Articles | Volume 14, issue 1
The Cryosphere, 14, 385–402, 2020
https://doi.org/10.5194/tc-14-385-2020
The Cryosphere, 14, 385–402, 2020
https://doi.org/10.5194/tc-14-385-2020

Research article 31 Jan 2020

Research article | 31 Jan 2020

Relating regional and point measurements of accumulation in southwest Greenland

Achim Heilig et al.

Related authors

The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary
Firn data compilation reveals widespread decrease of firn air content in western Greenland
Baptiste Vandecrux, Michael MacFerrin, Horst Machguth, William T. Colgan, Dirk van As, Achim Heilig, C. Max Stevens, Charalampos Charalampidis, Robert S. Fausto, Elizabeth M. Morris, Ellen Mosley-Thompson, Lora Koenig, Lynn N. Montgomery, Clément Miège, Sebastian B. Simonsen, Thomas Ingeman-Nielsen, and Jason E. Box
The Cryosphere, 13, 845–859, https://doi.org/10.5194/tc-13-845-2019,https://doi.org/10.5194/tc-13-845-2019, 2019
Short summary
Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland Ice Sheet and comparison with simulations of regional climate modeling
Achim Heilig, Olaf Eisen, Michael MacFerrin, Marco Tedesco, and Xavier Fettweis
The Cryosphere, 12, 1851–1866, https://doi.org/10.5194/tc-12-1851-2018,https://doi.org/10.5194/tc-12-1851-2018, 2018
Short summary
Verification of the multi-layer SNOWPACK model with different water transport schemes
N. Wever, L. Schmid, A. Heilig, O. Eisen, C. Fierz, and M. Lehning
The Cryosphere, 9, 2271–2293, https://doi.org/10.5194/tc-9-2271-2015,https://doi.org/10.5194/tc-9-2271-2015, 2015
Short summary
Lidar snow cover studies on glaciers in the Ötztal Alps (Austria): comparison with snow depths calculated from GPR measurements
K. Helfricht, M. Kuhn, M. Keuschnig, and A. Heilig
The Cryosphere, 8, 41–57, https://doi.org/10.5194/tc-8-41-2014,https://doi.org/10.5194/tc-8-41-2014, 2014

Related subject area

Discipline: Ice sheets | Subject: Greenland
Modeling the Greenland englacial stratigraphy
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556, https://doi.org/10.5194/tc-15-4539-2021,https://doi.org/10.5194/tc-15-4539-2021, 2021
Short summary
Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679, https://doi.org/10.5194/tc-15-3655-2021,https://doi.org/10.5194/tc-15-3655-2021, 2021
Short summary
Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021,https://doi.org/10.5194/tc-15-3119-2021, 2021
Short summary
Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021,https://doi.org/10.5194/tc-15-3013-2021, 2021
Short summary
Contrasting regional variability of buried meltwater extent over 2 years across the Greenland Ice Sheet
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021,https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary

Cited articles

Bennartz, R., Fell, F., Pettersen, C., Shupe, M. D., and Schuettemeyer, D.: Spatial and temporal variability of snowfall over Greenland from CloudSat observations, Atmos. Chem. Phys., 19, 8101–8121, https://doi.org/10.5194/acp-19-8101-2019, 2019. a
Charalampidis, C., van As, D., Colgan, W. T., Fausto, R. S., MacFerrin, M., and Machguth, H.: Thermal tracing of retained meltwater in the lower accumulation area of the Southwestern Greenland ice sheet, Ann. Glaciol., 57, 1–10, https://doi.org/10.1017/aog.2016.2, 2016. a
Dunse, T., Eisen, O., Helm, V., Rack, W., Steinhage, D., and Parry, V.: Characteristics and small-scale variability of GPR signals and their relation to snow accumulation in Greenland's percolation zone, J. Glaciol., 54, 333–342, https://doi.org/10.3189/002214308784886207, 2008. a, b, c
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Fahrmeir, L., Künstler, R., Pigeot, I., and Tutz, G.: Statistik: Der Weg zur Datenanalyse, Springer-Lehrbuch, Springer, Berlin and Heidelberg, 7. Auflage, korrigierter Nachdruck, 2011. a
Download
Short summary
We investigate the spatial representativeness of point observations of snow accumulation in SW Greenland. Such analyses have rarely been conducted but are necessary to link regional-scale observations from, e.g., remote-sensing data to firn cores and snow pits. The presented data reveal a low regional variability in density but snow depth can vary significantly. It is necessary to combine pits with spatial snow depth data to increase the regional representativeness of accumulation observations.