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Abstract. Surface melting is a major component of the
Greenland ice sheet surface mass balance, and it affects
sea level rise through direct runoff and the modulation
of ice dynamics and hydrological processes, supraglacially,
englacially and subglacially. Passive microwave (PMW)
brightness temperature observations are of paramount im-
portance in studying the spatial and temporal evolution of
surface melting due to their long temporal coverage (1979–
present) and high temporal resolution (daily). However, a
major limitation of PMW datasets has been the relatively
coarse spatial resolution, which has historically been of the
order of tens of kilometers. Here, we use a newly released
PMW dataset (37 GHz, horizontal polarization) made avail-
able through a NASA “Making Earth System Data Records
for Use in Research Environments” (MeASUREs) program
to study the spatiotemporal evolution of surface melting over
the Greenland ice sheet at an enhanced spatial resolution of
3.125 km. We assess the outputs of different detection al-
gorithms using data collected by automatic weather stations
(AWSs) and the outputs of the Modèle Atmosphérique Ré-
gional (MAR) regional climate model. We found that spo-
radic melting is well captured using a dynamic algorithm
based on the outputs of the Microwave Emission Model of
Layered Snowpack (MEMLS), whereas a fixed threshold of
245 K is capable of detecting persistent melt. Our results in-
dicate that, during the reference period from 1979 to 2019
(from 1988 to 2019), surface melting over the ice sheet
increased in terms of both duration, up to 4.5 (2.9) d per
decade, and extension, up to 6.9 % (3.6 %) of the entire ice
sheet surface extent per decade, according to the MEMLS

algorithm. Furthermore, the melting season started up to 4.0
(2.5) d earlier and ended 7.0 (3.9) d later per decade. We also
explored the information content of the enhanced-resolution
dataset with respect to the one at 25 km and MAR outputs us-
ing a semi-variogram approach. We found that the enhanced
product is more sensitive to local-scale processes, thereby
confirming the potential of this new enhanced product for
monitoring surface melting over Greenland at a higher spa-
tial resolution than the historical products and for monitoring
its impact on sea level rise. This offers the opportunity to im-
prove our understanding of the processes driving melting, to
validate modeled melt extent at high resolution and, poten-
tially, to assimilate these data in climate models.

1 Introduction

The Greenland ice sheet is the largest ice mass in the
Northern Hemisphere with a glaciated surface area of about
1 800 000 km2, a thickness of up to 3 km and a stored water
volume of about 2 900 000 km3, which is enough to raise the
mean sea level by about 7.2 m (Aschwanden et al., 2019). In
this regard, estimating mass losses from Greenland is cru-
cial in order to better understand climate system variability
and the contribution of Greenland to current and future sea
level rise (Mouginot et al., 2019). According to data from
the Gravity Recovery and Climate Experiment (GRACE)
satellite mission, which records changes in the Earth’s grav-
itational field, Greenland lost mass at an average rate of
278± 11 Gt yr−1 between 2002 and 2016 (IPCC, 2019), con-
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tributing to a sea level rise of 7.9 mm per decade. The contri-
bution of the Greenland ice sheet to sea level rise also accel-
erated at a rate of 21.9± 1 Gt yr−2 over the period from 1992
to 2010 (Rignot et al., 2011), indicating that monitoring the
Greenland ice sheet and the Antarctic ice sheet is crucial to
assess the impact of global warming on sea level rise and the
global water balance (Kargel et al., 2005, 2014; Le Meur et
al., 2018).

Mass can be lost through surface (e.g., runoff) and dy-
namic (e.g., calving) processes with total mass loss roughly
split in half between the two (Flowers, 2018). Among the
processes influencing the surface mass balance, i.e., the dif-
ference between accumulation (Frezzotti et al., 2007) and
ablation, surface melting plays a crucial role, affecting di-
rect loss through the export of surface meltwater to the sur-
rounding oceans and though feedbacks between supraglacial,
englacial, and subglacial processes and their influence on ice
dynamics (e.g., Fettweis et al., 2005, 2011, 2017; van den
Broeke et al., 2016; Alexander et al., 2016).

Passive microwave (PMW) brightness temperatures (Tb)
are a crucial tool for studying the evolution of surface melting
over the Greenland and Antarctica ice sheets (i.e., Jezek et
al., 1993; Steffen et al., 1993; Abdalati et al., 1995; Tedesco,
2007; Tedesco et al., 2009; Tedesco, 2009, 2014; Fettweis et
al., 2011). PMW-based algorithms are founded on the fact
that the emission of a layer of dry snow in the microwave
region is dominated by volume scattering (e.g., Macelloni et
al., 2001); as snow melts, the presence of liquid water within
the snowpack increases the imaginary part of the electromag-
netic permittivity by several orders of magnitude with respect
to dry snow conditions, with the ultimate effect of consid-
erably increasing Tb (Ulaby et al., 1986; Hallikainen et al.,
1987), as shown by in situ measurement campaigns (e.g.,
Cagnati et al., 2004). Because of the large difference between
dry and wet snow emissivity, even relatively small amounts
of liquid water have a dramatic effect on the Tb values (e.g.,
Tedesco, 2009), making PMW data extremely suitable for
mapping the extent and duration of melting at large spatial
scales and high temporal resolution (in view of their insensi-
tivity to atmospheric conditions at the low frequencies of the
microwave spectrum). Consequently, PMW data have been
widely adopted in melt detection studies, and different re-
mote sensing techniques have been proposed in the literature
(e.g., Steffen et al., 1993; Abdalati and Steffen, 1995; Joshi
et al., 2001; Liu et al., 2005; Ashcraft and Long, 2006; Ma-
celloni et al., 2007; Tedesco et al., 2007; Kouki et al., 2019;
Tedesco and Fettweis, 2020).

The capability of PMW sensors to collect useful data dur-
ing both day and night and under all weather conditions al-
lows surface melt mapping at a high temporal resolution (at
least twice a day over most of the Earth). PMW Tb records
are also among the longest available remote sensing contin-
uous time series and an irreplaceable tool in climatological
and hydrological studies, complementing in situ long-term
observations where they are absent or too coarse. The trade-

off associated with the high temporal resolution of PMW data
is the relative coarse spatial resolution (historically of the or-
der of tens of kilometers). This can represent a limiting fac-
tor when studying surface melting as a substantial portion of
meltwater production and runoff occurs along the margins
of the ice sheet, with some of these areas being relatively
narrow (of the order of a few tens of kilometers or smaller,
depending on the geographic position and time of the year).
The use of a product with a finer spatial resolution would al-
low a more effective mapping of surface melting and would
also permit a better comparison between quantities measured
in situ and satellite-derived estimates, reducing uncertainties
in the satellite products and allowing for potential improve-
ments to retrieval algorithms. Lastly, finer spatial resolution
tools could be helpful, should they be proven effective, in im-
proving mapping of meltwater over ice shelves in Antarctica
and furthering our understanding of the processes leading
to ice shelf collapse or disintegration (e.g., van den Broeke,
2005; Tedesco, 2009).

In this paper, we report the results of a study in which
surface melting over Greenland is estimated by making use
of a recently released product developed within the frame-
work of a NASA “Making Earth System Data Records for
Use in Research Environments” (MeASUREs) project (https:
//nsidc.org/data/nsidc-0630, last access: 26 May 2021). The
product contains daily maps of PMW Tb generated at an en-
hanced spatial resolution of a few kilometers (depending on
the frequency, as explained below) between 1979 and 2019.
The historical gridding techniques for PMW sensors (Arm-
strong et al., 1994, updated yearly; Knowles et al., 2000,
2006) are based on a “drop in the bucket” approach, in
which the gridded value is obtained by averaging the Tb data
falling within the area defined by a specific pixel. In the case
of the enhanced-spatial-resolution product, the reconstruc-
tion algorithm adopted to build the Tb maps makes use of
the so-called effective measurement response function (Long
and Daum, 1998), determined by the antenna gain pattern,
which is unique for each sensor and sensor channel. This
pattern is used in conjunction with the scan geometry and
the integration period, allowing for “weighting” of measure-
ments within a certain area. The approach used to generate
the enhanced resolution product, a radiometer version of the
scatterometer image reconstruction algorithm, also addresses
another issue in the historical PMW dataset, which is the
need to meet the requirements of modern Earth system data
records or climate data records, most notably in the areas of
inter-sensor calibration and consistent processing methods.
More details are reported in Sect. 2.1.

We divide the results of our study into two main parts. In
the first part, we report the results of the cross-calibration of
different PMW sensors over the Greenland ice sheet to as-
sure a consistent and calibrated Tb time series. Specifically,
we use the newly developed spatially enhanced PMW prod-
uct at the Ka band (37 GHz, horizontal polarization) in view
of its sensitivity to the presence of liquid water within the
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snowpack (Ulaby et al., 1986; Macelloni et al., 2005). We
prefer this frequency to the ∼ 19 GHz, generally used in the
literature as it is less sensitive to liquid water clouds (Fet-
tweis et al., 2011; Mote, 2007), because Tb values at the
Ka band are distributed at the highest spatial resolution of
3.125 km (Brodzik et al., 2016). The atmospheric effect on
the 37 GHz Tb is higher than that at 19 GHz at low Tb values.
However, when considering higher Tb values, the difference
in the atmospheric effect between 37 GHz and 19 GHz Tb de-
creases (Tedesco and Wang, 2006). We then focus on assess-
ing whether the noise introduced by the gridding algorithm
might limit the application of the enhanced dataset to map-
ping surface meltwater. Following this, we focus our atten-
tion on testing and assessing existing approaches to deriving
melt from PMW data and put forward an update to a recently
proposed algorithm in which meltwater is detected when Tb
exceeds a threshold computed using the outputs of an electro-
magnetic model (Tedesco, 2009). We compare results from
these algorithms with estimates of surface melting obtained
from data collected by automatic weather stations (AWSs) in
terms of melt timing and with the outputs of the Modèle At-
mosphérique Régional (MAR; Fettweis et al., 2017) regional
climate model in terms of melt timing and extent. Lastly, we
focus on the analysis of melting patterns and trends over the
study period and investigate the information content in the
enhanced-resolution dataset using a semi-variogram analy-
sis.

2 Datasets and methods

2.1 Enhanced-resolution passive microwave data

We use Ka band (37 GHz) horizontally polarized Tb data
produced within the framework of a NASA MeASUREs
project and distributed at the spatial resolution of 3.125 km
(Brodzik et al., 2016) over the Northern Hemisphere. Specif-
ically, we use data collected by the Scanning Multichan-
nel Microwave Radiometer (SMMR), SMMR-Nimbus 7;
the special sensor microwave/imager (SSM/I), SSM/I-F08,
SSM/I-F11 and SSM/I-F13; and the special sensor mi-
crowave imager/sounder, SSMI/S-F17 (Table 1), because
of its higher orbit stability (http://www.remss.com/support/
crossing-times/, last access: 26 May 2021). Currently, the
product time series begins in 1979 and ends in 2019. Data
are provided twice a day, as morning and evening passes.
Beginning and ending acquisition times for the morning and
evening passes are contained within the product’s metadata,
along with other information. More information can be found
at https://nsidc.org/data/nsidc-0630/versions/1 (last access:
26 May 2021).

Historical gridding techniques for PMW spaceborne
datasets (Armstrong et al., 1994, updated yearly; Knowles et
al., 2000, 2006) are relatively simplistic and were produced
on grids (Brodzik and Knowles, 2002; Brodzik et al., 2012) Ta
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that are not easily accommodated in modern software pack-
ages. Specifically, the coarse-resolution gridding methodol-
ogy is based on a simple “drop-in-the-bucket” average, i.e.,
all of the measurements within a given time falling into a
specific pixel are averaged. In the reconstruction algorithm
used for the enhanced Tb, the so-called effective measure-
ment response function, determined by the antenna gain pat-
tern and being unique for each sensor and sensor channel,
is used in conjunction with the scan geometry and the in-
tegration period. The gridding approach uses the Backus–
Gilbert technique (Backus and Gilbert, 1967, 1968), a gen-
eral method for inverting integral equations, which has been
applied for solving sampled signal reconstruction problems
(Caccin et al., 1992; Stogryn, 1978; Poe, 1990), for spatially
interpolating and smoothing data to match the resolution be-
tween different channels (Robinson et al., 1992), and for im-
proving the spatial resolution of surface Tb fields (Farrar and
Smith, 1992; Long and Daum, 1998). An example of Tb maps
at 37 GHz, horizontal polarization, in the case of both the
coarse- and enhanced-resolution products over Greenland on
16 July 2001 is reported in Fig. 1. The higher detail cap-
tured by the enhanced spatial resolution is clearly visible,
especially along the ice sheet edges, where melting gener-
ally occurs at the beginning of the season and lasts for the
remaining part of the summer. Figure 2 shows an example of
time series of both coarse and enhanced PMW Tb (again at
37 GHz, horizontal polarization) for the pixel containing the
Swiss Camp station. From the figure, we observe that the two
time series are highly consistent with each other, with a mean
difference of 0.895 K and a standard deviation of 4.89 K, in-
dicating that the potential noise introduced by the enhance-
ment process is not a major issue. However, differences do
exist, as in the case of 3 April 2012 (day of the year 93),
when the enhanced product suggests the presence of melting
while the coarse product does not. This is likely due to the
different spatial resolutions between the two products, as we
discuss in the following sections, and shows the added value
of using the 37 GHz frequency in detecting small-scale fea-
tures of the melting process.

To compare our results with precedent PMW surface melt-
ing products, we also perform our calculations with the com-
monly used PMW dataset by Mote (2014). The dataset con-
sists of a daily melt maps product obtained from 37 GHz Tb
from SMMR, SSM/I and SSMI/S available on a 25 km grid.
This comparison enables us to see the advantages of using
the enhanced-resolution product with respect to a coarser-
resolution surface melt product. The dataset is generated us-
ing a dynamically changing threshold (Mote, 2007) obtained
by simulating the Tb change for every grid cell, each year, us-
ing a microwave emission model (Mote, 2014). The dataset
covers the temporal window from 1979 to 2012 and is avail-
able at the National Snow and Ice Data Center (NSIDC) web-
site (https://nsidc.org/data/NSIDC-0533/versions/1, last ac-
cess: 26 May 2021).

Figure 1. Maps of PMW Tb at 37 GHz, horizontal polarization, ac-
quired over Greenland on 16 July 2001 with the (a) coarse (25 km)
and (b) enhanced (3.125 km) resolution products. Panels (c) and (d)
refer to the area highlighted in the square in panels (a) and (b).

2.2 Greenland air temperature data

In order to assess the results obtained from PMW data,
we use in situ data collected by AWSs distributed over the
Greenland ice sheet. In the absence of direct observations of
melting, we use air temperature (3 m above the surface) to
extrapolate instances when liquid water is present, follow-
ing the procedure adopted by Tedesco (2009) for Antarctica.
Specifically, we use data recorded by stations of the Green-
land Climate Network (GC-Net; Steffen et al., 1996). The
AWSs provide continuous measurements of air temperature,
wind speed, wind direction, humidity, pressure and other pa-
rameters. We focus on air temperature data collected every
hour by the 17 selected stations reported in Table 2. We con-
sidered a validation period from 2000 (when all of the con-
sidered AWSs were in operation) to 2016 and used daily av-
eraged values. More information about the GC-Net dataset
can be found at http://cires1.colorado.edu/steffen/gcnet/ (last
access: 26 May 2021).

2.3 The MAR model

We assess the enhanced PMW-based surface melt maps with
the outputs of the Modèle Atmosphérique Régional (MAR,
e.g., Alexander et al., 2014; Fettweis et al., 2013, 2017;
Tedesco et al., 2013) regional climate model. MAR is a mod-
ular atmospheric model that uses the σ -vertical coordinate to
simulate airflow over complex terrain and the soil ice snow
vegetation atmosphere transfer scheme (e.g., De Ridder and
Gallée, 1998) as the surface model. MAR outputs have been
assessed over Greenland (e.g., Fettweis et al., 2005, 2017;
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Table 2. Locations of the automatic weather stations of the Green-
land Climate Network (GC-Net) sites used to validate the results in
this study.

Station Latitude Longitude Elevation
[m a.s.l.]

Swiss Camp 69◦34′06′′ N 49◦18′57′′W 1149
Crowford Point 1 69◦52′47′′ N 46◦59′12′′W 2022
NASA-U 73◦50′31′′ N 49◦29′54′′W 2369
GITS 77◦08′16′′ N 61◦02′28′′W 1887
Humboldt 78◦31′36′′ N 56◦49′50′′W 1995
Summit 72◦34′47′′ N 38◦30′16′′W 3254
TUNU-N 78◦01′0′′ N 33◦59′38′′W 2113
DYE-2 66◦28′48′′ N 46◦16′44′′W 2165
JAR-1 69◦29′54′′ N 49◦40′54′′W 962
Saddle 66◦00′02′′ N 44◦30′05′′W 2559
South Dome 63◦08′56′′ N 44◦49′00′′W 2922
NASA-E 75◦00′00′′ N 29◦59′59′′W 2631
Crowford Point 2 69◦54′48′′ N 46◦51′17′′W 1990
NASA-SE 66◦28′47′′ N 42◦30′00′′W 2425
KAR 69◦41′58′′ N 33◦00′21′′W 2579
JAR-2 69◦25′12′′ N 50◦03′27′′W 568
KULU 65◦45′30′′ N 39◦36′06′′W 878

Alexander et al., 2014). The snow model in MAR, which is
based on the Crocus model of Brun et al. (1992), calculates
albedo for snow and ice as a function of snow grain proper-
ties, which in turn depend on energy and mass fluxes within
the snowpack. Lateral and lower boundary conditions of the
atmosphere are prescribed from reanalysis datasets. Sea sur-
face temperature and sea ice cover are prescribed using the
same reanalysis data. The atmospheric model within MAR
interacts dynamically with the surface model.

In this study, we use the output from MAR version
v3.11.2, which is characterized by an enhanced computa-
tional efficiency and improved snow model parameters (Fet-
tweis et al., 2017; Delhasse et al., 2020). The model is forced
at the boundaries using ERA5 reanalysis (Hersbach et al.,
2020), which is the newest generation of global atmospheric
reanalysis data that superseded ERA-Interim (Dee et al.,
2011), and output is produced at a horizontal spatial reso-
lution of 6 km. In order to compare output from MAR with
estimates of melt extent obtained from PMW data, we aver-
age the liquid water content (LWC) simulated by MAR along
the first 5 cm and 1 m from the surface of the vertical profile
of the snowpack, following Fettweis et al. (2007).

2.4 Melt detection algorithms

Generally speaking, melt detection algorithms can be di-
vided into threshold-based and edge-detection algorithms
(e.g., Liu et al., 2005; Joshi et al., 2001; Steiner and Tedesco,
2014). Here, we focus on threshold-based algorithms, de-
tecting melting when Tb values (or their combination) ex-
ceed a defined threshold, which is computed in different

ways depending on the algorithm. For example, Steffen et
al. (1993) used the normalized gradient ratio GR= (Tb19H−

Tb37H)/(Tb37H+ Tb19H) to detect wet pixels with a thresh-
old value computed based on in situ measurements. This
method was later updated by Abdalati and Steffen (1995)
who introduced the cross-polarized gradient ratio XPGR=
(Tb19H− Tb37V)/(Tb37H+ Tb19V), where the Ka-band com-
ponent of the algorithm was switched from horizontally to
vertically polarized.

Ashcraft and Long (2006) proposed a threshold based on
dry (winter) and wet snow Tb as Tc = αM + (1−α)Twet,
whereM is the average of winter Tb (January and February),
Twet is fixed as 273 K and Tc indicates the threshold value (we
keep the same notation in the following). The mixing coef-
ficient α = 0.47 was derived considering LWC= 1 % in the
first 4.7 cm of the snowpack. Similarly, a method based on a
fixed threshold (set to 245 K and derived from the outputs of
an electromagnetic model) above which melting is assumed
to be occurring was proposed in Tedesco et al. (2007). Sev-
eral other studies have detected melting when the Tb values
exceed the mean winter value plus an additional value 1Tb
(M+1Tb approaches) associated with the insurgence of liq-
uid water within the snowpack:

Tc =M +1Tb. (1)

Torinesi et al. (2003) proposed a value of1Tb =Nσ withM
and σ (standard deviation of the time series) varying in space
(specific pixel) and time (specific year) but a fixed value
of N = 3 from the analysis of weather station temperature
data. Zwally and Fiegles (1994) used a fixed value of 1Tb =

30 K. Tedesco (2009) proposed an alternative approach based
on the outputs of the Microwave Emission Model of Lay-
ered Snowpack (MEMLS) electromagnetic model (Wies-
mann and Mätzler, 1999). In this case, an ensemble of out-
puts is generated by the MEMLS model by varying the inputs
(e.g., correlation length, LWC and snow density). These out-
puts are then used to build a linear regression model for the
1Tb that is a function of the winter Tb value as follows:

1Tb = ϕM +ω, (2)

with the values of the coefficients obtained from the linear
regression. This is done to account for the increment related
to the presence of LWC within the snowpack as a function
of the snow properties: a fixed increase would correspond
to different LWC values, potentially making the mapping of
the wet snow areas inconsistent in terms of LWC values. For
example, a snowpack with a small grain size would require
a relatively larger amount of LWC compared with a snow-
pack with a larger grain size for the Tb values to increase
by 30 K. From a complementary point of view, an increase
of 30 K due to the presence of liquid water in the case of a
snowpack with relatively coarse grains would correspond to
a lower LWC value than an increase occurring in a snow-
pack with a smaller grain size. In summary, the adoption of
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this approach provides consistency in terms of the minimum
LWC that is detected by the algorithm. Building on Tedesco
(2009), we considered the LWC value of 0.2 %. The coef-
ficients are ϕ =−0.52 and ω = 128 K (R2

= 0.92). The Tb
threshold value computed in this case can, therefore, be writ-
ten as follows:

Tc =M +ϕM +ω = (1+ϕ)M +ω = γM +ω, (3)

where γ and ω assume the values of 0.48 and 128 K, respec-
tively.

Here, we focus five approaches: the M +1Tb approach
with 1Tb equal to 30 K and, to test the sensitivity to Zwally
and Fiegles (1994), 35 and 40 K (M + 30, M + 35 and
M + 40 from here on); the algorithm based on MEMLS for
LWC= 0.2 % (referred to simply as MEMLS from here on
for brevity); and the 245 K fixed threshold (245 K from here
on). We selected M +1Tb and MEMLS due to their higher
accuracy in detecting both sporadic and persistent melting
with respect to the other approaches presented above, i.e.,
Torinesi et al. (2003) and Ashcraft and Long (2006), as
proven in previous studies (Tedesco, 2009). We also selected
the 245 K approach to test a more conservative technique
aimed at detecting persistent melting only. In the following
sections, we report the results of two algorithms, namely the
one using a fixed threshold of 245 K and the one based on
MEMLS.

2.5 Inter-sensor calibration

In view of the novelty of this PMW dataset introduced by
the enhancement in spatial resolution thanks to the improve-
ment of the gridding technique, we first focus on the cross-
calibration of the data acquired by the different sensors. This
initial processing step aims to account for biases and differ-
ences associated with swath width, view angle, altitude and
local time of day as well as the specific intrinsic differences
associated with each sensor on the different platforms (Ta-
ble 1). Several approaches have been proposed in the liter-
ature to address this issue for the historical, coarser-spatial-
resolution gridded datasets (e.g. Cavalieri et al., 2012). For
example, Jezek et al. (1993) compared SMMR and SSM/I
over the Antarctic ice sheet for the K and Ka bands (∼ 19
and∼ 37 GHz) for both horizontal and vertical polarizations.
Steffen et al. (1993) proposed an approach that was focused
over Greenland for the K band. Abdalati et al. (1995) de-
rived relations between SSM/I observations for the SSM/I-
F08 and SSM/I-F11 platforms over Antarctica and Greenland
for 19.35, 22.2 and 37 GHz. Dai et al. (2015) intercalibrated
SMMR, SSM/I (SSM/I-F08 and SSM/I-F13) and SSMI/S-
F17 over snow-covered pixels in China and SMMR, SSM/I
and AMSR-E (Advanced Microwave Scanning Radiometer
on NASA’s Earth Observing System) over the whole Earth
surface sampling hot and cold pixels.

Given the novelty of the Tb products used here and the ab-
sence of the specific intercalibration of data collected from

different platforms for this product, we developed an ad hoc
intercalibration for the enhanced PMW dataset. Following
Stroeve et al. (1998), we perform the intercalibration using
only data collected over the Greenland ice sheet. We perform
a linear regression between the data acquired by two sensors
over the Greenland ice sheet and calculate the slope (m) and
intercept (q) of the linear regression:

y =mx+ q. (4)

In Eq. (4), x and y represent the Tb values from coincident
data from the two overlapping satellite products. We consider
two approaches to compute the m and q values in Eq. (4). In
the first method, we compute the weighted average of the
daily slope and intercept values from the regression of daily
data. Considering n days, for every ith day we first compute
mi , qi and the coefficient of determination for the linear re-
gression of Eq. (4) (R2

i ); we then average them according to
Eqs. (5) and (6):

m=

n∑
i=1
miR

2
i

n∑
i=1
R2
i

, (5)

q =

n∑
i=1
qiR

2
i

n∑
i=1
R2
i

. (6)

This choice assigns higher values to the weights obtained
from pairs of data with higher correlation. In the second
method, we consider all values for all days when data from
both platforms are available and then evaluate m and q using
a linear regression fitting procedure based on least squares
fitting. Using the estimated m and q values, we then correct
the values for one of the sensors by applying Eq. (4) to the Tb
values of one sensor (x, e.g., SMMR) to obtain new corrected
Tb values (y).

We perform an additional comparison using the average
difference between the Tb values and evaluating the match
between histograms of the overlapping data (Dai et al., 2015)
by means of the Nash–Sutcliffe efficiency (NSE) coefficient
(Nash and Sutcliffe, 1970), defined as

NSE= 1−

∑(
hi(T

A
b ) − hi(T

B
b )
)2∑(

hi(T
B

b ) − h̄(T
B

b )
)2 . (7)

Here, hi is the absolute frequency of the ith value of Tb
of the two sensors (A and B) considered. The NSE is usu-
ally applied in calibration and validation procedures to as-
sess the match between measured and modeled quantities, as
in Sect. 4.2. After the application of linear relations found
using Eqs. (4)–(6), in order to quantitatively assess the im-
pacts of the intercalibration on Tb values, we computed the
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absolute difference between the values of the histograms of
the Tb as follows:

Di =

∣∣∣hi(T A
b ) − hi(T

B
b )

∣∣∣ , (8)

where Di is the absolute difference between the two his-
tograms A and B for the ith value of Tb. We then summed
the differences over the total number of pixels and computed
the relative variation as follows:

d =
Doriginal−Dcorrected

Doriginal
, (9)

where Doriginal and Dcorrected are the summations of Di be-
fore and after the calibration, respectively. The relative varia-
tion in d can range from−∞, indicating a worse match of the
histograms, to 1, indicating a perfect match of the histograms
after the intercalibration.

2.6 Spatial autocorrelation: the variogram analysis

Variogram analysis is generally adopted in geostatistical
analyses to evaluate the autocorrelation of spatial data (Del-
homme, 1978; Edward et al., 1989) with variograms being
characterized by three parameters: the sill, the range and the
nugget effect. The sill is the variance value at which the var-
iogram becomes flat. The range is the distance at which the
variogram reaches the sill. Beyond this value, the data are no
longer autocorrelated. The nugget effect is the variance value
at null distance, theoretically zero and resulting from mea-
surement errors or highly localized variability. We computed
the empirical variogram as

γ (δ)=
1

2N(δ)

∑
i,j∈N(δ)

(xi − xj )
2, (10)

where γ is the semi-variance, N(δ) is the number of pair
measurements (i,j ) spaced by distance δ, and xi and xj are
the respective values of the ith and j th measured variable.
Generally, the semi-variance γ increases as the distance δ in-
creases according to the principle that close events are more
likely to be correlated than distant events. The experimen-
tal variogram is the graphical representation of the semi-
variance γ as a function of the distance δ. Finally, the ex-
perimental variogram is fitted with a function (here, we use
a spherical function) to compute the sill, the range and the
nugget effect.

3 Results and discussion

3.1 Inter-sensor calibration of enhanced-resolution
passive microwave data

First, we show the results obtained for the inter-sensor cal-
ibration of the selected satellite constellation. The overlap-
ping periods for the different sensors are as follows: SMMR

and SSM/I-F08 overlap between 9 July and 20 August 1987
for a total of 22 d (1 d every 2 d as sensed by the SMMR
sensor); SSM/I-F08 and SSM/I-F11 overlap between 3 and
18 December 1991 for a total of 16 d; SSM/I-F11 and SSM/I-
F13 overlap between 3 May and 30 September 1995 for a
total of 76 d; and SSM/I-F13 and SSM/S-F17 overlap for the
period from 1 March to 10 December 2008 for a total of 71 d.
In Fig. 3, we show the scatterplots of the data used for the
linear regression for Greenland for both evening and morn-
ing passes for the SMMR and SSM/I-F08 sensors, reporting
m, q and R2 values. We point out that the overlap between
SMMR and SSM/I-F08 data occurs in the months of July
and August. During these months, the differences between
acquisition times (Table 2) might lead to biases and errors
associated with snow conditions (e.g., wet vs. dry). Specif-
ically, we expect larger errors at the beginning of the melt-
ing season when snow undergoes thawing–refreezing cycles
during the day, with frozen snow (low Tb values) poten-
tially being present early in the morning and late at night
(SMMR ascending and SSM/I-F08 descending passes) and
liquid water (high Tb values) being present during the day.
In Table 3, we report the average values of the difference
between pairs of Tb data and the NSE coefficient values for
the histograms of the same pairs. In Table 4, we report the
values for the slope and intercept obtained from the linear
regression analysis of enhanced PMW Tb (37 GHz, horizon-
tal polarization) over Greenland for SMMR vs. SSM/I-F08,
SSM/I-F08 vs. SSM/I-F11, SSM/I-F11 vs. SSM/I-F13 and
SSM/I-F13 vs. SSM/S-F17, along with the R2 values and d
values computed according to Eq. (6). In the case of SSM/I
and SSMI/S, R2 values are higher, mostly around 0.98. In
Fig. 4, we also show examples of histograms for the SMMR
and SSM/I-F08 sensors. Large differences are obtained for
these sensors for both the evening and morning passes, likely
because of the difference in overpass time and the presence
or absence of melting in some of the scenes observed by
one sensor but not present in the other (Table 3). Conversely,
for the SSM/I and SSMI/S sensors, the average difference is
close to 0 K (with the exception of the F-08 and F-11 satel-
lites, which show an average difference slightly larger than
1 K, consistent with previous results obtained by Abdalati et
al. (1995) in the case of the 25 km resolution data), and the
NSE values are extremely close to 1 (Table 3). For of SMMR
and SSM/I-F08, the higher average difference (ranging be-
tween −3.4 and −4.3 K) and the relatively lower NSE val-
ues (ranging between 0.89 and 0.96) show that these sen-
sors have the largest bias. Lastly, we only applied the cor-
rection to SMMR, and we did not apply the linear regres-
sion to the SSM/I-F08–SSM/I-F11, SSM/I-F11–SSM/I-F13
and SSM/I-F13–SSMI/S-F17 datasets as, in this case, the lin-
ear correction worsened the agreement between the two sets
of measurements. We applied the correction coefficients ob-
tained with the second method according to the higher rela-
tive improvement for the evening pass.
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Table 3. Average enhanced-resolution Tb differences at 37 GHz, horizontal polarization, for the different PMW sensors and NSE coefficients
computed for the histograms of Tb.

Sensors SMMR vs. SSM/I-F08 SSM/I-F08 vs. SSM/I-F11 SSM/I-F11 vs. SSM/I-F13 SSM/I-F13 vs. SSM/S-F17

Evening Morning Evening Morning Evening Morning Evening Morning

NSE 0.898 0.936 0.999 0.999 0.999 0.999 0.997 0.997
Average difference [K] −4.27 −3.43 0.50 0.24 −0.49 0.02 0.17 0.52

Table 4. Slope (m) and intercept (q) obtained from the linear regression analysis between the selected satellite pairs’ enhanced PMW Tb at
37 GHz, horizontal polarization, over Greenland. The subscripts refer to the case where the coefficients are weighted by means of the R2

(case 1, see Eqs. 5 and 6) or cases where they are not weighted by means of the R2 (case 2). We also report the values for the R2 and the d
values computed according to Eq. (9).

Greenland SMMR vs. SSM/I-F08

X =F08 m1 m2 q1 q2 R2
2 d1 d2

Morning 0.818 0.821 32.387 31.856 0.88 0.69 0.46
Evening 0.849 0.842 26.027 27.511 0.81 0.12 0.33
X =SMMR m1 m2 q1 q2 R2

2 d1 d2
Morning 1.075 1.0722 −11.140 −10.581 0.88 0.56 0.52
Evening 0.964 0.9653 11.424 11.123 0.81 0.09 0.12

Greenland SSM/I-F08 vs. SSM/I-F11

X =F11 m1 m2 q1 q2 R2
2 d1 d2

Morning 0.991 0.989 2.041 2.537 0.98 0.31 −2.91
Evening 0.998 1.002 0.979 −0.010 0.98 0.25 0.31
X =F08 m1 m2 q1 q2 R2

2 d1 d2
Morning 0.987 0.995 2.230 0.528 0.98 0.10 0.26
Evening 0.980 0.980 3.332 3.711 0.98 0.08 0.11

Greenland SSM/I-F11 vs. SSM/I-F13

X =F13 m1 m2 q1 q2 R2
2 d1 d2

Morning 0.996 1.001 2.328 −0.262 0.98 0.11 0.14
Evening 0.981 0.985 3.831 0.185 0.99 −4.82 −4.98
X =F11 m1 m2 q1 q2 R2

2 d1 d2
Morning 0.962 0.977 8.322 4.482 0.98 −1.73 −0.32
Evening 0.998 1.002 0.934 0.185 0.99 0.10 0.28

Greenland SSM/I-F13 vs. SSM/S-F17

X =F17 m1 m2 q1 q2 R2
2 d1 d2

Morning 1.019 1.029 −3.029 −5.013 0.98 −0.11 −0.005
Evening 1.004 1.007 −0.438 −1.161 0.99 0.14 0.20
X =F13 m1 m2 q1 q2 R2

2 d1 d2
Morning 0.959 0.953 7.267 8.370 0.98 −0.19 −0.35
Evening 0.982 0.982 3.200 3.205 0.99 0.27 0.25

3.2 Assessment of melt detection algorithms

In order to assess the capability of the selected algorithms,
we compare the outputs obtained by PMW data with in situ
air temperature averaged daily from AWSs as an index of
surface melting (Braithwaite and Oelsen, 1989) and with the
liquid water content simulated by the MAR regional climate
model. We first evaluate performance at the local scale (at

the specific locations of the selected AWSs), comparing the
number and the concomitance of melting days according to
PMW data and the ground-truth reference. According to the
results obtained, we then focus on the MEMLS and 245 K
algorithms to evaluate the capability of the two approaches
with respect to describing the surface melt extent at the ice
sheet scale.
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Figure 2. (a) Time series of Tb at 37 GHz, horizontal polarization, for the year 2012 for the pixel containing the Swiss Camp site in the case
of the coarse (blue) and enhanced (red) products. Threshold values, shown as horizontal lines, are obtained from two approaches considered
in this study: 245 K and MEMLS. (b) The difference between the 3.125 km and the 25 km Tb time series for the same pixel (mean of 0.895 K
and standard deviation of 4.89 K).

Figure 3. Density scatterplots of SMMR and SSM/I-F08 Tb data sensed during the overlap period (9 July–20 August 1987) of the two
sensors over the Greenland ice sheet for (a) morning and (b) evening passes. The solid black lines show the linear fitting, and the dashed
black lines show the 1 : 1 line. The color palette indicates the relative frequency.

3.2.1 Assessment with AWS data

Historically, the presence of liquid water within the snow-
pack using data from AWS has been estimated when
recorded air temperature exceeds a certain threshold during
the day. Because melting can also occur due to radiative forc-
ing (i.e., solar radiation) and the air temperature does not nec-
essarily represent the snow surface temperature, we tested
three threshold values for air temperature, 0, −1 and −2 ◦C,
as in Tedesco (2009). We assessed the performance of the

PMW-based algorithm by defining commission and omission
errors. Commission errors occur when melting is detected by
PMW data but not by AWS data, and omission errors occur
when melting is detected by AWS data but not by PMW data.
The results of the error analysis are summarized in Table 5
for the different algorithms and for the Mote (2014) dataset
for the different threshold values on the AWS air tempera-
ture values. In Table 5, commission and omission error val-
ues are reported as an average over all stations. Specific re-
sults for each AWS location are reported in the Supplement
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Figure 4. Histograms of Tb before and after the application of the intercalibration relations (for Greenland). Relations are applied for both
evening (a) and morning (b) passes, and the histograms of the data and the distance (absolute value of the difference as in Eq. 8) between the
histograms for original data are reported. The left column represents the uncorrected data, the central column represents the results applying
the correction to SMMR data and the right column represents the results applying the correction to the SSM/I data.

(Tables S2, S3 and S4) along with a map of the AWS network
(Fig. S1). As a more general performance indicator, Table 5
also reports the sum of the two commission and omission
errors, computed for each AWS case (C+O). Moreover, we
show an average value of all of the C+O (for both AWS and
MAR assessments, presented in the next subsection) for each
PMW algorithm (C+O Mean) as a synthetic index of perfor-
mance. Our results indicate that the 245 K algorithm shows
the lowest commission error (between 0.31 % and 0.63 %)
and the highest omission error (between 5.38 % and 9.19 %).
This is consistent with this algorithm being the most conser-
vative among those considered (i.e., the algorithm is not sen-
sitive to sporadic melting). In contrast, a higher commission
error is achieved for theM+30,M+35 andM+40 thresh-
olds, particularly for the Humboldt and GITS stations (north-
western Greenland), where the commission error is up to
1 order of magnitude larger than the MEMLS and 245 K al-

gorithms for every ground-truth reference (e.g., from 0.70 %
for MEMLS and 0.09 % for 245 K to 5.63 % for M + 30, for
an air temperature of 0 ◦C). Moreover, for the MEMLS algo-
rithm, we note the lowest omission error for the Swiss Camp,
JAR-1 and JAR-2 sites (6.9 % for MEMLS and 8.4 % for
M+30, 10.0 % forM+35, 12.4 % forM+40 and 17.4 % for
245 K). The coarse-resolution dataset presents a commission
error of between 1.02 % and 1.74 % and an omission error
of between 4.06 % and 7.12 %, confirming the capability of
historical data to detect surface melting over the Greenland
ice sheet. However, the enhanced-resolution dataset presents
better results in terms of C+O when applying the M + 40
and MEMLS algorithms. The sensitivity to the air temper-
ature threshold is low, with commission and omission error
decreasing by about 1 % and increasing by 3 %, respectively,
when considering threshold values from 0 to −2 ◦C.
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Table 5. Performance of the PMW melt detection algorithms studied with AWS and MAR data. Five thresholds are used to detect melt at a
3.125 km resolution, and the Mote (2014) melting dataset is used as a 25 km resolution comparison. For each case, three thresholds (0, −1
and 2 ◦C) are applied to the AWS data and two approaches (MAR1 m and MAR5 cm) are applied to the MAR-simulated LWC to detect melt.
The performance of the respective PMW melting products is computed in terms of commission and omission errors averaged for all of the
AWS sites considered. C+O refers to the total error considering both commission and omission. The average of the C+O of each melting
dataset (C+O Mean) is reported as a synthetic index of performance.

PMW AWS/MAR Average % Average % C+O C+O Mean
commission omission % %

M + 30 0 ◦C 3.71 2.63 6.34 7.79
−1 ◦C 3.04 3.78 6.82
−2 ◦C 2.44 5.66 8.1
MAR1 m 7.11 1.51 8.62
MAR5 cm 7.01 2.07 9.07

M + 35 0 ◦C 2.34 3.19 5.53 6.83
−1 ◦C 1.83 4.5 6.33
−2 ◦C 1.37 6.35 7.72
MAR1 m 5.5 1.83 7.33
MAR5 cm 4.78 2.48 7.26

M + 40 0 ◦C 1.73 3.98 5.72 6.84
−1 ◦C 1.3 5.37 6.68
−2 ◦C 0.93 7.32 8.25
MAR1 m 4.49 2.23 6.72
MAR5 cm 3.88 2.98 6.87

MEMLS 0 ◦C 2.7 2.38 5.08 6.66
−1 ◦C 2.13 3.62 5.76
−2 ◦C 1.63 5.44 7.07
MAR1 m 6.33 1.49 7.81
MAR5 cm 5.52 2.04 7.56

245 K 0 ◦C 0.63 5.38 6.01 6.92
−1 ◦C 0.46 7.02 7.48
−2 ◦C 0.31 9.19 9.51
MAR1 m 2.58 2.95 5.53
MAR5 cm 2.23 3.83 6.06

25 km Mote (2014) 0 ◦C 1.74 4.06 5.80 7.10
−1 ◦C 1.37 5.35 6.72
−2 ◦C 1.02 7.12 8.15
MAR1 m 4.74 2.72 7.46
MAR5 cm 4.11 3.28 7.39

In order to better understand the sources of the relatively
high values of the commission errors at some locations, we
show the time series of air temperature and Tb at 37 GHz,
horizontal polarization, at three selected stations – (a) Sum-
mit, (b) Humboldt and (c) Swiss Camp – for the year 2005
(Fig. 5). The threshold values obtained with the different de-
tection algorithms are also plotted as horizontal lines (black)
along with the 0 ◦C air temperature threshold (magenta). We
selected these three locations as they are representative of
three different environmental and melting conditions. The
time series recorded at Summit station (Fig. 5a) shows the
sensitivity of Tb to physical temperature and its seasonal vari-
ations. In this case, the air temperature remains below 0 ◦C

throughout year and the Tb signal does not exceed any thresh-
old value (horizontal lines). This time series is typical of a lo-
cation where melting is generally absent. The Tb time series
collected for the Humboldt location (Fig. 5b) shows a strong
and sudden peak starting on 20 July, when the air temper-
ature average is about −0.5 ◦C (detected by −1 and −2 ◦C
air temperature thresholds). This event is detected by all al-
gorithms. Nevertheless,M+30 (and similar algorithms) also
indicates the potential presence of melting for the period pre-
ceding the July melting (between 17 June and 17 July). This
melting is not confirmed by the other algorithms or by the
AWS analysis, suggesting that the threshold value used for
these algorithms might be too low. Lastly, melting clearly
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occurs for the Swiss Camp site (Fig. 5c), which is charac-
terized by a sharp and substantial increase in Tb beginning
around mid-May. For this case, all algorithms detect melt-
ing, with MEMLS providing the lowest threshold and the
245 K fixed threshold being the most conservative. The com-
puted rough estimation of the average emissivity for the pe-
riod from 17 June to 17 July (Tb divided by the recorded
air temperature) also suggests that melting is not occurring
in the period considered for the Humboldt case, presenting
an average emissivity that is even lower than in the Summit
case. Figure 6 shows maps of surface melt extent obtained
using the different approaches for 13 July 2008. Consistent
with the results discussed above, the M + 30 and M + 35 al-
gorithms suggest melting up to high elevations, within the
dry snow zone, where it likely did not occur. TheM+40 and
MEMLS algorithms show similar results, whereas the 245 K
fixed-threshold approach shows the most conservative esti-
mates, as expected. As mentioned, the threshold algorithms
for1Tb (M+30 etc.) rely on a fixed1Tb value, which could
produce errors if a large seasonal range in Tb existed due to
temperature variability. In contrast, the MEMLS algorithm
is based on the linear regression of the 1Tb as function of
different combinations of dry snow conditions (LWC= 0,
i.e., different winter Tb means). This provides an appropri-
ate threshold value that considers the snow conditions before
melting and, at the same time, follows a more consistent ap-
proach with respect to the amount of LWC detected in the
snowpack.

3.2.2 Assessment with MAR outputs

For the comparison between PMW-based and MAR outputs,
we averaged the vertical profiles of LWC computed by MAR
to the top 5 cm (MAR5 cm) and the top 1 m (MAR1 m) of the
snowpack following Fettweis et al. (2007). In order to be con-
sistent with the minimum LWC to which the MEMLS algo-
rithm is sensitive, we set the threshold on the LWC values
at which we assume melting is occurring to 0.2 % for both
depths. We selected two different depths for our analysis so
that we could study two types of melting events: (1) sporadic
surface melting, affecting the first few centimeters of the
snowpack, and (2) persistent subsurface melting, affecting
the snowpack from the surface up to around the first meter.
For consistency with the AWS analysis, we report the results
averaged over those MAR pixels containing the AWS sta-
tions discussed in the section above in Table 5. The compar-
ison between the results obtained from the PMW and mod-
eled LWC indicates that the more conservative approaches
(i.e., 245 K) perform better when considering the case of
MAR5 cm. In fact, the 245 K threshold shows the lowest over-
all error for this case (C+O= 6.06 %). The coarse-resolution
dataset shows a C+O error equal to 7.39 %, which is slightly
lower than for MEMLS (7.56 %). For the top 1 m, all of the
algorithms present similar performance on average, with the
best performance again obtained for 245 K (C+O= 5.53 %).

However, all of the M +1Tb algorithms present the same
issue of larger commission errors compared with MEMLS
and 245 K (e.g., from 0.99 % for MEMLS and 0.26 % for
245 K to 4.62 % forM+30) in northeastern Greenland (e.g.,
Humboldt and GITS stations, see Tables S2 and S3 in the
Supplement). This confirms the results that we obtained from
the comparison with AWS data, pointing out the overestima-
tion of melting in some dry areas by M +1Tb. For both the
MAR1 m and MAR5 cm cases, for all of the algorithms consid-
ered, we find a high commission error for the JAR-1, JAR-2
and Swiss Camp sites (between 10 % and 22 %).

In order to better understand the origins of these errors, we
show further insights into the differences between the PMW
Tb and MAR outputs in Fig. 7. Figure 7a and b show the
time series of LWC averaged over the first 5 cm (MAR5 cm)
and 1 m (MAR1 m) obtained from MAR at the Swiss Camp
site, respectively. In Fig. 7c, we report the Tb time series and
the daily average air temperature (threshold values reported
as horizontal lines). We first note an early melt event (la-
beled LWC= 0.046 % in Fig. 7b for the 108th day of the
year) detected by the PMW MEMLS algorithm and at the
AWS station but apparently undetected in MAR1 m. A closer
look at the time series shows that MAR1 m does in fact esti-
mate a LWC of 0.046 % on this day, whereas MAR5 cm es-
timates a LWC of 0.6 %. This suggests that in some cases
(before the main melt season) the MEMLS algorithm is ac-
tually sensitive to the LWC in the first 5 cm of the snowpack,
as a consequence of the approximation of the electromag-
netic outputs imposed by the linear fitting. We also note a
melt event (labeled as LWC= 0.5 % in Fig. 7b) at the end
of the melting season detected by both AWS data (air tem-
perature larger than −1 ◦C) and MAR (both in the first 5 cm
and 1 m of snow) but not by any PMW algorithm. The Tb
time series reveals a small peak, but the signal is not strong
enough to exceed any threshold. This corresponds to a rain-
fall event (simulated by MAR), suggesting that the sensitiv-
ity of the 37 GHz channel to liquid clouds could mask some
melt events. Moreover, the Tb appears to be slightly lower
than January–February average at the end of the melting sea-
son, possibly due to an increase in grain size after refreezing,
leading to a lower emissivity.

The results discussed above (and the results from the com-
parison with AWS data) suggest that 245 K is the most con-
servative among the approaches tested in this study, provid-
ing the lowest (highest) commission (omission) errors, al-
though being unable to detect sporadic melt events. On the
contrary, the MEMLS and M+1Tb algorithms can detect
sporadic melt events and present lower omission error com-
pared with 245 K. However, the M +1Tb algorithms over-
estimate melting in some dry areas (the northwest of the ice
sheet), suggesting melting when it is not actually occurring.
On the contrary, the MEMLS algorithm is not affected by
the large commission error in dry areas, presents the lowest
omission error in the Swiss Camp area (along with M + 30)
and is still sensitive to low LWC levels. Considering the av-
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Figure 5. Time series of (blue) enhanced-resolution Tb 37 GHz, horizontal polarization, and (red) air temperature at the (a) Summit, (b)
Humboldt and (c) Swiss Camp stations for the year 2005. Threshold values obtained with the different detection algorithms are reported
as horizontal black lines (solid line, M +1T ; dashed line, 245 K; and dot-dashed line, MEMLS), and the 0 ◦C threshold is reported as a
magenta solid line. The 30 d window between 17 June and 17 July is shown in the shaded orange area and reports the average estimated
emissivity (ε) values.

Figure 6. Melting maps obtained using the (a) M + 30, (b) M + 35, (c) M + 40, (d) 245 K and (e) MEMLS algorithms over the Greenland
ice sheet on 13 July 2008. An example of an area presenting the false detection problem is shown in the red circle.

erage error (C+O Mean in Table 5), the MEMLS algorithm
shows the best performance (6.66 %). In view of the analy-
sis presented and the different sensitivity to surface and sub-
surface melting, in the following we focus on the 245 K and
MEMLS algorithms to study the extent of persistent and spo-
radic surface melting, respectively.

As a further analysis, we compared the PMW-retrieved
melt extent with that estimated from MAR outputs. In Fig. 8
we show the time series of the melt extent integrated over the
whole ice sheet for 2 selected years – (a) 1983 and (b) 2005,
selected randomly to present an example of SMMR and
SSM/I cases – estimated according to MAR5 cm and MAR1 m
as well as the time series of the melt extent from the PMW
data. The analogous figure for the coarse-resolution dataset
is reported in the Supplement (Fig. S2). For each year, we
compute the daily melt extent for the period from 1 May to
15 September and use the Nash–Sutcliffe efficiency (NSE)
coefficient (Nash and Sutcliffe, 1970), described in Sect. 3,
for a quantitative analysis. Here, we remind the reader that
the NSE coefficient can assume values in the (−∞,1] inter-
val. A perfect match between the two time series is achieved

when the NSE coefficient is 1. NSE coefficient values in the
[0,1] interval indicate that the modeled variable is a better
predictor of the measurements than the mean. If the NSE
coefficient is a negative number, the mean of the measured
data describes the time series better than the modeled pre-
dictor. Here, we chose NSE= 0.4 as the efficiency threshold,
considering that we compute melt extent at a daily timescale
and from datasets at two different resolutions (i.e., result-
ing in an intrinsic bias related to the different pixel size).
We compared the time series of the melt extent obtained us-
ing the 245 K algorithm with MAR1 m (245 K vs. MAR1 m)
and the MEMLS melt extent with MAR5 cm (MEMLS vs.
MAR5 cm) due to the expected differences in the sensitiv-
ity to detect persistent and sporadic melting between 245 K
and MEMLS, respectively. We compare the melt extent ob-
tained from the coarse-resolution dataset with MAR5 cm, ac-
cording to the similarity with MEMLS in terms commission
and omission error. We report NSE coefficients computed
for the 41-year (34-year for the coarse-resolution dataset)
period in Table 6. At first, we notice that the comparison
between 245 K and MAR1 m produces large negative NSE
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Figure 7. LWC from MAR averaged in the first 5 cm (a) and the first
1 m (b) of the snowpack. (c) Time series of the 37 GHz horizontally
polarized Tb (3.125 km, blue), air temperature from AWS (black)
and 245 K (dashed magenta line), M +1T (solid magenta lines)
and MEMLS (dot-dashed magenta line) thresholds for the Swiss
Camp site in the year 2001. Melting days according to MAR are
marked as vertical light blue lines in panels (a) and (b).

coefficients for the 1979–1992 period, indicating an unsat-
isfactory match between PMW- and MAR-derived melt ex-
tents. The comparison between MEMLS and MAR5 cm also
presents negative NSE coefficient values (unsatisfactory re-
sults). Similarly, the coarse-resolution dataset shows nega-
tive NSE coefficient values, larger than MEMLS but smaller
than 245 K. Between 1987 and 1992, we found larger but
still negative NSE coefficients presenting smaller absolute
values. Between 1993 and 2019, we found negative NSE co-
efficient values for 245 K and positive values for MEMLS
for every year, indicating satisfactory results only for the lat-
ter algorithm. However, the coarse-resolution dataset only
presents positive (but not satisfactory) NSE coefficient val-
ues in 2003 and 2012 (0.111 and 0.208, respectively). The
time series in Fig. 8a reveals a strong underestimation of the
245 K-derived melt extent relative to MAR1 m (the cause of
the low NSE value, NSE=−151.596) and shows a slightly
better match for MEMLS (NSE=−0.540). This result sug-
gests that, for SMMR data, Tb values cannot always reach
the 245 K threshold, even if the snowpack is saturated with
liquid water and surface melting is developed, possibly due
to a persistent bias after the intercalibration of the dataset.
As a consequence, the 245 K threshold might be too high in

the first part of the dataset, resulting in an underestimation
of the melt extent. On the contrary, the MEMLS threshold,
which is generally lower, can better capture the spatiotem-
poral evolution of surface melting, even if the melt extent is
still underestimated. A possible consequence of the melt ex-
tent being underestimated in the first part of the time series
is a slightly overestimated long-term trend. To address this
possible implication, we compute long-term trends consid-
ering both the 1979–2019 and 1987–2019 reference periods
in the next section. In Fig. 8b, the time series obtained with
245 K appears to better follow the temporal variability of the
melt extent from MAR during the melting season, although
it still presents a strong underestimation (NSE=−5.250).
On the other hand, the MEMLS-derived time series better
matches the MAR-derived time series, showing a largely sat-
isfactory NSE coefficient (0.782). In these 2 years the NSE
coefficient computed for the coarse-resolution case is nega-
tive. The magnitude of the errors is lower than for the 245 K
algorithm, indicating a weaker underestimation of the melt
extent. This can be a consequence of the coarser resolution,
which causes issues with respect to capturing melting areas
at the edges of the Greenland ice sheet.

In summary, the 245 K threshold (even if presenting ac-
ceptable results in terms of commission and omission error
considering both the AWS and MAR comparison) is too high
to fully capture the melt extent everywhere over the ice sheet.
Contrarily, we found that the MEMLS algorithm is suitable
for capturing the evolution of melting over the Greenland
ice sheet. The comparison with the 25 km historical surface
melting dataset shows the same underestimation issue for
245 K. Although the 245 K case showed lower errors, we did
not find acceptable NSE coefficient values.

3.3 Surface melting trends

Here, we report results concerning the trends in the melt du-
ration, length of the melting season and melt extent. We de-
fine melt duration (MD) as the total number of days on which
melting is detected. We compute trends in the MD over the
whole ice sheet (mean melt duration, MMD, averaged over
the total ice sheet area) and at a pixel-by-pixel scale. We also
study the maximum melting surface (MMS, maximum ex-
tent of melting area, i.e., the sum of the pixel areas in which
melting has been detected at least once over a period, ex-
pressed as a fraction of the total ice sheet area) and the cu-
mulative melting surface or melting index (MI, the sum of
the melting pixel days multiplied by the area subjected to
melting, i.e., the integral of the MD time series; Tedesco et
al., 2007). Lastly, we define melt onset date (MOD) and melt
end date (MED) as the first day when melting occurs for 2 d
in a row and when melting does not occur for at least 2 d in
a row. We report the comparison with the trends computed
according to the coarse-resolution dataset with reference to
the time period of data availability (1979–2012). Figures re-
lated to this analysis can be found in the Supplement. In
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Table 6. Nash–Sutcliffe efficiency (NSE) coefficients computed for the comparison of the retrieved melt extent using the 245 K and MEMLS
algorithms applied to the enhanced-resolution PMW Tb and MAR liquid water content outputs averaged in the first 1 m and the first 5 cm
of the snowpack. The Nash–Sutcliffe efficiency coefficients for the comparison of the coarse-resolution dataset (Mote, 2014) are computed
considering MAR5 cm.

Year NSE 245 K vs. NSE MEMLS vs. NSE MOTE vs. Year NSE 245 K vs. NSE MEMLS vs. NSE MOTE vs.
MAR1 m MAR5 cm MAR5 cm MAR1 m MAR5 cm MAR5 cm

1979 −128.769 −0.792 −5.644 2000 −5.578 0.879 −0.113
1980 −278.146 −2.917 −15.301 2001 −10.947 0.771 −0.108
1981 −173.495 −0.881 −7.615 2002 −6.553 0.731 −0.537
1982 −176.464 −1.251 −15.989 2003 −13.279 0.727 0.111
1983 −151.596 −0.540 −4.987 2004 −7.827 0.682 −0.476
1984 −144.117 −1.616 −11.158 2005 −5.370 0.782 −0.880
1985 −267.337 −2.639 −12.886 2006 −5.250 0.747 −0.159
1986 −128.639 −1.573 −12.325 2007 −4.858 0.824 0.0628
1987 −39.524 −1.893 −8.267 2008 −9.047 0.701 −0.128
1988 −35.124 −0.299 −2.683 2009 −5.219 0.770 −0.957
1989 −22.782 −0.030 −4.096 2010 −8.352 0.638 −0.506
1990 −41.515 −0.342 −3.331 2011 −4.591 0.882 −1.016
1991 −31.614 −0.422 −4.805 2012 −3.400 0.851 0.208
1992 −10.904 0.893 −0.644 2013 −8.618 0.760 −

1993 −6.456 0.818 −1.494 2014 −9.785 0.646 −

1994 −11.267 0.529 −2.410 2015 −11.418 0.611 −

1995 −7.7644 0.021 −0.839 2016 −11.827 0.505 −

1996 −10.212 0.512 −2.562 2017 −90.906 −0.323 −

1997 −6.449 0.771 −0.648 2018 −35.901 0.485 −

1998 −8.263 0.605 −2.558 2019 −39.983 0.319 −

1999 −4.201 0.865 −5.644

Fig. 9, we report the time series of the annual MMD, MMS
and MI values for the 1979–2019 and 1988–2019 reference
periods. We decided to look at two different reference pe-
riods in view of the fact that SMMR data are collected ev-
ery other day and that the SMMR and SSM/I sensors are
fundamentally different from one another (although this is
not true for the remaining SSM/I sensors). We show the re-
sults obtained by applying the MEMLS algorithm (the one
that presented the best performance in all of the cases con-
sidered) and the 245 K threshold (because it presents good
performance in the omission and commission error analy-
sis, even if it has the limitation of strongly underestimating
the melt extent from the comparison with MAR outputs).
For the MMD (Fig. 9a), we obtain a positive statistically
significant (p value< 0.05) trend from both the 245 K and
MEMLS algorithms (except for the 1988–2019 period for
245 K): 0.249 d yr−1 (0.108 d yr−1) for the 245 K algorithm
for the 1980–2019 (1988–2019) period and 0.451 d yr−1

(0.291 d yr−1) for the MEMLS algorithm. The trends com-
puted using the coarse-resolution dataset results (Fig. S3a in
the Supplement) equal 0.587 d yr−1 for the 1979–2012 pe-
riod and 0.595 d yr−1 for the 1988–2012 period, which are
smaller than MEMLS (0.704 and 0.671 d yr−1, respectively)
but larger than 245 K (0.457 and 0.418 d yr−1, respectively).
For the MMS (Fig. 9b), both the 245 K and MEMLS algo-
rithms also indicate statistically significant positive trends

(p value< 0.05 for every case and p value< 0.1 for MEMLS
for the 1988–2019 period). The computed trends suggest that
the MMS increased by 0.69 % yr−1 in the case of MEMLS
and by 0.94 % yr−1 in the case of the 245 K algorithm
for the 1979–2019 period (percentage with respect to the
whole ice sheet surface area). For the 1988–2019 period,
we also found that the trends are statistically significant but
smaller in value (0.36 % yr−1 for MEMLS and 0.47 % yr−1

for 245 K). The obtained trends computed using the 25 km
dataset (Fig. S3c in the Supplement) are equal to 1.31 % yr−1

for the 1979–2012 period and 0.91 % yr−1 for the 1988–
2012 period, which are larger than the trends computed
for MEMLS (1.03 % yr−1 and 0.77 % yr−1) but smaller than
those computed for 245 K (1.50 % yr−1 and 1.23 % yr−1). In
the case of MI (Fig. 9c), we also found positive statistically
significant trends of 9.166× 105 km2 d yr−1 (MEMLS) and
5.862× 105 km2 d yr−1 (245 K) for the complete time series.
When considering the reduced reference period, we found a
95 % statistically significant trend of 5.726× 105 km2 d yr−1

only in the case of MEMLS. The trends computed
for the 25 km resolution dataset results (Fig. S3b in
the Supplement) equal 0.999× 106 km2 d yr−1 (1979–
2012) and 1.019× 106 km2 d yr−1 (1988–2012), which
are smaller than those for MEMLS (1.428× 106 and
1.325× 106 km2 d yr−1, respectively) and 245 K for the
1979–2012 period (0.999× 106 km2 d yr−1) but larger than
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Figure 8. Melt extent estimation from PMW 37 GHz horizontally polarized Tb (red) and the MAR (blue) regional climate model. Time series
were obtained using the 245 K algorithm and the LWC average in the first 1 m of the snowpack (left), and the MEMLS algorithm and the
LWC average in the first 5 cm of the snowpack (right), for the years (a) 1983 and (b) 2005.

245 K for the 1988–2012 period (1.019× 106 km2 d yr−1).
Lastly, in Fig. 9d, we report the MOD and MED averaged
spatially over the pixels with 95 % significant trends. We
found that the average MOD (crosses in Fig. 9d) presents
similar trends for 245 K and MEMLS considering both the
entire and shortened time series: −0.546 and −0.273 d yr−1

for 245 K, respectively, and −0.404 and −0.254 d yr−1 for
MEMLS, respectively. For the 1979–2012 (1988–2012) ref-
erence period, the trend in the MOD computed from the
25 km resolution dataset (Fig. S4a in the Supplement) was
equal to −0.585 d yr−1 (−0.562 d yr−1), which is equal to
and larger in absolute value than MEMLS between 1979
and 2012 (−0.585 d yr−1) and MEMLS between 1988 and
2012 (−0.494 d yr−1), respectively, but smaller than 245 K
between 1979 and 2012 (−0.801 d yr−1) and 245 K between
1988 and 2012 (−0.568 d yr−1). On the contrary, we found
larger differences when considering the reduced time series
for the average MED (in red, Fig. 9), with results equal
to 0.687 d yr−1 for 245 K (1979–2019), 0.708 d yr−1 for

MEMLS (1979–2019) and 0.396 d yr−1 for MEMLS (1988–
2019). The 245 K algorithm does not present a statistically
significant trend over the 1988–2019 period. This difference
suggests that the 245 K algorithm may have stronger limita-
tions with respect to capturing the last portion of the melt-
ing season for SMMR data, thereby confirming the problems
observed with melt detection using this source of data vs.
MAR1 m simulations. The trends computed from the coarse-
resolution dataset (Fig. S4b in the Supplement) are equal to
0.850 for the 1979–2012 period and 0.716 for the 1988–
2012 period. For the 1979–2012 (1988–2012) period, we
found a delay of 0.937 d yr−1 (0.621 d yr−1) for MEMLS and
1.046 d yr−1 (0.521 d yr−1) for 245 K.

In Fig. 10 we show the trends in the MD, MOD and MED
on a pixel-by-pixel basis for the complete time series (1979–
2019). We found that the trend in the MD exhibits the highest
statistical significance (in terms of the number of statistically
significant pixels), being the most stable and reliable trend
among the pixel-by-pixel parameters analyzed. We found

The Cryosphere, 15, 2623–2646, 2021 https://doi.org/10.5194/tc-15-2623-2021



P. Colosio et al.: Enhanced resolution surface melting in Greenland 2639

Figure 9. Time series of annual (a) mean melt duration (MMD),
(b) maximum melting surface fraction (MMS, expressed as frac-
tion of the surface area of the ice sheet), (c) melt index (MI), and
(d) melt onset date (MOD) and melt end date (MED). Regres-
sion lines were computed for the 1979–2019 (solid line) and 1988–
2019 (dot-dashed line) periods. The MMD is averaged over all of
the Greenland ice sheet pixels. Red (blue) lines refer to the 245 K
(MEMLS) algorithm; in panel (d), squares (crosses) refer to MED
(MOD).

mostly positive trends in the MD in all pixels (Fig. 10a, b),
with higher values moving towards the coastline, maxima
in the ablation zone of the Jakobshavn Glacier (2.40 d yr−1

for 245 K and 2.66 d yr−1 for MEMLS) and minima in high-
altitude areas. We averaged the statistically significant trends,
finding an average of 0.468 d yr−1 for the 245 K algorithm

and an average of 0.697 d yr−1 for MEMLS. For MOD and
MED, we found a lower number of statistically significant
pixels. The statistically significant pixels exhibit a negative
trend for MOD (Fig. 10c, d) and a positive trend for MED
(Fig. 10e, f), with the melting season starting on average
0.694 d yr−1 earlier and ending 0.680 d yr−1 later according
to the 245 K algorithm (0.360 d yr−1 earlier and 0.909 d yr−1

later for MEMLS). We point out that the average of the sta-
tistically significant trends is generally higher than the trends
computed at the ice sheet scale as we computed the average
over the statistically significant pixels only.

3.4 Spatial information content

In order to investigate the spatial information content of the
enhanced-resolution PMW data with respect to the coarser-
resolution dataset, we also performed a variogram-based
analysis of the MD estimated from the two products when us-
ing either the 245 K or the MEMLS algorithms. We point out
that knowledge of scales is imperative for improving our un-
derstanding of the observed changes because processes and
related relationships change with scale. Moreover, quanti-
fying the variability of processes across scales is a critical
step, ultimately leading to proper observation and modeling
scale resolution. In this regard, the relationship between pro-
cesses, observation and modeling scales controls the ability
of a tool to detect and describe the constituent processes.
Here, we show our preliminary results of a variogram-based
analysis applied to the MD estimated from the MEMLS and
245 K algorithms for the months of May through August of
2012 when using either the enhanced or the coarse-resolution
products. We also performed the same analysis applied to
the MD estimated using LWC modeled with MAR, accord-
ing to the same rationale described in the previous sections.
Here, we compute the MD for each month of the melting
season at the pixel scale as the number of days of the month
(May, June, July or August) detected as melting for the spe-
cific pixel. The results of our analysis are summarized in
Fig. 11, where we show the empirical (blue crosses) and
modeled (red line) semi-variograms for the Greenland MD
computed by applying the MEMLS and 245 K algorithms to
both 25 and 3.125 km resolution data for the months of May
through August of 2012, and in Table 7, where we report
the parameters of the spherical fitting of the empirical semi-
variogram for the MD obtained according to the MAR1 m and
MAR5 cm approaches (an analogous representation of Fig. 11
is reported in the Supplement Fig. S5). At first, we note that
the R2 values of the fitting for the modeled variograms are
consistently higher for the enhanced-resolution data, sug-
gesting that enhanced-resolution data might be more suitable
for a variogram-based analysis. For the coarse-resolution
data, we only found R2 values of comparable magnitude
with the enhanced-resolution case in May. When comput-
ing the spherical fitting of the empirical variograms of the
MD from MAR, we found considerably similar R2 values
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Figure 10. Maps of 95 % significant trends (1979–2019) obtained with the 245 K (a, c, e) and MEMLS (b, d, f) algorithms for melt duration
(MD; panels a and b), melt onset date (MOD; panels c and d) and melt end date (MED; panels e and f). MOD and MED are defined as the
first and last 2 melting days in a row.

(between 0.118 and 0.484) for each case. The values of the
range for the 3.125 and 25 km products are similar in May
for the 245 K algorithm (of the order of ∼ 200 km), but they
appear to be different for the MEMLS algorithm – the en-
hanced product shows a lower value of ∼ 170 km in com-
parison with ∼ 270 km for the coarse product. This could be
due to the fact that the MEMLS algorithm is more sensitive

to sporadic melting, and, when applied to the enhanced Tb
dataset, it allows for the detection of melting driven by pro-
cesses whose scale cannot be captured by the coarser nature
of the historical dataset. For MAR, the value of the range is
lower in the case of MAR5 cm (187.70 km) than for MAR1 m
(199.17 km), again suggesting the affinity of MEMLS algo-
rithm with melting strictly confined to the very first layer of
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the snowpack. As the melting season progresses, the vari-
ograms of the coarse dataset show either similar values for
the range or a poor fit of the experimental variogram. In con-
trast, for the enhanced product, the values of the range tend to
decrease up to July and increase again in August. We found
the same temporal variability for MAR1 m, whereas we found
that the range increases until July and decreases in August
for MAR5 cm (see Fig. S5 in the Supplement). Moreover, a
proper fitting of the experimental variograms is achieved for
all cases for the enhanced-resolution PMW and the MAR-
derived MD. This suggests that the 25 km spatial resolution
might be too coarse to capture the spatial autocorrelation of
melting processes. In terms of the nugget effect, we found
larger values from the MAR outputs than for the PMW data.
The decrease in the range for the enhanced product may be a
consequence of the local processes that drive melting as the
melting season progresses (e.g., impact of bare ice exposure,
cryoconite holes and new snowfall) and of a more developed
network of surface meltwater, the presence of supraglacial
lakes and, in general, the fact that the processes driving sur-
face meltwater distribution (e.g., albedo and temperature)
promote a stronger spatial dependency of meltwater produc-
tion at smaller spatial scales. This is even more important
when considering that the width of regions such as the bare
ice area (where substantial melting occurs) is of the same
order of magnitude as the resolution of the coarse PMW
dataset. In August, the start of freezing of the surface runoff
system and the covering of bare ice, cryoconite holes, and the
draining of the supraglacial lakes and rivers might justify the
increase in the range values computed for this month. There-
fore, our preliminary results point to an increased informa-
tion content of the enhanced-spatial-resolution PMW prod-
uct with respect to the historical coarse-resolution product,
offering the opportunity to better capture the spatial details
of how surface melting has evolved over the Greenland ice
sheet over the past ∼ 40 years. Further analysis will help to
shed light on the processes responsible for the recent accel-
eration of surface melting.

4 Conclusions and future work

We applied threshold-based melt detection algorithms to the
3.125 km resolution 37 GHz horizontally polarized PMW Tb
to assess the skill of the PMW enhanced-resolution data to
detect surface melting for the 1979–2019 period over the
Greenland ice sheet. As the product is composed of data
acquired by different sensors on board different platforms,
we first developed a cross-calibration among all of the sen-
sors. We then compared surface melting detected from PMW
enhanced-resolution data with that estimated from AWS air
temperature data and the outputs of the MAR regional cli-
mate model. We found that the algorithm making use of a
fixed threshold value for Tb values (245 K) and the algorithm
based on the outputs of an electromagnetic model were the

most suitable for detecting persistent (245 K) and sporadic
(MEMLS) melting. Overall, we found that the MEMLS al-
gorithm showed the best performance (lowest commission
and omission errors). We compared surface melting detected
from PMW enhanced-resolution data with that estimated by
the MAR model when considering the two cases of integrat-
ing LWC over the top 5 cm and 1 m, respectively. We se-
lected these two depths to study conditions in which melt-
ing occurs sporadically (5 cm) or persistently (1 m). We ob-
tained a good match (i.e., NSE> 0.4 or, at least, positive) in
most of the years from 1992 to 2019 when comparing the
MEMLS-derived melt extent with MAR LWC in the first
5 cm of the snowpack. In contrast, we found a bad match
between the two in the 1979–1992 period, possibly due to
differences in sensor characteristics. For the melt extent re-
trieved by 245 K, we found a strong underestimation of the
melt extent (largely negative NSE coefficient values) from
1979 to 1987 that was likely due to the lower values of
“wet” Tb for SMMR data; this slightly improved from 1993
to 2019 but was still negative. Accordingly, the results ob-
tained by applying the MEMLS approach are more reliable
than those for the 245 K algorithm when considering the
1979–2019 period. In the comparison with the PMW coarse-
resolution dataset (25 km), we found that the melt extent time
series derived from the PMW enhanced-resolution data us-
ing MEMLS showed better agreement with the MAR simu-
lations than those obtained using the 25 km resolution data.

After assessing the outputs of the PMW-based algorithms,
we studied the melt onset date, melt end date, mean melt du-
ration and maximum melting surface for the 1979–2019 pe-
riod. According to the MEMLS algorithm, we found that the
melting season began 0.404 (0.254) d earlier every year be-
tween 1979 and 2019 (1988–2019) and ended 0.708 (0.396) d
later every year between 1979 and 2019 (1988–2019). These
values are averaged over the whole ice sheet, and the trends
are statistically significant at a 95 % level (p value< 0.05).
The mean melt duration increased every year by 0.451 d yr−1

(0.291 d yr−1) during the 1979–2019 (1988–2019) period.
We found differences in trends computed using the PMW
coarse-resolution data with respect to the PMW enhanced-
resolution data for the 1979–2012 and 1988–2012 reference
periods, possibly because of the different rationale behind
the melt detection algorithms and the higher level of detail in
the PMW enhanced-resolution dataset. When we performed
a spatial analysis of the trends for the melt onset dates and
duration, we found that the areas where the number of melt-
ing days has been increasing are mostly located in western
Greenland. The maximum melting surface also presents pos-
itive trends, with an increment of 0.69 % (0.36 %) every year
with respect to the Greenland ice sheet surface since 1979
(1988).

Finally, we explored the information content of the PMW
enhanced-resolution dataset with respect to the one at 25 km
and the MAR outputs using a semi-variogram approach.
The results obtained showed a better fitting of the modeled
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Table 7. Parameters of the spherical function fitted to the empirical semi-variogram for the maps of melt duration (MD) obtained by cumu-
lating the LWC simulated by MAR over the first 1 m and 5 cm of the snowpack.

May June July August

MAR1 m MAR5 cm MAR1 m MAR5 cm MAR1 m MAR5 cm MAR1 m MAR5 cm

r 199.17 187.70 233.05 207.26 186.16 282.57 211.7 230.32
s 3.97 4.02 18.28 17.78 19.66 5.24 14.08 1.78
n 3.35 4.66 44.97 37.94 79.79 31.86 28.64 5.58
R2 0.2 0.34 0.41 0.48 0.24 0.14 0.38 0.12

Figure 11. Empirical (blue crosses) and modeled (red line) semi-variograms for the Greenland melt duration (MD) computed by applying
the (a, b) MEMLS and (c, d) 245 K algorithms to both the (a, c) 25 km and (b, d) 3.125 km resolution data for each month of the melting
season (May, June, July and August). The range (r), sill (s), nugget (n) and R2 values are reported.
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spherical function to the empirical semi-variogram for the
enhanced-resolution data and MAR maps of melt duration.
Our analysis suggests that the enhanced-resolution product
is sensitive to local-scale processes, with higher sensitivity
in the case of the MEMLS algorithm. This offers the oppor-
tunity to improve our understanding of the spatial scale of
the processes driving melting and potentially paves the way
for the use of this dataset in statistically downscaling model
outputs. In this regard, as a future work, we plan to extend
the analysis of spatial scales to the atmospheric drivers of
surface melting, such as incoming solar radiation, surface
temperature and longwave radiation, and to complement this
analysis with our previous work, which is focused on under-
standing the changes in atmospheric patterns that have been
promoting enhanced melting in Greenland over the recent
decades (Tedesco and Fettweis, 2020). As we have assessed
the capacity of this dataset and method to observe temporal
trends, further development could include a combination of
the PMW enhanced-resolution dataset with higher-resolution
satellite data (optical sensors or lower frequencies) in order
to investigate the evolution of the surface meltwater networks
and the application of similar tools to other regions, such as
the Canadian Arctic Archipelago, the Himalayan Plateau and
the Antarctic Peninsula, where the enhancement of the spa-
tial resolution could be fully exploited.
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