Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5577-2021
https://doi.org/10.5194/tc-15-5577-2021
Research article
 | 
10 Dec 2021
Research article |  | 10 Dec 2021

Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region

Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn

Related authors

Brief communication: Tides and damage as drivers of lake drainages on Shackleton Ice Shelf
Julius Sommer, Maaike Izeboud, Sophie de Roda Husman, Bert Wouters, and Stef Lhermitte
The Cryosphere, 19, 5903–5912, https://doi.org/10.5194/tc-19-5903-2025,https://doi.org/10.5194/tc-19-5903-2025, 2025
Short summary
Ocean-induced weakening of George VI Ice Shelf, West Antarctica
Ann-Sofie P. Zinck, Bert Wouters, Franka Jesse, and Stef Lhermitte
The Cryosphere, 19, 5509–5529, https://doi.org/10.5194/tc-19-5509-2025,https://doi.org/10.5194/tc-19-5509-2025, 2025
Short summary
Assessing spatiotemporal variability in melt–refreeze patterns in firn over Greenland with CryoSat-2
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
The Cryosphere, 19, 3419–3442, https://doi.org/10.5194/tc-19-3419-2025,https://doi.org/10.5194/tc-19-3419-2025, 2025
Short summary
Rock Glacier Inventories (RoGIs) in 12 areas worldwide using a multi-operator consensus-based procedure
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Cécile Pellet, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data, 17, 4125–4157, https://doi.org/10.5194/essd-17-4125-2025,https://doi.org/10.5194/essd-17-4125-2025, 2025
Short summary
Brief communication: Estimating Antarctic surface melt rates using passive microwave data calibrated with weather station observations
Valeria Di Biase, Peter Kuipers Munneke, Bert Wouters, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2900,https://doi.org/10.5194/egusphere-2025-2900, 2025
Short summary

Cited articles

Ageta, Y. and Higuchi, K.: Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya, Geogr. Ann., 66, 249–255, https://doi.org/10.2307/520698, 1984. 
Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., and Kargel, J. S.: Review of the status and mass changes of Himalayan-Karakoram glaciers, J. Glaciol., 64, 61–74, https://doi.org/10.1017/jog.2017.86, 2018. 
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 20355–20362, https://doi.org/10.1029/97jb01696, 1997. 
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: A review of volume-area scaling of glaciers, Rev. Geophys., 53, 95–140, https://doi.org/10.1002/2014RG000470, 2015. 
Basnett, S., Kulkarni, A. V., and Bolch, T.: The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India, J. Glaciol., 59, 1035–1046, https://doi.org/10.3189/2013JoG12J184, 2013. 
Download
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Share