that in-
cludes relevant examples and with sufficient representation
of both classes. First, we iteratively sample patch centers in-
side manually annotated avalanche polygons while avoiding
overlapping patches. In this way, we obtain a set of samples
that is not overly imbalanced, with≈ 3.5×more background
pixels than avalanche pixels. These patches form 95 % of
our training set. Second, the remaining 5 % are sampled ran-
domly in areas without avalanches to ensure also patches
without avalanche pixels are seen during training. This leads
to an effective ratio of 1 : 4 between avalanche and back-
ground pixels in the 5185 512× 512 patches of the training
set.

As the edges of the patches lack context, they were also
given smaller weights when calculating the loss function dur-
ing training, starting 100 pixels from the edge, decreasing the
weight linearly to 10 % of the base weight given above at the
very edge. For our DeepLabV3+ we additionally used deep
supervision as in Simonyan and Zisserman (2015) to help the
model converge.

3.1.2 Training

For training and quantitative evaluation, the data were
split into mutually exclusive, geographically disjoint regions
for training (80 %), validation and hyper-parameter tuning
(10 %), and testing (10 %), as depicted in Fig. 5. The test set
is located completely in regions acquired either only in 2018
or only in 2019 but not in the overlap between the two acqui-
sitions to prevent memorization (especially of the identical
topography).

The network is trained by minimizing a weighted binary
cross entropy (BCE) loss (see also Sect. 3.1.2), using the
Adam optimizer (Kingma and Ba, 2017) for 20 epochs. The
base learning rate was initialized to 1× 10−4 and reduced
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Figure 1. Overview of our DeepLabV3+ variant. The encoder is shown in more detail in Fig. 3 and the deformable spatial pyramid flow
(DSPF) in Fig. 4.

Figure 2. For the deformable convolutions, a standard kernel (like the 3×3 as shown in a) will be adapted according to 2D offsets learned from
the underlying DEM. The green dots in (b), (c) and (d) exemplarily show possible final positions of the kernel elements; the displacement
from the standard kernel is illustrated by the black arrows.

Table 1. Summary of training parameters,

Parameter Value

Loss function Weighted BCE
Optimizer Adam
Initial learning rate 1× 10−4

Effective batch size 16
Patch size 512× 512
Epochs 20

by a factor of 4 after 10 epochs. A summary of the hyper-
parameter settings is given in Table 1.

As a preprocessing step, the input images are normalized
channel-wise using the mean and variance values of the en-
tire dataset. Additionally, we flattened the peak in the im-
age histograms caused by the shadow pixels by transforming
negative values v→ (−3 · v2) while keeping positive values
unchanged.

Even though our training dataset is large, it covers only
two avalanche periods and cannot be expected to account for
the whole variety of possible conditions. In order to increase

the robustness of the network, we further expand the training
set with synthetic data augmentation. We used randomized
rotation and flipping for greater topographic variety, mean-
shifting and variance-scaling to simulate varying atmosphere
and lighting conditions, and patch shifting to increase ro-
bustness when only part of an avalanche is visible. To speed
up data loading we used batch augmentation (Hoffer et al.,
2019), in which the same sample is read only once and used
multiple times with different augmentations computed on the
fly. To increase the model’s performance, we additionally ac-
cumulated gradients over two iterations before weights were
updated. Thereby an effective batch size of four (2+ 2) was
reached, and the 512× 512 pixel patches may be used (see
also Sect. 4.2).

As mentioned in Sect. 2 the avalanche polygons come with
labels that quantify their visibility in the SPOT data. These
labels are used to re-weight their contributions to the BCE
loss as follows: pixels on complete, well visible avalanches
have weight 2, mostly well visible avalanches, as well as
background pixels not on an avalanche, have weight 1, and
not completely visible avalanches have weight 0.5.
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Figure 3. Encoder of our DeepLabV3+ in detail.

Figure 4. Detailed architecture of the deformable spatial pyramid flow (DSPF) used in the decoder of our DeepLabV3+ variant.

4 Results and discussion

Predictions are made for a target area specified by vector
polygons in the form of shapefiles. To reduce artifacts at the
edges of patches, the samples for the predictions overlap by
100 pixels before being cropped. To assess the detection per-
formance of the network, we calculated positive predictive
value (PPV, also called precision) and probability of detec-
tion (POD, also called recall) on a pixel level, as well as
the F1 score. PPV and POD are both based on a standard
2× 2 confusion matrix (Trevethan, 2017). As per-pixel met-
rics take as input a binary mask (avalanche yes or no) and the
network yields scores, we thresholded the predictions at 0.5
before calculating statistics and computed the F1 score as

F1= 2 ·
PPV ·POD

PPV+POD
, (1)

where POD and PPV are defined as

POD=
TP

TP+FN
and PPV=

TP
TP+FP

, (2)

where TP is true positive, FP is false positive, and FN is false
negative.

In this paper the presented pixel-wise metrics (POD, PPV
and F1 score) represent the average score over all the patches
we tested on. As our dataset is imbalanced and the F1
score non-symmetric, we calculated those metrics for both
avalanches and the background. Additionally, we wanted to
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Figure 5. Visualization of the disjoint regions for training, validation and testing for both 2018 and 2019. Also shown are the test region for
the generalization experiments, where we had additional data from 6 January 2018, and the regions used to study reproducibility of manual
avalanche maps.

estimate how many avalanches were detected by each model.
Consequently, for the object-based metrics we tested two dif-
ferent measures: we counted an avalanche as detected if 50 %
or 80 % of all pixels within an avalanche from the manual
mapping had a score of 0.5 or higher.

4.1 Results and generalization ability

Results were calculated for the test areas and are reported in
Table 2. Compared to the standard DeepLabV3+, our model,
when run with the parameters described in Table 1, has a
higher POD for avalanches (0.610 vs. 0.587) while hav-
ing the same PPV. This results in an F1 score of 0.612 for
the standard DeepLabV3+ and 0.625 for our version. For
the background, the pattern is similar: the POD is slightly
better for our method (0.894), compared to the standard
DeepLabV3+ (0.888), while the PPV is slightly higher for
the standard model (0.900 vs. 0.894). Consequently, the
F1 score is very similar as it only differs by one in the third
decimal place between our and the standard DeepLabV3+.

For any supervised classification and deep learning meth-
ods in particular, the ability to generalize well to new datasets
and regions not seen during the training phase is key. To eval-
uate this, we test our trained model using SPOT 7 imagery
from 6 January 2018. The test metrics for predictions on
the data from 6 January 2018 were calculated with the stan-
dard DeepLabV3+ and the adapted DeepLabV3+. As Table 2
shows, our version generalizes very well (see also Fig. 6);
the metrics only differ from tests on the initial dataset in
the fourth decimal place. The standard DeepLabV3+, on the
other hand, does not generalize so well as the POD, and the
detection rates per avalanche are lower than for testing on the
initial data.

We also investigated object-based metrics for all model
variations: when detection requires 50 % of the avalanche
area, the models rightly capture between roughly 58 % and

69 % of all avalanches and between 38 % and 51 % when
detection requires 80 % of the area (Table 3). Again the
standard DeepLabV3+ performs slightly worse than our
adapted DeepLabV3+, especially when run on data from
a new avalanche period (6 January 2018). Therefore, our
DeeplabV3+ shows better ability to generalize to new and
previously unseen data. Overall, the best performance is
achieved when considering sunlit avalanche parts only, for
both training and testing.

4.2 Ablation studies

To understand how our changes to the standard DeepLabV3+
affect performance we varied the model in different ways and
trained, tested and compared the performance. These results
can be found in Table 2. First, we investigated the influence
of the deformable backbone and discovered that including it
outperforms the non-deformable backbone configurations of
the standard DeepLabV3+. This is the case in our test areas
for 2018 and 2019 but also for testing on the avalanche pe-
riod from 6 January 2018. Secondly, the avalanches in our
network have been weighted (see Sect. 3.1.2) according to
the quality index assigned by the manual mapper. To quan-
tify the effects of using weights we ran training with un-
weighted BCE and observed a decrease in POD, a slight in-
crease in PPV and overall a smaller F1 score. Additionally,
in our adapted version of DeepLabV3+ we only considered
the red and near-infrared from SPOT, as well as the DEM,
as input channels. We cannot test the adapted DeepLabV3+
without the DEM as it is explicitly included as an integral
part of the network. We analyzed, however, how including
all SPOT channels (additionally Blue and Green) and also
adding another Wallis filtered channel (to bring out details in
the shade) affect network performance (see Table 2). For our
model we found that including more channels did not im-
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Table 3. Object-based metrics for selected model configurations.

Model SPOT data Training data Detection rate 50 %
of avalanche area

Detection rate 80 %
of avalanche area

Standard
DeepLabV3+

24 Jan 2018
16 Jan 2019

Whole avalanches 0.63 0.45

Adapted
DeepLabV3+

24 Jan 2018
16 Jan 2019

Whole avalanches 0.66 0.46

Standard
DeepLabV3+

6 Jan 2018 Whole avalanches 0.58 0.38

Adapted
DeepLabV3+

6 Jan 2018 Whole avalanches 0.66 0.46

Adapted
DeepLabV3+

24 Jan 2018
16 Jan 2019

Sunlit avalanches only 0.69 0.51

Figure 6. An example for the model confidence when predicting on data from a previously unseen avalanche period from 6 January 2018
(SPOT 6 data © Airbus DS 2018). The values closer to 1, in darker hues, indicate places where the model is more confident about the
existence of an avalanche. In the illuminated regions those areas almost always overlap with manually mapped avalanches.

prove the performance; rather training time was longer and
metrics worse than with the initial channels.

We hypothesize that the proportion of potential avalanche
area and context visible in the patches strongly influences
network output. To investigate this, we have trained our
model with varying patch sizes: 512× 512, 256× 256 and
128× 128 pixels (corresponding to 768× 768, 384× 384
and 192× 192 m). Quantitative results in Table 2 show the

largest patch size performs best considering metrics for both
avalanches and background. When comparing them visually
(Fig. 7), this is further supported as the predictions on the
smallest size are patchy and dispersed over the image, show-
ing the model is unsure about the occurrence of avalanches.
With increasing context through a larger patch size though,
the model becomes more confident, and the avalanche bor-
ders are distinctly visible.
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Subsequently, in order to understand what is better for
training the network, we trained on avalanche deposits or re-
lease areas only. As deposit area, we assumed the lower third
(based on elevation) of each manually mapped avalanche, ig-
noring those avalanches where the deposit had been inferred.
For the release areas, we used the zones identified by Büh-
ler et al. (2019), again disregarding those avalanches where
the release zone had been inferred and was therefore uncer-
tain. As results in Table 2 show, performance for predicting
all avalanches is a lot worse in both cases. We also observe
that PPV and POD are significantly higher when the network
is trained on deposits only rather than trained only on release
areas. This resulted in an increase of 0.146 in F1 score and
suggests that the original model might also be learning more
from texture-rich avalanche deposits than from release zones.

Finally, the experts manually mapping the avalanches gen-
erally perceived those in the sun as better visible. Hafner
et al. (2021) confirmed that and found the POD to be higher
roughly by a factor of 5 for avalanches in fully illuminated
terrain compared to those, at the time of image acquisition,
in fully shaded terrain. In order to investigate this further, we
used a support vector machine (SVM) classifier to calculate
a shadow mask for both 2018 and 2019. The mask also in-
cludes most forested areas due to their speckled sun–shade
pattern. Subsequently, we excluded the avalanche parts lo-
cated in the shade and trained only with the remaining areas
(about one fourth of the avalanche area per year). Calculating
the metrics considering only avalanches in illuminated areas,
we found an increase of 0.058 in POD, a slight decrease of
0.015 in PPV and consequently an increase in F1 score of
0.014. The object-based metrics (Table 3) are also slightly
better when only considering sunlit regions.

4.3 Reproducibility of manually mapped avalanches

To assess the degree of label noise in our dataset, we con-
ducted a reproducibility experiment on the manually mapped
avalanches to understand how similar the assessment of a
given area by different experts would be. In other fields sev-
eral comprehensive studies have already been conducted to
investigate inter-observer variability, for example, for con-
touring organs in medical images (Fiorino et al., 1998) or
for manual glacier outline identification (Paul et al., 2013).
For our investigation five people attempted to replicate the
manual mapping with the same methodology as used be-
fore and described in detail in Bühler et al. (2019). All
five mapping experts are very familiar with satellite imagery
and/or avalanches and received the same standardized intro-
ductions. The experiment was conducted twice in an area
of 90 km2 around Flims, Switzerland, on the 2018 and 2019
SPOT 6/7 imagery (see Fig. 5). The area contains avalanches
in the shade and in illuminated terrain, as well as all outline
quality classes in the initial mappings (Hafner and Bühler,
2019, 2021). The mapping experts did not see another map-
ping before having finished theirs.

Table 4. F1 scores for the reproducibility investigation: the bold val-
ues in the upper-right part of the table represent the scores compar-
ing two expert mappings in illuminated terrain, and the lower-left
values are the scores in shaded terrain.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Expert 1 0.758 0.623 0.617 0.653
Expert 2 0.401 0.711 0.723 0.724
Expert 3 0.232 0.198 0.656 0.782
Expert 4 0.188 0.236 0.205 0.786
Expert 5 0.123 0.155 0.204 0.244

Calculating F1 score (see Eq. 1) between all experiment
mappings, we found an overall F1 score of 0.381 in illumi-
nated and 0.018 in shaded areas (area-wise metrics). Com-
paring two expert mappings at a time, the values range from
0.617 to 0.786 in the illuminated regions and from 0.123
to 0.401 in the shaded regions of our study area (Table 4).
The F1 scores of the expert manual mappings with the initial
mapping are in the same range (not shown). The results from
2018 (Fig. 8) illustrate that for some selected avalanches
the agreement is very good, while, especially in the shade,
there is little agreement among experts on the presence of
avalanches.

Reexamining the results from the network now in the light
of this experiment, the adapted DeepLabV3+ is equally good
as the experts in identifying avalanches. In other words, we
cannot expect a computer algorithm to provide better scores
than the average F1 score of two mapping experts. Even
for the avalanches with the highest agreement, a specific
boundary line will usually not match exactly. This makes it
hard for any network to learn the localization of boundaries.
We do not yet know what exactly causes the differences in
avalanche identification between experts. Therefore we plan
on conducting a thorough analysis on imagery with different
spatial resolutions in the future. This will help us to better un-
derstand the inherent mapping uncertainty of avalanches and
may give an indication of what performance can be expected
if training computational detection algorithms on different
optical data.

4.4 Limitations of this study

The three avalanche periods for which we have SPOT im-
agery all occurred in January. Those images are relatively
close to the winter solstice and therefore have a high per-
centage of shaded area. The amount of shaded area depends
very much on the terrain and on the season. Around Davos,
Switzerland, for example, 43 % of the area is shaded on the
winter solstice but only 7 % 3 months later (both at SPOT 6/7
image acquisition time; Hafner et al., 2021). We know that
the quality of the manually annotated avalanches is lower in
shaded areas (POD: 0.15 shade, 0.86 illuminated, 0.74 over-
all; Hafner et al., 2021). Consequently, the training data have
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Figure 7. Comparison of results for four patches when training the network with different patch sizes. The tiles depict (a) the SPOT 6 image,
(b) the manually mapped annotations used as reference, (c) the predictions thresholded at 0.5 and (d) the predicted avalanche probability
(SPOT 6 data © Airbus DS 2018). Visual inspections show that the model is a lot more confident the larger the patch size is.

lower quality in shaded regions, which makes learning there
more difficult for our model and leads to lower model con-
fidence, as well as poorer results. Based on the results when
training and testing on sunlit avalanche parts only, however,
we see potential for better overall metrics when a smaller por-
tion of the area is shaded closer to the summer solstice. But
regardless of how much area is well illuminated, the chal-
lenges in the shade remain and make results in those areas
less trustworthy. Further research to better understand and
tackle that problem is needed.

Additionally, even though 2018 includes wet snow and wet
snow avalanches, the snow in January is generally colder and
drier than towards the end of the winter. Consequently, we
do not know how well our model performs under different
snow conditions, for example in spring. Whether our model

already generalizes enough or is biased towards high winter
conditions and requires retraining with different snow condi-
tions, we could not yet test.

5 Conclusion and outlook

We present a novel deep learning approach for avalanche
mapping with deformable convolutions that adapts its no-
tion of the local terrain according to the input digital ele-
vation model (DEM). Experiments at large scale with op-
tical, high-spatial-resolution (1.5 m) SPOT 6/7 satellite im-
agery show that our approach achieves good performance
(F1 score 0.625) and generalizes well to new scenes not
seen during the training phase (F1 score 0.625). As reference
data for training, validating and testing our model we relied
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Figure 8. Heat map exemplarily illustrating expert agreement on avalanche area for avalanches mapped from SPOT in January 2018 (24 Jan-
uary 2018, SPOT 6 © Airbus DS2018). Agreement in the shade (northern part of the study area) is generally lower than in the sunlit areas
to the south. Dark blue indicates very good agreement or in other words marks areas that where identified as an avalanche by all five experts
involved. For a more detailed location of the reproducibility study area see Fig. 5.

on 24 747 manually mapped and annotated avalanches from
two avalanche periods in different years. With our adapted
DeepLabV3+ we were able to detect 66% of all avalanches.
By varying model parameters and the input data we ana-
lyzed the impact of different configurations on the mapping
result. We found that weighting the avalanches according
to the perceived visibility did result in slightly better met-
rics than when not weighting them. By training on release
areas and deposits only we demonstrated that the network
learns more from deposits (Table 2), and by excluding shaded
areas from training we showed that in illuminated terrain
both training is easier and test results are better (F1 score
0.639). Furthermore, we investigated expert agreement for
manual avalanche mapping in a small reproducibility study
and found that agreement on avalanche area is substantially
lower than expected. Compared to the model, the agree-
ment between experts is in the same range as the adapted
DeepLabV3+ performance.

Our work is an important step towards a fast and com-
prehensive documentation of avalanche periods from optical
satellite imagery. This could substantially complement exist-
ing avalanche databases, improving their reliability to per-

form hazard zoning or the planning of mitigation measures.
For the future we aim at conducting a more through study
investigating expert agreement for manual avalanche iden-
tification and its implications for automated avalanche map-
ping. Additionally, we intend to study the performance of our
model on data from different sensors and time periods. Fur-
thermore, we plan on improving results by masking out areas
where avalanches cannot occur using, for example, modeled
avalanche hazard indication data from Bühler et al. (2022).

Code and data availability. The manually mapped avalanche out-
lines from 24 January 2018 and 16 January 2019 used by us for
training, testing and validation are available on EnviDat (Hafner
and Bühler, 2019, 2021). The code is available on GitHub: https://
github.com/aval-e/DeepLab4Avalanches.git (last access: 22 August
2022) and Zenodo: https://doi.org/10.5281/zenodo.7014498 (Bar-
ton and Hafner, 2022).
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