Articles | Volume 11, issue 1
Research article
13 Feb 2017
Research article |  | 13 Feb 2017

Surface energy budget responses to radiative forcing at Summit, Greenland

Nathaniel B. Miller, Matthew D. Shupe, Christopher J. Cox, David Noone, P. Ola G. Persson, and Konrad Steffen

Abstract. Greenland Ice Sheet surface temperatures are controlled by an exchange of energy at the surface, which includes radiative, turbulent, and ground heat fluxes. Data collected by multiple projects are leveraged to calculate all surface energy budget (SEB) terms at Summit, Greenland, for the full annual cycle from July 2013 to June 2014 and extend to longer periods for the radiative and turbulent SEB terms. Radiative fluxes are measured directly by a suite of broadband radiometers. Turbulent sensible heat flux is estimated via the bulk aerodynamic and eddy correlation methods, and the turbulent latent heat flux is calculated via a two-level approach using measurements at 10 and 2 m. The subsurface heat flux is calculated using a string of thermistors buried in the snow pack. Extensive quality-control data processing produced a data set in which all terms of the SEB are present 75 % of the full annual cycle, despite the harsh conditions. By including a storage term for a near-surface layer, the SEB is balanced in this data set to within the aggregated uncertainties for the individual terms. November and August case studies illustrate that surface radiative forcing is driven by synoptically forced cloud characteristics, especially by low-level, liquid-bearing clouds. The annual cycle and seasonal diurnal cycles of all SEB components indicate that the non-radiative terms are anticorrelated to changes in the total radiative flux and are hence responding to cloud radiative forcing. Generally, the non-radiative SEB terms and the upwelling longwave radiation component compensate for changes in downwelling radiation, although exact partitioning of energy in the response terms varies with season and near-surface characteristics such as stability and moisture availability. Substantial surface warming from low-level clouds typically leads to a change from a very stable to a weakly stable near-surface regime with no solar radiation or from a weakly stable to neutral/unstable regime with solar radiation. Relationships between forcing terms and responding surface fluxes show that the upwelling longwave radiation produces 65–85 % (50–60 %) of the total response in the winter (summer) and the non-radiative terms compensate for the remaining change in the combined downwelling longwave and net shortwave radiation. Because melt conditions are rarely reached at Summit, these relationships are documented for conditions of surface temperature below 0 °C, with and without solar radiation. This is the first time that forcing and response term relationships have been investigated in detail for the Greenland SEB. These results should both advance understanding of process relationships over the Greenland Ice Sheet and be useful for model validation.

Please read the corrigendum first before accessing the article.


The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
A comprehensive observational dataset is assembled to investigate atmosphere–Greenland ice sheet interactions and characterize surface temperature variability. The amount the surface temperature warms, due to increases in cloud presence and/or elevated sun angle, varies throughout the annual cycle and is modulated by the responses of latent, sensible and ground heat fluxes. This observationally based study provides process-based relationships, which are useful for evaluation of climate models.