Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2623-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-2623-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)
DICATAM, Università degli Studi di Brescia, Brescia 25121, Italy
Marco Tedesco
Lamont-Doherty Earth Observatory, Columbia University, New York
10964, USA
NASA GISS, New York 10025, USA
Roberto Ranzi
DICATAM, Università degli Studi di Brescia, Brescia 25121, Italy
Xavier Fettweis
Department of Geography, University of Liège, Liège 4000,
Belgium
Related authors
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024, https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
Short summary
We studied temporal trends and variability of snow depth and snow water equivalent (SWE) in six regions of the Italian Alps. We applied different statistical analyses to a dataset of homogeneous and continuous measurements of snow depth and SWE, temporally spanning from 1967 to 2020, and discussed the results with meteo-climatic data. Our results quantify the decrease of SWE in the study area, confirming the impacts of climate modifications on the cryosphere in the Alps.
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074, https://doi.org/10.5194/tc-17-5061-2023, https://doi.org/10.5194/tc-17-5061-2023, 2023
Short summary
Short summary
We developed a technique to improve the outputs of a model that calculates the gain and loss of Greenland and consequently its contribution to sea level rise. Our technique generates “sharper” images of the maps generated by the model to better understand and quantify where losses occur. This has implications for improving models, understanding what drives the contributions of Greenland to sea level rise, and more.
Weiran Li, Stef Lhermitte, Bert Wouters, Cornelis Slobbe, Max Brils, and Xavier Fettweis
The Cryosphere, 19, 3419–3442, https://doi.org/10.5194/tc-19-3419-2025, https://doi.org/10.5194/tc-19-3419-2025, 2025
Short summary
Short summary
Due to recurrent melt and refreezing events in recent decades, the snow conditions over Greenland have changed. To observe this, we use a parameter (leading edge width; LeW) derived from satellite altimetry and analyse its spatial and temporal variations. By comparing the LeW variations with modelled firn parameters, we concluded that the 2012 melt event and the recent and increasingly frequent melt events have a long-lasting impact on the volume scattering of Greenland firn.
Zhengwen Yan, Jiangjun Ran, Pavel Ditmar, C. K. Shum, Roland Klees, Patrick Smith, and Xavier Fettweis
Earth Syst. Sci. Data, 17, 4253–4275, https://doi.org/10.5194/essd-17-4253-2025, https://doi.org/10.5194/essd-17-4253-2025, 2025
Short summary
Short summary
The Gravity Recovery And Climate Experiment (GRACE) mission has greatly improved our understanding of changes in Earth's gravity field over time. A novel mass concentration (mascon) dataset, GCL-Mascon2024, was determined by leveraging the short-arc approach, advanced spatial constraints, a frequency-dependent noise processing strategy, and parameterization-integrating natural boundaries, aiming to enhance accuracy for monitoring mass transportation on Earth.
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098, https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an ensemble of ice sheet model projections for the Greenland ice sheet. The focus is on providing projections that improve our understanding of the range future sea-level rise and the inherent uncertainties over the next 100 to 300 years. Compared to earlier work we more fully account for some of the uncertainties in sea-level projections. We include a wider range of climate model output, more climate change scenarios and we extend projections schematically up to year 2300.
Audrey Goutard, Marion Réveillet, Fanny Brun, Delphine Six, Kevin Fourteau, Charles Amory, Xavier Fettweis, Mathieu Fructus, Arbindra Khadka, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-2947, https://doi.org/10.5194/egusphere-2025-2947, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
A new scheme has been developed in the SURFEX/ISBA-Crocus model, to consider the impact of liquid water dynamics on bare ice, including albedo feedback and refreezing. When applied to the Mera Glacier in Nepal, the model reveals strong seasonal effects on the energy and mass balance, with increased melting in dry seasons and significant refreezing during the monsoon. This development improves mass balance modeling under increasing rainfall and bare ice exposure due to climate warming.
Chloë Marie Paice, Xavier Fettweis, and Philippe Huybrechts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2465, https://doi.org/10.5194/egusphere-2025-2465, 2025
Short summary
Short summary
To study the interactions between the Greenland ice sheet and the atmosphere, we coupled an ice sheet model to a regional climate model and performed simulations of differing coupling complexity over 1000 years. They reveal that at first melt at the ice sheet margin is reduced by changing wind patterns. But over time, as the ice sheet surface lowers, precipitation patterns and cloudiness also change and amplify ice mass loss over the entire ice sheet.
Kristiina Verro, Cecilia Äijälä, Roberta Pirazzini, Ruzica Dadic, Damien Maure, Willem Jan van de Berg, Giacomo Traversa, Christiaan T. van Dalum, Petteri Uotila, Xavier Fettweis, Biagio Di Mauro, and Milla Johansson
EGUsphere, https://doi.org/10.5194/egusphere-2025-386, https://doi.org/10.5194/egusphere-2025-386, 2025
Short summary
Short summary
A realistic representation of Antarctic sea ice is crucial for accurate climate and ocean model predictions. We assessed how different models capture the sunlight reflectivity, snow cover, and ice thickness. Most performed well under mild weather conditions, but overestimated snow/ice reflectivity during cold, with patchy/thin snow conditions. High-resolution satellite imagery revealed spatial albedo variability that models failed to replicate.
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025, https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Short summary
The MAR (Modèle Régional Atmosphérique) is a regional climate model used for weather forecasting and studying the climate over various regions. This paper presents an update of MAR thanks to which it can precisely decompose solar radiation, in particular in the UV (ultraviolet) and photosynthesis ranges, both being critical to human health and ecosystems. As a first application of this new capability, this paper presents a method for predicting UV indices with MAR.
Ny Riana Randresihaja, Olivier Gourgue, Lauranne Alaerts, Xavier Fettweis, Jonathan Lambrechts, Miguel De Le Court, Marilaure Grégoire, and Emmanuel Hanert
EGUsphere, https://doi.org/10.5194/egusphere-2025-634, https://doi.org/10.5194/egusphere-2025-634, 2025
Preprint archived
Short summary
Short summary
Coastal areas face rising flood threats as storms intensifies with climate change. With an advanced model of the Scheldt Estuary-North Sea, we studied how detailed atmospheric data must be to predict storm surge peaks in estuaries. We found that high-resolution atmospheric data gives the best results, and coarser data with same resolution as current global climate models give poorer results. We show that investing in localized, high-resolution atmospheric data can significantly improve results.
Sylvie Charbit, Christophe Dumas, Fabienne Maignan, Catherine Ottlé, Nina Raoult, Xavier Fettweis, and Philippe Conesa
The Cryosphere, 18, 5067–5099, https://doi.org/10.5194/tc-18-5067-2024, https://doi.org/10.5194/tc-18-5067-2024, 2024
Short summary
Short summary
The evolution of the Greenland ice sheet is highly dependent on surface melting and therefore on the processes operating at the snow–atmosphere interface and within the snow cover. Here we present new developments to apply a snow model to the Greenland ice sheet. The performance of this model is analysed in terms of its ability to simulate ablation processes. Our analysis shows that the model performs well when compared with the MAR regional polar atmospheric model.
Horst Machguth, Andrew Tedstone, Peter Kuipers Munneke, Max Brils, Brice Noël, Nicole Clerx, Nicolas Jullien, Xavier Fettweis, and Michiel van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2750, https://doi.org/10.5194/egusphere-2024-2750, 2024
Short summary
Short summary
Due to increasing air temperatures, surface melt expands to higher elevations on the Greenland ice sheet. This is visible on satellite imagery in the form of rivers of meltwater running across the surface of the ice sheet. We compare model results of meltwater at high elevations on the ice sheet to satellite observations. We find that each of the models shows strengths and weaknesses. A detailed look into the model results reveals potential reasons for the differences between models.
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024, https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
Short summary
We studied temporal trends and variability of snow depth and snow water equivalent (SWE) in six regions of the Italian Alps. We applied different statistical analyses to a dataset of homogeneous and continuous measurements of snow depth and SWE, temporally spanning from 1967 to 2020, and discussed the results with meteo-climatic data. Our results quantify the decrease of SWE in the study area, confirming the impacts of climate modifications on the cryosphere in the Alps.
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024, https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Short summary
Aiming to study the long-term influence of an extremely warm climate in the Greenland Ice Sheet contribution to sea level rise, a new regional atmosphere–ice sheet model setup was established. The coupling, explicitly considering the melt–elevation feedback, is compared to an offline method to consider this feedback. We highlight mitigation of the feedback due to local changes in atmospheric circulation with changes in surface topography, making the offline correction invalid on the margins.
Baptiste Vandecrux, Robert S. Fausto, Jason E. Box, Federico Covi, Regine Hock, Åsa K. Rennermalm, Achim Heilig, Jakob Abermann, Dirk van As, Elisa Bjerre, Xavier Fettweis, Paul C. J. P. Smeets, Peter Kuipers Munneke, Michiel R. van den Broeke, Max Brils, Peter L. Langen, Ruth Mottram, and Andreas P. Ahlstrøm
The Cryosphere, 18, 609–631, https://doi.org/10.5194/tc-18-609-2024, https://doi.org/10.5194/tc-18-609-2024, 2024
Short summary
Short summary
How fast is the Greenland ice sheet warming? In this study, we compiled 4500+ temperature measurements at 10 m below the ice sheet surface (T10m) from 1912 to 2022. We trained a machine learning model on these data and reconstructed T10m for the ice sheet during 1950–2022. After a slight cooling during 1950–1985, the ice sheet warmed at a rate of 0.7 °C per decade until 2022. Climate models showed mixed results compared to our observations and underestimated the warming in key regions.
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024, https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary
Short summary
The latest generation of climate models (Coupled Model Intercomparison Project Phase 6 – CMIP6) warm more over Greenland and the Arctic and thus also project a larger mass loss from the Greenland Ice Sheet (GrIS) compared to the previous generation of climate models (CMIP5). Our work suggests for the first time that part of the greater mass loss in CMIP6 over the GrIS is driven by a difference in the surface mass balance sensitivity from a change in cloud representation in the CMIP6 models.
Wenwen Li, Chia-Yu Hsu, and Marco Tedesco
EGUsphere, https://doi.org/10.5194/egusphere-2023-2831, https://doi.org/10.5194/egusphere-2023-2831, 2024
Preprint withdrawn
Short summary
Short summary
This review paper fills a knowledge gap in comprehensive literature review at the junction of AI-Arctic sea ice research. We provide a fine-grained review of AI applications in a variety of sea ice research domains. Based on these analyses, we point out exciting opportunities where the Arctic sea ice community can continue benefiting from cutting-edge AI. These future research directions will foster the continuous growth of the Arctic sea ice–AI research community.
Laura J. Dietrich, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, and Xavier Fettweis
The Cryosphere, 18, 289–305, https://doi.org/10.5194/tc-18-289-2024, https://doi.org/10.5194/tc-18-289-2024, 2024
Short summary
Short summary
The contribution of the humidity flux to the surface mass balance in the accumulation zone of the Greenland Ice Sheet is uncertain. Here, we evaluate the regional climate model MAR using a multi-annual dataset of eddy covariance measurements and bulk estimates of the humidity flux. The humidity flux largely contributes to the summer surface mass balance (SMB) in the accumulation zone, indicating its potential importance for the annual SMB in a warming climate.
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074, https://doi.org/10.5194/tc-17-5061-2023, https://doi.org/10.5194/tc-17-5061-2023, 2023
Short summary
Short summary
We developed a technique to improve the outputs of a model that calculates the gain and loss of Greenland and consequently its contribution to sea level rise. Our technique generates “sharper” images of the maps generated by the model to better understand and quantify where losses occur. This has implications for improving models, understanding what drives the contributions of Greenland to sea level rise, and more.
Damien Maure, Christoph Kittel, Clara Lambin, Alison Delhasse, and Xavier Fettweis
The Cryosphere, 17, 4645–4659, https://doi.org/10.5194/tc-17-4645-2023, https://doi.org/10.5194/tc-17-4645-2023, 2023
Short summary
Short summary
The Arctic is warming faster than the rest of the Earth. Studies have already shown that Greenland and the Canadian Arctic are experiencing a record increase in melting rates, while Svalbard has been relatively less impacted. Looking at those regions but also extending the study to Iceland and the Russian Arctic archipelagoes, we see a heterogeneity in the melting-rate response to the Arctic warming, with the Russian archipelagoes experiencing lower melting rates than other regions.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Thomas Dethinne, Quentin Glaude, Ghislain Picard, Christoph Kittel, Patrick Alexander, Anne Orban, and Xavier Fettweis
The Cryosphere, 17, 4267–4288, https://doi.org/10.5194/tc-17-4267-2023, https://doi.org/10.5194/tc-17-4267-2023, 2023
Short summary
Short summary
We investigate the sensitivity of the regional climate model
Modèle Atmosphérique Régional(MAR) to the assimilation of wet-snow occurrence estimated by remote sensing datasets. The assimilation is performed by nudging the MAR snowpack temperature. The data assimilation is performed over the Antarctic Peninsula for the 2019–2021 period. The results show an increase in the melt production (+66.7 %) and a decrease in surface mass balance (−4.5 %) of the model for the 2019–2020 melt season.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Jilu Li, Fernando Rodriguez-Morales, Xavier Fettweis, Oluwanisola Ibikunle, Carl Leuschen, John Paden, Daniel Gomez-Garcia, and Emily Arnold
The Cryosphere, 17, 175–193, https://doi.org/10.5194/tc-17-175-2023, https://doi.org/10.5194/tc-17-175-2023, 2023
Short summary
Short summary
Alaskan glaciers' loss of ice mass contributes significantly to ocean surface rise. It is important to know how deeply and how much snow accumulates on these glaciers to comprehend and analyze the glacial mass loss process. We reported the observed seasonal snow depth distribution from our radar data taken in Alaska in 2018 and 2021, developed a method to estimate the annual snow accumulation rate at Mt. Wrangell caldera, and identified transition zones from wet-snow zones to ablation zones.
Raf M. Antwerpen, Marco Tedesco, Xavier Fettweis, Patrick Alexander, and Willem Jan van de Berg
The Cryosphere, 16, 4185–4199, https://doi.org/10.5194/tc-16-4185-2022, https://doi.org/10.5194/tc-16-4185-2022, 2022
Short summary
Short summary
The ice on Greenland has been melting more rapidly over the last few years. Most of this melt comes from the exposure of ice when the overlying snow melts. This ice is darker than snow and absorbs more sunlight, leading to more melt. It remains challenging to accurately simulate the brightness of the ice. We show that the color of ice simulated by Modèle Atmosphérique Régional (MAR) is too bright. We then show that this means that MAR may underestimate how fast the Greenland ice is melting.
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022, https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Short summary
Model projections suggest large differences in future Antarctic surface melting even for similar greenhouse gas scenarios and warming rates. We show that clouds containing a larger amount of liquid water lead to stronger melt. As surface melt can trigger the collapse of the ice shelves (the safety band of the Antarctic Ice Sheet), clouds could be a major source of uncertainties in projections of sea level rise.
Sébastien Doutreloup, Xavier Fettweis, Ramin Rahif, Essam Elnagar, Mohsen S. Pourkiaei, Deepak Amaripadath, and Shady Attia
Earth Syst. Sci. Data, 14, 3039–3051, https://doi.org/10.5194/essd-14-3039-2022, https://doi.org/10.5194/essd-14-3039-2022, 2022
Short summary
Short summary
This data set provides historical (1980–2014) and future (2015–2100) weather data for 12 cities in Belgium. This data set is intended for architects or building or energy designers. In particular, it makes available to all users hourly open-access weather data according to certain standards to recreate a Typical and an Extreme Meteorological Year. In addition, it provides hourly data on heatwaves from 1980 to 2100. Weather data were produced from the outputs of the MAR model simulations.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784, https://doi.org/10.5194/tc-15-3751-2021, https://doi.org/10.5194/tc-15-3751-2021, 2021
Short summary
Short summary
We compare the calculated surface mass budget (SMB) of Antarctica in five different regional climate models. On average ~ 2000 Gt of snow accumulates annually, but different models vary by ~ 10 %, a difference equivalent to ± 0.5 mm of global sea level rise. All models reproduce observed weather, but there are large differences in regional patterns of snowfall, especially in areas with very few observations, giving greater uncertainty in Antarctic mass budget than previously identified.
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614, https://doi.org/10.5194/tc-15-3595-2021, https://doi.org/10.5194/tc-15-3595-2021, 2021
Short summary
Short summary
Snow is frequently eroded from the surface by the wind in Adelie Land (Antarctica) and suspended in the lower atmosphere. By performing model simulations, we show firstly that suspended snow layers interact with incoming radiation similarly to a near-surface cloud. Secondly, suspended snow modifies the atmosphere's thermodynamic structure and energy exchanges with the surface. Our results suggest snow transport by the wind should be taken into account in future model studies over the region.
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Short summary
Without any reduction in our greenhouse gas emissions, the Greenland ice sheet surface mass loss can be brought in line with a medium-mitigation emissions scenario by reducing the solar downward flux at the top of the atmosphere by 1.5 %. In addition to reducing global warming, these solar geoengineering measures also dampen the well-known positive melt–albedo feedback over the ice sheet by 6 %. However, only stronger reductions in solar radiation could maintain a stable ice sheet in 2100.
Charles Amory, Christoph Kittel, Louis Le Toumelin, Cécile Agosta, Alison Delhasse, Vincent Favier, and Xavier Fettweis
Geosci. Model Dev., 14, 3487–3510, https://doi.org/10.5194/gmd-14-3487-2021, https://doi.org/10.5194/gmd-14-3487-2021, 2021
Short summary
Short summary
This paper presents recent developments in the drifting-snow scheme of the regional climate model MAR and its application to simulate drifting snow and the surface mass balance of Adélie Land in East Antarctica. The model is extensively described and evaluated against a multi-year drifting-snow dataset and surface mass balance estimates available in the area. The model sensitivity to input parameters and improvements over a previously published version are also assessed.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Marco Tedesco, Rohi Muthyala, Sasha Z. Leidman, Samiah E. Moustafa, and Jessica V. Fayne
The Cryosphere, 15, 1931–1953, https://doi.org/10.5194/tc-15-1931-2021, https://doi.org/10.5194/tc-15-1931-2021, 2021
Short summary
Short summary
We measured sunlight transmitted into glacier ice to improve models of glacier ice melt and satellite measurements of glacier ice surfaces. We found that very small concentrations of impurities inside the ice increase absorption of sunlight, but the amount was small enough to enable an estimate of ice absorptivity. We confirmed earlier results that the absorption minimum is near 390 nm. We also found that a layer of highly reflective granular "white ice" near the surface reduces transmittance.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Matteo Balistrocchi, Rodolfo Metulini, Maurizio Carpita, and Roberto Ranzi
Nat. Hazards Earth Syst. Sci., 20, 3485–3500, https://doi.org/10.5194/nhess-20-3485-2020, https://doi.org/10.5194/nhess-20-3485-2020, 2020
Short summary
Short summary
Flood risk is an increasing threat to urban communities and their strategical assets worldwide. Non-structural practices, such as emergency management plans, can be effective in order to decrease the flood risk in strongly urbanized areas. Mobile phone data provide reliable estimates of the spatiotemporal variability in people exposed to flooding, thus enhancing the preparedness of stakeholders involved in flood risk management. Further, practical advantages emerge with respect to crowdsourcing.
Martin Ménégoz, Evgenia Valla, Nicolas C. Jourdain, Juliette Blanchet, Julien Beaumet, Bruno Wilhelm, Hubert Gallée, Xavier Fettweis, Samuel Morin, and Sandrine Anquetin
Hydrol. Earth Syst. Sci., 24, 5355–5377, https://doi.org/10.5194/hess-24-5355-2020, https://doi.org/10.5194/hess-24-5355-2020, 2020
Short summary
Short summary
The study investigates precipitation changes in the Alps, using observations and a 7 km resolution climate simulation over 1900–2010. An increase in mean precipitation is found in winter over the Alps, whereas a drying occurred in summer in the surrounding plains. A general increase in the daily annual maximum of precipitation is evidenced (20 to 40 % per century), suggesting an increase in extreme events that is significant only when considering long time series, typically 50 to 80 years.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Kang Yang, Aleah Sommers, Lauren C. Andrews, Laurence C. Smith, Xin Lu, Xavier Fettweis, and Manchun Li
The Cryosphere, 14, 3349–3365, https://doi.org/10.5194/tc-14-3349-2020, https://doi.org/10.5194/tc-14-3349-2020, 2020
Short summary
Short summary
This study compares hourly supraglacial moulin discharge simulations from three surface meltwater routing models. Results show that these models are superior to simply using regional climate model runoff without routing, but different routing models, different-spatial-resolution DEMs, and parameterized seasonal evolution of supraglacial stream and river networks induce significant variability in diurnal moulin discharges and corresponding subglacial effective pressures.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Cited articles
Abdalati, W. and Steffen, K.: Passive microwave-derived snow melt regions
on the Greenland ice sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995.
Abdalati, W., Steffen, K., Otto, C., and Jezek, K. C.: Comparison of
brightness temperatures from SSMI instruments on the DMSP F8 and FII
satellites for Antarctica and the Greenland ice
sheet, Int. J. Remote Sens., 16, 1223–1229, https://doi.org/10.1080/01431169508954473, 1995.
Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014.
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016.
Armstrong, R., Knowles, K., Brodzik, M., and Hardman, M. A.: DMSP SSM/I-SSMIS
Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, available at:
https://nsidc.org/data/NSIDC-0032/versions/2 (last access: 26 May 2021), 1994.
Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock,
R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland
Ice Sheet to sea level over the next millennium, Science Advances, 5,
eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019.
Ashcraft, I. S. and Long, D. G.: Comparison of methods for melt detection
over Greenland using active and passive microwave
measurements, Int. J. Remote Sens., 27, 2469–2488, https://doi.org/10.1080/01431160500534465, 2006.
Backus, G. E. and Gilbert, J. F.: Numerical applications of a formalism for
geophysical inverse problems, Geophys. J. Roy. Astr. S., 13, 247–276,
https://doi.org/10.1111/j.1365-246X.1967.tb02159.x, 1967.
Backus, G. E. and Gilbert, J. F.: The Resolving Power of Gross Earth Data,
Geophys. J. Int., 16, 169–205, https://doi.org/10.1111/j.1365-246X.1968.tb00216.x, 1968.
Braithwaite, R. J. and Oelsen, O. B.: Calculation of glacier ablation from air temperature, West Greenland, in: Glacier Fluctuations in Cimatic Change, edited by: Oerlemens, J., Kluwer Academic Publishers, Dordrecht, The Netherlands, 219–233, 1989.
Brodzik, M. J. and Knowles, K. W.: EASE-Grid: a versatile set of equal-area
projections and grids, in: Discrete Global Grids, edited by: Goodchild, M., National Center for Geographic Information & Analysis, Santa Barbara, California, USA, 2002.
Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and Savoie, M. H.: EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded
Data Sets, ISPRS Int. J. Geo-Inf., 1, 32–45, https://doi.org/10.3390/ijgi1010032, 2012.
Brodzik, M. J., Long, D. G., Hardman, M. A., Paget, A., and Armstrong, R.
L.: MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily
EASE-Grid 2.0 Brightness Temperature ESDR, Version 1, National Snow and Ice
Data Center, Boulder, Colorado, USA [data set], https://doi.org/10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001, 2016.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to
simulate snow-cover stratigraphy for operational avalanche forecasting, J.
Glaciol., 38, 13–22, 1992.
Caccin, B., Roberti, C., Russo, P., and Smaldone, L. A.: The Backus-Gilbert
inversion method and the processing of sampled data,
IEEE T. Signal Proces., 40, 2823–2825, https://doi.org/10.1109/78.165672, 1992.
Cagnati, A., Crepaz, A., Macelloni, G., Pampaloni, P., Ranzi, R., Tedesco,
M., and Valt, M.: Study of the snow melt–freeze cycle using multi-sensor
data and snow modelling, J. Glaciol., 50, 419–426,
https://doi.org/10.3189/172756504781830006, 2004.
Cavalieri, D. J., Parkinson, C. L., DiGirolamo, N., and Ivanoff, A.:
Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice
Data Records, IEEE Geosci. Remote S., 9, 233–236,
https://doi.org/10.1109/LGRS.2011.2166754, 2012.
Dai, L., Che, T., and Ding, Y.: Inter-Calibrating SMMR, SSM/I and SSMI/S Data
to Improve the Consistency of Snow-Depth Products in China, Remote Sens.-Basel, 7, 7212–7230, https://doi.org/10.3390/rs70607212, 2015.
De Ridder, K. and Gallée, H.: Land Surface-Induced Regional Climate
Change in Southern Israel, J. Appl. Meteorol., 37, 1470–1485, 1998.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delhasse, A., Kittel, C., Amory, C., Hofer, S., van As, D., S. Fausto, R., and Fettweis, X.: Brief communication: Evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet, The Cryosphere, 14, 957–965, https://doi.org/10.5194/tc-14-957-2020, 2020.
Delhomme, J.: Kriging in the hydrosciences, Adv. Water Resour.,
1, 251–266, https://doi.org/10.1016/0309-1708(78)90039-8, 1978.
Edward, H., Isaaks, E. H., and Srivastava, R. M.: An introduction to applied
geostatistics, Oxford University Press, Oxford, UK, 561 pp., 1989.
Farrar, M. R. and Smith, E. A.: Spatial resolution enhancement of
terrestrial features using deconvolved SSM/I microwave brightness
temperatures, IEEE T. Geosci. Remote, 30, 349–355,
https://doi.org/10.1109/36.134084, 1992.
Fettweis, X., Gallée, H., Lefebre, F., and van Ypersele, J.-P.: Greenland
surface mass balance simulated by a regional climate model and comparison
with satellite-derived data in 1990–1991, Clim. Dynam., 24,
623–640, https://doi.org/10.1007/s00382-005-0010-y, 2005.
Fettweis, X., van Ypersele, J.-P., Gallee, H., Lefebre, F., and Lefebvre, W.: The 1979–2005 Greenland ice sheet melt extent from passive microwave data using an improved version of the melt retrieval XPGR algorithm, Geophys. Res. Lett., 34, L05502, https://doi.org/10.1029/2006GL028787, 2007.
Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J.: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models, The Cryosphere, 5, 359–375, https://doi.org/10.5194/tc-5-359-2011, 2011.
Fettweis, X., Franco, B., Tedesco, M., van Angelen, J. H., Lenaerts, J. T. M., van den Broeke, M. R., and Gallée, H.: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, The Cryosphere, 7, 469–489, https://doi.org/10.5194/tc-7-469-2013, 2013.
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., van As, D., Machguth, H., and Gallée, H.: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model, The Cryosphere, 11, 1015–1033, https://doi.org/10.5194/tc-11-1015-2017, 2017.
Flowers, G. E.: Hydrology and the future of the Greenland Ice Sheet, Nat. Commun., 9, 2729, https://doi.org/10.1038/s41467-018-05002-0, 2018.
Frezzotti, M., Urbini, S., Proposito, M., Scarchilli, C., and Gandolfi, S.:
Spatial and temporal variability of surface mass balance near Talos Dome,
East Antarctica, J. Geophys. Res.-Earth, 112, F02032, https://doi.org/10.1029/2006jf000638, 2007.
Hallikainen, M. T., Ulaby, F. T., and Van Deventer, T. E.: Extinction Behavior of Dry Snow in the 18-to 90-GHz Range, in: IEEE Transactions on Geoscience and Remote Sensing, GE-25, 737–745, https://doi.org/10.1109/TGRS.1987.289743, 1987.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., 755 pp., Geneva, 2019.
Jezek, K. C., Merry, C. J., and Cavalieri, D. J.: Comparison of SMMR and
SSM/I passive microwave data collected over Antarctica, Ann. Glaciol., 17,
131–136, https://doi.org/10.1017/S0260305500012726, 1993.
Joshi, M., Merry, C. J., Jezek, K. C., and Bolzan, J. F.: An edge detection
technique to estimate melt duration, season and melt extent on the Greenland
Ice Sheet using Passive Microwave Data, Geophys. Res. Lett., 28,
3497–3500, https://doi.org/10.1029/2000GL012503, 2001.
Kargel, J. S., Abrams, M. J., Bishop, M. P., Bush, A., Hamilton, G.,
Jiskoot, H., Kääb, A., Kieffer, H. H., Lee, E. M., Paul, F., Rau,
F., Raup, B., Shroder, J. F., Soltesz, D., Stainforth, D., Stearns, L., and
Wessels, R.: Multispectral imaging contributions to global land ice
measurements from space, Remote Sens. Environ., 99, 187–219,
https://doi.org/10.1016/j.rse.2005.07.004, 2005.
Kargel, J. S., Leonard, G. J., Bishop, M. P., Kääb, A., and Raup, B. H. (Eds.): Global land ice measurements from space, Springer-Praxis, Berlin, Heidelberg, 876 pp., 2014.
Knowles, K., Njoku, G., Armstrong, R., and Brodzik, M.: Nimbus-7 SMMR
Pathfinder Daily EASE-Grid Brightness Temperatures, version 1, NASA National
Snow Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/36SLCSCZU7N6, 2000.
Knowles, K., Savoie, M., Armstrong R., and Brodzik, M.: AMSR-E/Aqua Daily
EASE-Grid Brightness Temperatures, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, https://doi.org/10.5067/XIMNXRTQVMOX, 2006.
Kouki, K., Anttila, K., Manninen, T., Luojus, K., Wang, L., and Riihelä,
A.: Intercomparison of Snow Melt Onset Date Estimates From Optical and
Microwave Satellite Instruments Over the Northern Hemisphere for the Period
1982–2015, J. Geophys. Res.-Atmos., 124, 11205–11219, https://doi.org/10.1029/2018jd030197, 2019.
Le Meur, E., Magand, O., Arnaud, L., Fily, M., Frezzotti, M., Cavitte, M., Mulvaney, R., and Urbini, S.: Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis, The Cryosphere, 12, 1831–1850, https://doi.org/10.5194/tc-12-1831-2018, 2018.
Liu, H., Wang, L., and Jezek, K. C.: Wavelet-transform based edge detection
approach to derivation of snowmelt onset, end and duration from satellite
passive microwave measurements, Int. J. Remote Sens.,
26, 4639–4660, https://doi.org/10.1080/01431160500213342, 2005.
Long, D. G. and Daum, D. L.: Spatial resolution enhancement of SSM/I data,
IEEE T. Geosci. Remote, 36, 407–417, https://doi.org/10.1109/36.662726, 1998.
Macelloni, G., Paloscia, S., Pampaloni, P., and Tedesco, M.: Microwave
emission from dry snow: a comparison of experimental and model results, IEEE T. Geosci. Remote, 39, 2649–2656, https://doi.org/10.1109/36.974999, 2001.
Macelloni, G., Paloscia, S., Pampaloni, P., Brogioni, M., Ranzi, R., and
Crepaz, A.: Monitoring of melting refreezing cycles of snow with microwave
radiometers: The Microwave Alpine Snow Melting Experiment (MASMEx
2002–2003), IEEE T. Geosci. Remote, 43, 2431–2442, https://doi.org/10.1109/TGRS.2005.855070, 2005.
Macelloni, G., Brogioni, M., Pampaloni, P., and Cagnati, A.: Multifrequency
microwave emission fromthe dome-c area on the east antarctic plateau:
temporal and spatial variability, IEEE T. Geosci. Remote, 45, 2029–2039, https://doi.org/10.1109/TGRS.2007.890805, 2007.
MAR model: MAR, available at: http://www.mar.cnrs.fr, last access: 10 June 2021.
Mote, T. L.: Greenland surface melt trends 1973–2007: evidence of a large
increase in 2007, Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976, 2007.
Mote, T. L.: MEaSUREs Greenland Surface Melt Daily 25 km EASE-Grid 2.0,
Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA,
https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001, 2014.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models, Part 1 – a discussion of principles, J. Hydrol., 10, 282–290,
1970.
Poe, G. A.: Optimum interpolation of imaging microwave radiometer data, IEEE T. Geosci. Remote, 28, 800–810, https://doi.org/10.1109/36.58966, 1990.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T. M.: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583, 2011.
Robinson, W. D., Kummerow, C., and Olson, W. S.: A technique for enhancing
and matching the resolution of microwave measurements from the SSM/I
instrument, IEEE T. Geosci. Remote, 30, 419–429,
https://doi.org/10.1109/36.142920, 1992.
Steffen, K., Abdalati, W., and Stroeve, J.: Climate sensitivity studies of
the Greenland ice sheet using satellite AVHRR, SMMR, SSM/I and in situ data,
Meteorol. Atmos. Phys., 51, 239–258, https://doi.org/10.1007/BF01030497, 1993.
Steffen, K., Box, J. E., and Abdalati, W.: Greenland Climate Network:
GC-Net, in: CRREL 96–27 Special report on glaciers, ice sheets and
volcanoes, trib. to Meier, M., edited by: Colbeck, S. C., US Army Cold Regions Research and Engineering Laboratory (CRREL), Hanover, New Hampshire, USA, 98–103, 1996.
Steffen Research Group: Greenland Climate Network (GC-Net), available at: http://cires1.colorado.edu/steffen/gcnet/, last access: 9 June 2021.
Steiner, N. and Tedesco, M.: A wavelet melt detection algorithm applied to enhanced-resolution scatterometer data over Antarctica (2000–2009), The Cryosphere, 8, 25–40, https://doi.org/10.5194/tc-8-25-2014, 2014.
Stogryn, A.: Estimates of brightness temperatures from scanning radiometer
data, IEEE T. Antenn. Propag., 26, 720–726,
https://doi.org/10.1109/TAP.1978.1141919, 1978.
Stroeve, J., Maslanik, J., and Xiaoming, L.: An Intercomparison of DMSP F11-
and F13-Derived Sea Ice Products, Remote Sens. Environ., 64,
132–152, https://doi.org/10.1016/S0034-4257(97)00174-0, 1998.
Tedesco, M.: Snowmelt detection over the Greenland ice sheet from SSM/I
brightness temperature daily variations, Geophys. Res. Lett., 34, L02504,
https://doi.org/10.1029/2006GL028466, 2007.
Tedesco, M.: Assessment and development of snowmelt retrieval algorithms
over Antarctica from K-band spaceborne brightness temperature (1979–2008),
Remote Sens. Environ., 113, 979–997,
https://doi.org/10.1016/j.rse.2009.01.009, 2009.
Tedesco, M.: Remote sensing of the cryosphere, John Wiley & Sons, UK, 2014.
Tedesco, M. and Fettweis, X.: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet, The Cryosphere, 14, 1209–1223, https://doi.org/10.5194/tc-14-1209-2020, 2020.
Tedesco, M. and Wang, J. R.: Atmospheric correction of AMSR-E brightness
temperatures for dry snow cover mapping, IEEE Geosci. Remote S., 3, 320–324, https://doi.org/10.1109/LGRS.2006.871744, 2006.
Tedesco, M., Abdalati, W., and Zwally, H. J.: Persistent surface snowmelt
over Antarctica (1987–2006) from 19.35 GHz brightness temperatures,
Geophys. Res. Lett., 34, L18504, https://doi.org/10.1029/2007GL031199, 2007.
Tedesco, M., Brodzik, M., Armstrong, R., Savoie, M., and Ramage, J.: Pan
arctic terrestrial snowmelt trends (1979–2008) from spaceborne passive
microwave data and correlation with the Arctic Oscillation, Geophys. Res.
Lett., 36, L21402, https://doi.org/10.1029/2009GL039672, 2009.
Tedesco, M., Fettweis, X., Mote, T., Wahr, J., Alexander, P., Box, J. E., and Wouters, B.: Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data, The Cryosphere, 7, 615–630, https://doi.org/10.5194/tc-7-615-2013, 2013.
Torinesi, O., Fily, M., and Genthon, C.: Variability and Trends of the Summer
Melt Period of Antarctic Ice Margins since 1980 from Microwave Sensors,
J. Climate, 16, 1047–1060,
https://doi.org/10.1175/1520-0442(2003)016<1047:vatots>2.0.co;2, 2003.
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing: Active and passive, Volume 3 – From theory to applications, Norwood, MA, 1986.
van den Broeke, M.: Strong surface melting preceded collapse of Antarctic Peninsula ice shelf, Geophys. Res. Lett., 32, L12815, https://doi.org/10.1029/2005GL023247, 2005.
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., van Meijgaard, E., and Wouters, B.: On the recent contribution of the Greenland ice sheet to sea level change, The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, 2016.
Wiesmann, A. and Mätzler, C.: Microwave Emission Model of Layered
Snowpacks, Remote Sens. Environ., 70, 307–316,
https://doi.org/10.1016/S0034-4257(99)00046-2, 1999.
Zwally, H. J. and Fiegles, S.: Extent and duration of Antarctic surface
melting, J. Glaciol., 40, 463–475,
https://doi.org/10.3189/s0022143000012338, 1994.
Short summary
We use a new satellite dataset to study the spatiotemporal evolution of surface melting over Greenland at an enhanced resolution of 3.125 km. Using meteorological data and the MAR model, we observe that a dynamic algorithm can best detect surface melting. We found that the melting season is elongating, the melt extent is increasing and that high-resolution data better describe the spatiotemporal evolution of the melting season, which is crucial to improve estimates of sea level rise.
We use a new satellite dataset to study the spatiotemporal evolution of surface melting over...