Articles | Volume 15, issue 3
The Cryosphere, 15, 1485–1500, 2021
https://doi.org/10.5194/tc-15-1485-2021
The Cryosphere, 15, 1485–1500, 2021
https://doi.org/10.5194/tc-15-1485-2021
Research article
24 Mar 2021
Research article | 24 Mar 2021

Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States

Jennifer M. Jacobs et al.

Related authors

Precipitation Biases and Snow Physics Limitations Drive the Uncertainties in Macroscale Modeled Snow Water Equivalent
Eunsang Cho, Carrie M. Vuyovich, Sujay V. Kumar, Melissa L. Wrzesien, Rhae Sung Kim, and Jennifer M. Jacobs
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-136,https://doi.org/10.5194/hess-2022-136, 2022
Preprint under review for HESS
Short summary
Comparison of in-situ snow depth measurements and impacts on validation of unpiloted aerial system lidar over a mixed-use temperate forest landscape
Holly Proulx, Jennifer M. Jacobs, Elizabeth A. Burakowski, Eunsang Cho, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, and Cameron Wagner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-7,https://doi.org/10.5194/tc-2022-7, 2022
Revised manuscript under review for TC
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022,https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022,https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022,https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022,https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022,https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary

Cited articles

Adams, M. S., Bühler, Y., and Fromm, R.: Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope-scale snow depth maps in Alpine terrain, Pure Appl. Geophys., 175, 3303–3324, 2018. 
Broxton, P., Harpold, A., Biederman, J., Troch, P. A., Molotch, N., and Brooks, P.: Quantifying the effects of vegetation structure on snow accumulation and ablation in mixed-conifer forests, Ecohydrology, 8, 1073–1094, 2015. 
Broxton, P. D., van Leeuwen, W. J., and Biederman, J. A.: Improving Snow Water Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements, Water Resour. Res., 55, 3739–3757, https://doi.org/10.1029/2018wr024146, 2019. 
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 
Bühler, Y., Adams, M. S., Stoffel, A., and Boesch, R.: Photogrammetric reconstruction of homogenous snow surfaces in alpine terrain applying near-infrared UAS imagery, Int. J. Remote Sens., 38, 3135–3158, 2017. 
Download
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.