Articles | Volume 15, issue 6
https://doi.org/10.5194/tc-15-2623-2021
https://doi.org/10.5194/tc-15-2623-2021
Research article
 | 
14 Jun 2021
Research article |  | 14 Jun 2021

Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019)

Paolo Colosio, Marco Tedesco, Roberto Ranzi, and Xavier Fettweis

Related authors

Climatology of snow depth and water equivalent measurements in the Italian Alps (1967–2020)
Roberto Ranzi, Paolo Colosio, and Giorgio Galeati
Hydrol. Earth Syst. Sci., 28, 2555–2578, https://doi.org/10.5194/hess-28-2555-2024,https://doi.org/10.5194/hess-28-2555-2024, 2024
Short summary
A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074, https://doi.org/10.5194/tc-17-5061-2023,https://doi.org/10.5194/tc-17-5061-2023, 2023
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves
Emma Pearce, Dimitri Zigone, Coen Hofstede, Andreas Fichtner, Joachim Rimpot, Sune Olander Rasmussen, Johannes Freitag, and Olaf Eisen
The Cryosphere, 18, 4917–4932, https://doi.org/10.5194/tc-18-4917-2024,https://doi.org/10.5194/tc-18-4917-2024, 2024
Short summary
First results of the polar regional climate model RACMO2.4
Christiaan T. van Dalum, Willem Jan van de Berg, Srinidhi N. Gadde, Maurice van Tiggelen, Tijmen van der Drift, Erik van Meijgaard, Lambertus H. van Ulft, and Michiel R. van den Broeke
The Cryosphere, 18, 4065–4088, https://doi.org/10.5194/tc-18-4065-2024,https://doi.org/10.5194/tc-18-4065-2024, 2024
Short summary
Calving front monitoring at a subseasonal resolution: a deep learning application for Greenland glaciers
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024,https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Projections of Precipitation and Temperatures in Greenland and the Impact of Spatially Uniform Anomalies on the Evolution of the Ice Sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1597,https://doi.org/10.5194/egusphere-2024-1597, 2024
Short summary
Impacts of Differing Melt Regimes on Satellite Radar Waveforms and Elevation Retrievals
Alexander Ronan, Robert Hawley, and Jonathan Chipman
EGUsphere, https://doi.org/10.5194/egusphere-2024-1152,https://doi.org/10.5194/egusphere-2024-1152, 2024
Short summary

Cited articles

Abdalati, W. and Steffen, K.: Passive microwave-derived snow melt regions on the Greenland ice sheet, Geophys. Res. Lett., 22, 787–790, https://doi.org/10.1029/95GL00433, 1995. 
Abdalati, W., Steffen, K., Otto, C., and Jezek, K. C.: Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and FII satellites for Antarctica and the Greenland ice sheet, Int. J. Remote Sens., 16, 1223–1229, https://doi.org/10.1080/01431169508954473, 1995. 
Alexander, P. M., Tedesco, M., Fettweis, X., van de Wal, R. S. W., Smeets, C. J. P. P., and van den Broeke, M. R.: Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013), The Cryosphere, 8, 2293–2312, https://doi.org/10.5194/tc-8-2293-2014, 2014. 
Alexander, P. M., Tedesco, M., Schlegel, N.-J., Luthcke, S. B., Fettweis, X., and Larour, E.: Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012), The Cryosphere, 10, 1259–1277, https://doi.org/10.5194/tc-10-1259-2016, 2016. 
Armstrong, R., Knowles, K., Brodzik, M., and Hardman, M. A.: DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures, Version 2, NASA DAAC at the National Snow and Ice Data Center, Boulder, Colorado, USA, available at: https://nsidc.org/data/NSIDC-0032/versions/2 (last access: 26 May 2021), 1994. 
Download
Short summary
We use a new satellite dataset to study the spatiotemporal evolution of surface melting over Greenland at an enhanced resolution of 3.125 km. Using meteorological data and the MAR model, we observe that a dynamic algorithm can best detect surface melting. We found that the melting season is elongating, the melt extent is increasing and that high-resolution data better describe the spatiotemporal evolution of the melting season, which is crucial to improve estimates of sea level rise.