Articles | Volume 16, issue 5
The Cryosphere, 16, 1979–1996, 2022
https://doi.org/10.5194/tc-16-1979-2022
The Cryosphere, 16, 1979–1996, 2022
https://doi.org/10.5194/tc-16-1979-2022
Research article
24 May 2022
Research article | 24 May 2022

Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet

Tanja Schlemm et al.

Related authors

A simple parametrization of mélange buttressing for calving glaciers
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021,https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
A simple stress-based cliff-calving law
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019,https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary

Related subject area

Discipline: Ice sheets | Subject: Numerical Modelling
Geothermal heat flux is the dominant source of uncertainty in englacial-temperature-based dating of ice rise formation
Aleksandr Montelli and Jonathan Kingslake
The Cryosphere, 17, 195–210, https://doi.org/10.5194/tc-17-195-2023,https://doi.org/10.5194/tc-17-195-2023, 2023
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Subglacial hydrology modulates basal sliding response of the Antarctic ice sheet to climate forcing
Elise Kazmierczak, Sainan Sun, Violaine Coulon, and Frank Pattyn
The Cryosphere, 16, 4537–4552, https://doi.org/10.5194/tc-16-4537-2022,https://doi.org/10.5194/tc-16-4537-2022, 2022
Short summary
The predictive power of ice sheet models and the regional sensitivity of ice loss to basal sliding parameterisations: a case study of Pine Island and Thwaites glaciers, West Antarctica
Jowan M. Barnes and G. Hilmar Gudmundsson
The Cryosphere, 16, 4291–4304, https://doi.org/10.5194/tc-16-4291-2022,https://doi.org/10.5194/tc-16-4291-2022, 2022
Short summary
Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021
Brooke Medley, Thomas A. Neumann, H. Jay Zwally, Benjamin E. Smith, and C. Max Stevens
The Cryosphere, 16, 3971–4011, https://doi.org/10.5194/tc-16-3971-2022,https://doi.org/10.5194/tc-16-3971-2022, 2022
Short summary

Cited articles

Albrecht, T., Martin, M., Haseloff, M., Winkelmann, R., and Levermann, A.: Parameterization for subgrid-scale motion of ice-shelf calving fronts, The Cryosphere, 5, 35–44, https://doi.org/10.5194/tc-5-35-2011, 2011. a, b
Amundson, J. M. and Burton, J. C.: Quasi-Static Granular Flow of Ice Mélange, J. Geophys. Res.-Earth, 123, 2243–2257, https://doi.org/10.1029/2018JF004685, 2018. a, b
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res.-Earth, 115, F01005, https://doi.org/10.1029/2009JF001405, 2010. a
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012. a
Bassis, J. N. and Walker, C. C.: Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, P. Roy. Soc. Lond. A, 468, 913–931, https://doi.org/10.1098/rspa.2011.0422, 2011. a, b, c
Download
Short summary
Marine cliff instability, if it exists, could dominate Antarctica's contribution to future sea-level rise. It is likely to speed up with ice thickness and thus would accelerate in most parts of Antarctica. Here, we investigate a possible mechanism that might stop cliff instability through cloaking by ice mélange. It is only a first step, but it shows that embayment geometry is, in principle, able to stop marine cliff instability in most parts of West Antarctica.