Articles | Volume 15, issue 2
The Cryosphere, 15, 983–1004, 2021
The Cryosphere, 15, 983–1004, 2021

Research article 24 Feb 2021

Research article | 24 Feb 2021

Mapping avalanches with satellites – evaluation of performance and completeness

Elisabeth D. Hafner et al.

Related authors

Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps
Yves Bühler, Elisabeth D. Hafner, Benjamin Zweifel, Mathias Zesiger, and Holger Heisig
The Cryosphere, 13, 3225–3238,,, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279,,, 2021
Short summary
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057,,, 2021
Short summary
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981,,, 2021
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780,,, 2021
Short summary
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802,,, 2021
Short summary

Cited articles

Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet snow avalanche cycle in West Greenland quantified using remote sensing and in situ observations, Nat. Hazards, 97, 517–534,, 2019. 
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in forest ecosystems – State of research and implications for management, Forest Ecol. Manag., 257, 1883–1892,, 2009. 
Bourbigot, M., Johnsen, H., Piantanida, R., Hajduch, G., Poullaouec, J., and Hajduch, G.: Sentinel-1 Product Definition, ESA Unclassified – For Official Use, availabe at: (last access: 18 February 2021), 2016. 
Brenner, H. and Gefeller, O.: Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence, Stat. Med., 16, 981–991, 1997. 
Bründl, M. and Margreth, S.: Integrative Risk Management, in: Snow and Ice-Related Hazards, Risks and Disasters, Elsevier, Amsterdam, 263–301, 2015. 
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.