Articles | Volume 15, issue 2
https://doi.org/10.5194/tc-15-983-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-983-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping avalanches with satellites – evaluation of performance and completeness
Elisabeth D. Hafner
CORRESPONDING AUTHOR
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, 7260,
Switzerland
Frank Techel
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, 7260,
Switzerland
Department of Geography, University of Zurich, Zurich, Switzerland
Silvan Leinss
Institute of Environmental Engineering, ETH Zurich, Zurich,
Switzerland
Yves Bühler
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, 7260,
Switzerland
Related authors
Jaeyoung Lim, Elisabeth Hafner, Florian Achermann, Rik Girod, David Rohr, Nicholas R. J. Lawrance, Yves Bühler, and Roland Siegwart
EGUsphere, https://doi.org/10.5194/egusphere-2024-2728, https://doi.org/10.5194/egusphere-2024-2728, 2024
Short summary
Short summary
As avalanches occur in remote and potentially dangerous locations, data relevant to avalanche monitoring is difficult to obtain. Uncrewed fixed-wing aerial vehicles are promising platforms for gathering aerial imagery to map avalanche activity over a large area. In this work, we present an unmanned aerial system (UAS) capable of autonomously navigating and mapping avalanches in steep mountainous terrain. We expect our work to enable efficient large-scale autonomous avalanche monitoring.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025, https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Short summary
This study assesses RAMMS::EXTENDED's predictive power in estimating avalanche runout distances critical for mountain road safety. Leveraging meteorological data and sensitivity analyses, it offers meaningful predictions, aiding near real-time hazard assessments and future model refinement for improved decision-making.
Frank Techel, Karsten Müller, Christopher Marquardt, and Christoph Mitterer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3349, https://doi.org/10.5194/egusphere-2025-3349, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how avalanche forecasters across Europe used a new tool called the EAWS Matrix to assess avalanche danger levels. Despite different approaches, many services used the Matrix in similar ways. Our findings can help to further improve the Matrix and support more consistent avalanche forecasts, leading to more reliable and credible avalanche information for people in snow-covered mountain regions.
Leonie Schäfer, Frank Techel, Günter Schmudlach, and Ross S. Purves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2344, https://doi.org/10.5194/egusphere-2025-2344, 2025
Short summary
Short summary
Backcountry skiing is a popular form of recreation in Switzerland and worldwide, despite numerous avalanche accidents and fatalities that are recorded each year. There is a need for spatially explicit information on backcountry usage for effective risk estimations and avalanche forecast verification. We successfully used GPS tracks and online engagement data to model daily backcountry skiing base rates in the Swiss Alps based on a set of snow, weather, temporal and environmental variables.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 25, 1331–1351, https://doi.org/10.5194/nhess-25-1331-2025, https://doi.org/10.5194/nhess-25-1331-2025, 2025
Short summary
Short summary
This study assesses the performance and explainability of a random-forest classifier for predicting dry-snow avalanche danger levels during initial live testing. The model achieved ∼ 70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025, https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Short summary
Snow depth variations caused by wind are an important factor in avalanche danger, but detailed and up-to-date information is rarely available. We propose a monitoring system, using lidar and optical sensors, to measure the snow depth distribution at high spatial and temporal resolution. First results show that we can quantify snow depth changes with an accuracy on the low decimeter level, or better, and can identify events such as avalanches or displacement of snow during periods of strong winds.
John Sykes, Pascal Haegeli, Roger Atkins, Patrick Mair, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1255–1292, https://doi.org/10.5194/nhess-25-1255-2025, https://doi.org/10.5194/nhess-25-1255-2025, 2025
Short summary
Short summary
We model the decision-making of professional ski guides and develop decision support tools to assist with determining appropriate terrain based on current conditions. Our approach compares a manually constructed Bayesian network with machine learning classification models. The models accurately capture the real-world decision-making outcomes in 85–93 % of cases. Our conclusions focus on strengths and weaknesses of each model and discuss ramifications for practical applications in ski guiding.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Alessandro Maissen, Frank Techel, and Michele Volpi
Geosci. Model Dev., 17, 7569–7593, https://doi.org/10.5194/gmd-17-7569-2024, https://doi.org/10.5194/gmd-17-7569-2024, 2024
Short summary
Short summary
By harnessing AI models, this work enables processing large amounts of data, including weather conditions, snowpack characteristics, and historical avalanche data, to predict human-like avalanche forecasts in Switzerland. Our proposed model can significantly assist avalanche forecasters in their decision-making process, thereby facilitating more efficient and accurate predictions crucial for ensuring safety in Switzerland's avalanche-prone regions.
Jaeyoung Lim, Elisabeth Hafner, Florian Achermann, Rik Girod, David Rohr, Nicholas R. J. Lawrance, Yves Bühler, and Roland Siegwart
EGUsphere, https://doi.org/10.5194/egusphere-2024-2728, https://doi.org/10.5194/egusphere-2024-2728, 2024
Short summary
Short summary
As avalanches occur in remote and potentially dangerous locations, data relevant to avalanche monitoring is difficult to obtain. Uncrewed fixed-wing aerial vehicles are promising platforms for gathering aerial imagery to map avalanche activity over a large area. In this work, we present an unmanned aerial system (UAS) capable of autonomously navigating and mapping avalanches in steep mountainous terrain. We expect our work to enable efficient large-scale autonomous avalanche monitoring.
Frank Techel, Stephanie Mayer, Ross S. Purves, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-158, https://doi.org/10.5194/nhess-2024-158, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We evaluate fully data- and model-driven predictions of avalanche danger in Switzerland and compare them with human-made avalanche forecasts as a benchmark. We show that model predictions perform similarly to human forecasts calling for a systematic integration of forecast chains into the forecasting process.
Elisabeth D. Hafner, Theodora Kontogianni, Rodrigo Caye Daudt, Lucien Oberson, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 18, 3807–3823, https://doi.org/10.5194/tc-18-3807-2024, https://doi.org/10.5194/tc-18-3807-2024, 2024
Short summary
Short summary
For many safety-related applications such as road management, well-documented avalanches are important. To enlarge the information, webcams may be used. We propose supporting the mapping of avalanches from webcams with a machine learning model that interactively works together with the human. Relying on that model, there is a 90% saving of time compared to the "traditional" mapping. This gives a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Karsten Müller, Frank Techel, and Christoph Mitterer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-48, https://doi.org/10.5194/nhess-2024-48, 2024
Preprint under review for NHESS
Short summary
Short summary
Avalanche forecasting is crucial for mountain safety. Tools like the European Avalanche Danger Scale and Matrix set standards for forecasters, but consistency still varies. We analyzed the use of the EAWS Matrix, aiding danger level assignment. Our analysis shows inconsistencies, suggesting further need for refinement and training.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023, https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Short summary
Swiss researchers carried out repeated rockfall experiments with rocks up to human sizes in a steep mountain forest. This study focuses mainly on the effects of the rock shape and lying deadwood. In forested areas, cubic-shaped rocks showed a longer mean runout distance than platy-shaped rocks. Deadwood especially reduced the runouts of these cubic rocks. The findings enrich standard practices in modern rockfall hazard zoning assessments and strongly urge the incorporation of rock shape effects.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Gregor Ortner, Michael Bründl, Chahan M. Kropf, Thomas Röösli, Yves Bühler, and David N. Bresch
Nat. Hazards Earth Syst. Sci., 23, 2089–2110, https://doi.org/10.5194/nhess-23-2089-2023, https://doi.org/10.5194/nhess-23-2089-2023, 2023
Short summary
Short summary
This paper presents a new approach to assess avalanche risk on a large scale in mountainous regions. It combines a large-scale avalanche modeling method with a state-of-the-art probabilistic risk tool. Over 40 000 individual avalanches were simulated, and a building dataset with over 13 000 single buildings was investigated. With this new method, risk hotspots can be identified and surveyed. This enables current and future risk analysis to assist decision makers in risk reduction and adaptation.
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022, https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Short summary
The presented automatic deadwood generator (ADG) allows us to consider deadwood in rockfall simulations in unprecedented detail. Besides three-dimensional fresh deadwood cones, we include old woody debris in rockfall simulations based on a higher compaction rate and lower energy absorption thresholds. Simulations including different deadwood states indicate that a 10-year-old deadwood pile has a higher protective capacity than a pre-storm forest stand.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Elisabeth D. Hafner, Patrick Barton, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
The Cryosphere, 16, 3517–3530, https://doi.org/10.5194/tc-16-3517-2022, https://doi.org/10.5194/tc-16-3517-2022, 2022
Short summary
Short summary
Knowing where avalanches occur is very important information for several disciplines, for example avalanche warning, hazard zonation and risk management. Satellite imagery can provide such data systematically over large regions. In our work we propose a machine learning model to automate the time-consuming manual mapping. Additionally, we investigate expert agreement for manual avalanche mapping, showing that our network is equally as good as the experts in identifying avalanches.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022, https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Short summary
Forests have a recognized braking effect on rockfalls. The impact of lying deadwood, however, is mainly neglected. We conducted 1 : 1-scale rockfall experiments in three different states of a spruce forest to fill this knowledge gap: the original forest, the forest including lying deadwood and the cleared area. The deposition points clearly show that deadwood has a protective effect. We reproduced those experimental results numerically, considering three-dimensional cones to be deadwood.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Animesh K. Gain, Yves Bühler, Pascal Haegeli, Daniela Molinari, Mario Parise, David J. Peres, Joaquim G. Pinto, Kai Schröter, Ricardo M. Trigo, María Carmen Llasat, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 985–993, https://doi.org/10.5194/nhess-22-985-2022, https://doi.org/10.5194/nhess-22-985-2022, 2022
Short summary
Short summary
To mark the 20th anniversary of Natural Hazards and Earth System Sciences (NHESS), an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences, we highlight 11 key publications covering major subject areas of NHESS that stood out within the past 20 years.
Veronika Hutter, Frank Techel, and Ross S. Purves
Nat. Hazards Earth Syst. Sci., 21, 3879–3897, https://doi.org/10.5194/nhess-21-3879-2021, https://doi.org/10.5194/nhess-21-3879-2021, 2021
Short summary
Short summary
How is avalanche danger described in public avalanche forecasts? We analyzed 6000 textual descriptions of avalanche danger in Switzerland, taking the perspective of the forecaster. Avalanche danger was described rather consistently, although the results highlight the difficulty of communicating conditions that are neither rare nor frequent, neither small nor large. The study may help to refine the ways in which avalanche danger could be communicated to the public.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Jürg Schweizer, Christoph Mitterer, Benjamin Reuter, and Frank Techel
The Cryosphere, 15, 3293–3315, https://doi.org/10.5194/tc-15-3293-2021, https://doi.org/10.5194/tc-15-3293-2021, 2021
Short summary
Short summary
Snow avalanches threaten people and infrastructure in snow-covered mountain regions. To mitigate the effects of avalanches, warnings are issued by public forecasting services. Presently, the five danger levels are described in qualitative terms. We aim to characterize the avalanche danger levels based on expert field observations of snow instability. Our findings contribute to an evidence-based description of danger levels and to improve consistency and accuracy of avalanche forecasts.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Frank Techel, Karsten Müller, and Jürg Schweizer
The Cryosphere, 14, 3503–3521, https://doi.org/10.5194/tc-14-3503-2020, https://doi.org/10.5194/tc-14-3503-2020, 2020
Short summary
Short summary
Exploring a large data set of snow stability tests and avalanche observations, we quantitatively describe the three key elements that characterize avalanche danger: snowpack stability, the frequency distribution of snowpack stability, and avalanche size. The findings will aid in refining the definitions of the avalanche danger scale and in fostering its consistent usage.
Cited articles
Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet
snow avalanche cycle in West Greenland quantified using remote sensing and
in situ observations, Nat. Hazards, 97, 517–534,
https://doi.org/10.1007/s11069-019-03655-8, 2019.
Bebi, P., Kulakowski, D., and Rixen, C.: Snow avalanche disturbances in
forest ecosystems – State of research and implications for management,
Forest Ecol. Manag., 257, 1883–1892, https://doi.org/10.1016/j.foreco.2009.01.050, 2009.
Bourbigot, M., Johnsen, H., Piantanida, R., Hajduch, G., Poullaouec, J., and
Hajduch, G.: Sentinel-1 Product Definition, ESA Unclassified – For Official
Use, availabe at: https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition (last access: 18 February 2021), 2016.
Brenner, H. and Gefeller, O.: Variation of sensitivity, specificity,
likelihood ratios and predictive values with disease prevalence,
Stat. Med., 16, 981–991, 1997.
Bründl, M. and Margreth, S.: Integrative Risk Management, in: Snow and
Ice-Related Hazards, Risks and Disasters, Elsevier, Amsterdam, 263–301, 2015.
Bründl, M., Hafner, E., Bebi, P., Bühler, Y., Margreth, S., Marty,
C., Schaer, M., Stoffel, L., Techel, F., Winkler, K., Zweifel, B., and
Schweizer, J.: Ereignisanalyse Lawinensituation im Januar 2018, WSL
Berichte, Birmensdorf, 162, 2019.
Buades, A., Coll, B., and Morel, J.-M.: A Non-Local Algorithm for Image
Denoising, in: 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR'05), San Diego, California, USA, 20–26 June 2005, 60–65, 2005.
Bühler, Y., Hüni, A., Christen, M., Meister, R., and Kellenberger,
T.: Automated detection and mapping of avalanche deposits using airborne
optical remote sensing data, Cold Reg. Sci. Technol., 57,
99–106, https://doi.org/10.1016/j.coldregions.2009.02.007, 2009.
Bühler, Y., Christen, M., Kowalski, J., and Bartelt, P.: Sensitivity of
snow avalanche simulations to digital elevation model quality and
resolution, Ann. Glaciol., 52, 72–80, https://doi.org/10.3189/172756411797252121, 2011.
Bühler, Y., Adams, M. S., Stoffel, A., and Boesch, R.: Photogrammetric
reconstruction of homogenous snow surfaces in alpine terrain applying
near-infrared UAS imagery, Int. J. Remote Sens., 38,
3135–3158, https://doi.org/10.1080/01431161.2016.1275060, 2017.
Bühler, Y., von Rickenbach, D., Stoffel, A., Margreth, S., Stoffel, L., and Christen, M.: Automated snow avalanche release area delineation – validation of existing algorithms and proposition of a new object-based approach for large-scale hazard indication mapping, Nat. Hazards Earth Syst. Sci., 18, 3235–3251, https://doi.org/10.5194/nhess-18-3235-2018, 2018.
Bühler, Y., Hafner, E. D., Zweifel, B., Zesiger, M., and Heisig, H.: Where are the avalanches? Rapid SPOT6 satellite data acquisition to map an extreme avalanche period over the Swiss Alps, The Cryosphere, 13, 3225–3238, https://doi.org/10.5194/tc-13-3225-2019, 2019.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
Cohen, J.: Weighted kappa: Nominal scale agreement with provision for scaled
disagreement or partial credit, Psychol. Bull., 70, 213–220,
https://doi.org/10.1037/h0026256, 1968.
Condat, L.: A Simple Trick to Speed Up and Improve the Non-Local Means, hal-00512801v3, available at: https://hal.archives-ouvertes.fr/file/index/docid/512801/filename/hal.pdf (last access: 18 February 2021), 2010.
EAWS: Standards: Avalanche Size, online availabe at: https://www.avalanches.org/standards/avalanche-size/ (last access: 18 February 2021), 2020.
Eckerstorfer, M. and Malnes, E.: Manual detection of snow avalanche debris
using high-resolution Radarsat-2 SAR images, Cold Reg. Sci. Technol., 120, 205–218, https://doi.org/10.1016/j.coldregions.2015.08.016, 2015.
Eckerstorfer, M., Bühler, Y., Frauenfelder, R., and Malnes, E.: Remote
sensing of snow avalanches: Recent advances, potential, and limitations, Cold Reg. Sci. Technol., 121, 126–140,
https://doi.org/10.1016/j.coldregions.2015.11.001, 2016.
Eckerstorfer, M., Malnes, E., and Müller, K.: A complete snow avalanche
activity record from a Norwegian forecasting region using Sentinel-1
satellite-radar data, Cold Reg. Sci. Technol., 144, 39–51,
https://doi.org/10.1016/j.coldregions.2017.08.004, 2017.
Eckerstorfer, M., Vickers, H., Malnes, E., and Grahn, J.: Near-Real Time
Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR
Data in Norway, Remote Sens.-Basel, 11, 2863, https://doi.org/10.3390/rs11232863, 2019.
Faillettaz, J., Louchet, F., and Grasso, J.-R.: Two-threshold model for
scaling laws of noninteracting snow avalanches, Phys. Rev. Lett., 93,
208001, https://doi.org/10.1103/PhysRevLett.93.208001, 2004.
Feistl, T., Bebi, P., Christen, M., Margreth, S., Diefenbach, L., and Bartelt, P.: Forest damage and snow avalanche flow regime, Nat. Hazards Earth Syst. Sci., 15, 1275–1288, https://doi.org/10.5194/nhess-15-1275-2015, 2015.
Fuchs, S., Keiler, M., Zischg, A., and Bründl, M.: The long-term development of avalanche risk in settlements considering the temporal variability of damage potential, Nat. Hazards Earth Syst. Sci., 5, 893–901, https://doi.org/10.5194/nhess-5-893-2005, 2005.
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.:
Comparing landslide inventory maps, Geomorphology, 94, 268–289,
https://doi.org/10.1016/j.geomorph.2006.09.023, 2008.
Hafner, E. D. and Bühler, Y.: SPOT6 Avalanche outlines 24 January 2018, SLF,
EnviDat, https://doi.org/10.16904/envidat.77, 2019.
Hafner, E. D., Leinss, S., Techel, F., and Bühler, Y.: Satellite
avalanche mapping validation data, SLF, EnviDat, https://doi.org/10.16904/envidat.202, 2021.
Harvey, S., Schmudlach, G., Bühler, Y., Dürr, L., Stoffel, A., and
Christen, M.: Avalanche terrain maps for backcountry skiing in Switzerland,
in: International Snow Science Workshop ISSW, 7–12 October 2018, Innsbruck, Austria, 1625–1631, 2018.
Hölbling, D., Friedl, B., and Eisank, C.: Correction to: An object-based
approach for semi-automated landslide change detection and attribution of
changes to landslide classes in northern Taiwan, Earth Sci. Inform., 8,
327–335, https://doi.org/10.1007/s12145-018-00375-8, 2015.
Korzeniowska, K., Bühler, Y., Marty, M., and Korup, O.: Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery, Nat. Hazards Earth Syst. Sci., 17, 1823–1836, https://doi.org/10.5194/nhess-17-1823-2017, 2017.
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for
Categorical Data, Biometrics, 33, 159–174, https://doi.org/10.2307/2529310, 1977.
Lato, M. J., Frauenfelder, R., and Bühler, Y.: Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery, Nat. Hazards Earth Syst. Sci., 12, 2893–2906, https://doi.org/10.5194/nhess-12-2893-2012, 2012.
Leinss, S., Wicki, R., Holenstein, S., Baffelli, S., and Bühler, Y.: Snow avalanche detection and mapping in multitemporal and multiorbital radar images from TerraSAR-X and Sentinel-1, Nat. Hazards Earth Syst. Sci., 20, 1783–1803, https://doi.org/10.5194/nhess-20-1783-2020, 2020.
Margreth, S. and Romang, H.: Effectiveness of mitigation measures against
natural hazards, Cold Reg. Sci. Technol., 64, 199–207,
https://doi.org/10.1016/j.coldregions.2010.04.013, 2010.
Mayer, S., van Herwijnen, A., Ulivieri, G., and Schweizer, J.: Evaluating
the performance of an operational infrasound avalanche detection system at
three locations in the Swiss Alps during two winter seasons, Cold Reg. Sci. Technol., 173, 102962, https://doi.org/10.1016/j.coldregions.2019.102962,
2020.
Meister, R.: Country-wide Avalanche Warning in Switzerland, in:
International Snow Science Workshop ISSW, 30 October–3 November 1994, Snowbird, Utah, USA, 58–71, 1994.
Nolin, A. W.: Recent advances in remote sensing of seasonal snow, J.
Glaciol., 56, 1141–1150, https://doi.org/10.3189/002214311796406077, 2010.
Nolting, S., Marin, C., Steger, S., Schneiderbauer, S., Notarnicola, C., and
Zebisch, M.: Regional scale statistical mapping of snow avalanche likelihood
and its combination with an optical remote sensing based avalanche detection
approach – first attempts for the province of South Tyrol (Italy),
in: International Snow Science Workshop ISSW, 7–12 October 2018, Innsbruck, 382–387, 2018.
Oh, Y., Sarabandi, K., and Ulaby, F. T.: An Empirical Model and an Inversion
Technique for Radar Scattering from Bare Soil Surfaces,
IEEE T. Geosci. Remote, 30, 370–381, https://doi.org/10.1109/36.134086, 1992.
Ressl, C. and Pfeifer, N.: Evaluation of the elevation model influence on
the orthorectification of Sentinel-2 satellite images over Austria,
Eur. J. Remote Sens., 51, 693–709, https://doi.org/10.1080/22797254.2018.1478676,
2018.
Rudolf-Miklau, F., Sauermoser, S., and Mears, A.: The technical
avalanche protection handbook, Ernst & Sohn, Berlin, Germany, 430 pp., ISBN 978-3-433-03034-9, 2015.
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol.,
38, 393–398, https://doi.org/10.3189/172756404781814780, 2004.
Schweizer, J., Kronholm, K., and Wiesinger, T.: Verification of regional
snowpack stability and avalanche danger, Cold Reg. Sci. Technol., 37, 277–288, https://doi.org/10.1016/S0165-232X(03)00070-3, 2003.
Schweizer, J., Mitterer, C., Techel, F., Stoffel, A., and Reuter, B.: On the relation between avalanche occurrence and avalanche danger level, The Cryosphere, 14, 737–750, https://doi.org/10.5194/tc-14-737-2020, 2020.
Small, D.: Flattening Gamma: Radiometric Terrain Correction for SAR Imagery,
IEEE Trans. Geosci. Remote Sensing, 49, 3081–3093,
https://doi.org/10.1109/TGRS.2011.2120616, 2011.
Small, D.: SAR backscatter multitemporal compositing via local resolution
weighting, in: 2012 IEEE International Geoscience and Remote Sensing
Symposium, IGARSS 2012, 2012 IEEE International Geoscience and Remote
Sensing Symposium, Munich, Germany, 22–27 July 2012, 4521–4524, 2012.
swisstopo: swissALTI3D – Das hoch aufgelöste
Terrainmodell der Schweiz, Swiss Federal Office of Topography swisstopo,
Berne, Switzerland, 2018.
swisstopo: SWISSIMAGE – Das digitale Orthofotomosaik der Schweiz, Swiss
Federal Office of Topography swisstopo, Berne, Switzerland, 2020a.
swisstopo: Swiss Map Raster – Produktdokumentation, Swiss Federal Office of
Topography swisstopo, Berne, Switzerland, 2020b.
Techel, F., Winkler, K., Walcher, M., van Herwijnen, A., and Schweizer, J.: On snow stability interpretation of extended column test results, Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, 2020.
Trevethan, R.: Sensitivity, Specificity, and Predictive Values: Foundations,
Pliabilities, and Pitfalls in Research and Practice,
Frontiers in Public Health, 5, 307, https://doi.org/10.3389/fpubh.2017.00307, 2017.
van Herwijnen, A. and Schweizer, J.: Monitoring avalanche activity using a
seismic sensor, Cold Reg. Sci. Technol., 69, 165–176,
https://doi.org/10.1016/j.coldregions.2011.06.008, 2011.
Vickers, H., Eckerstorfer, M., Malnes, E., Larsen, Y., and Hindberg, H.: A
method for automated snow avalanche debris detection through use of
synthetic aperture radar (SAR) imaging, Earth and Space Science, 3,
446–462, https://doi.org/10.1002/2016ea000168, 2016.
Warren, S. G.: Optical properties of snow, Rev. Geophys., 20, 67–89,
https://doi.org/10.1029/RG020i001p00067, 1982.
Wesselink, D. S., Malnes, E., Eckerstorfer, M., and Lindenbergh, R. C.:
Automatic detection of snow avalanche debris in central Svalbard using
C-band SAR data, Polar Res., 36, 1333236,
https://doi.org/10.1080/17518369.2017.1333236, 2017.
Wever, N., Vera Valero, C., and Techel, F.: Coupled Snow Cover and Avalanche
Dynamics Simulations to Evaluate Wet Snow Avalanche Activity,
J. Geophys. Res.-Earth, 123, 1772–1796, https://doi.org/10.1029/2017JF004515, 2018.
WSL Institute for Snow and Avalanche Research SLF: Avalanche Bulletin
Interpretation Guide: Edition December 2019, WSL Institute for Snow and
Avalanche Research SLF, 53 pp., available at: https://www.slf.ch/files/user_upload/SLF/Lawinenbulletin_Schneesituation/Wissen_zum_Lawinenbulletin/Interpretationshilfe/Interpretationshilfe_EN.pdf (last access: 18 February 2021), 2019.
Zweifel, B., Lucas, C., Hafner, E., Techel, F., Marty, C., and Stucki, T.:
Schnee und Lawinen in den Schweizer Alpen: Hydrologisches Jahr 2018/19, WSL
Berichte, Birmensdorf, 134, available at: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A22232/datastream/PDF/Zweifel-2019-Schnee_und_Lawinen_in_den-%28published_version%29.pdf (last access: 18 February 2021), 2019.
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test...