Articles | Volume 14, issue 5
https://doi.org/10.5194/tc-14-1727-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-1727-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM–NAOSIM
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
School of Marine Sciences, Nanjing University of Information
Science and Technology, Nanjing, China
Annette Rinke
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Wolfgang Dorn
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Gunnar Spreen
Institute of Environmental Physics, University of Bremen, Bremen,
Germany
Christof Lüpkes
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Hiroshi Sumata
Ocean and Sea Ice, Norwegian Polar Institute, Tromsø, Norway
Vladimir M. Gryanik
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany
Related authors
No articles found.
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025, https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Short summary
Melt water puddles, or melt ponds on top of the Arctic sea ice, are a good measure of the Arctic climate state. In the context of recent climate warming, the Arctic has warmed about 4 times faster than the rest of the world, and a long-term dataset of the melt pond fraction is needed to be able to model the future development of the Arctic climate. We present such a dataset, produce 2002–2023 trends and highlight a potential melt regime shift with drastic regional trends of + 20 % per decade.
Karl Kortum, Suman Singha, and Gunnar Spreen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3351, https://doi.org/10.5194/egusphere-2024-3351, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Improved sea ice observations are essential to understanding the processes that lead to the strong warming effect currently being observed in the Arctic. In this work, we combine complementary satellite measurement techniques and find remarkable correlations between the two observations. This allows us to expand the coverage of ice topography measurements to a scope and resolution that could not previously be observed.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127, https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary
Short summary
Melt ponds on Arctic sea ice affect how much solar energy is absorbed, influencing ice melt and climate change. This study used satellite data from 2017–2023 to examine how these ponds vary across regions and seasons. The results show that the surface fraction of melt ponds is more stable in the Central Arctic, with air temperature and ice surface roughness playing key roles in their formation. Understanding these patterns can help to improve climate models and predictions for Arctic warming.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024, https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
Short summary
It is demonstrated that the explicit consideration of the cloud dependence of the snow surface albedo in a climate model results in a more realistic simulation of the surface albedo during the snowmelt period in late May and June. Although this improvement appears to be relatively insubstantial, it has significant impact on the simulated sea-ice volume and extent in the model due to an amplification of the snow/sea-ice albedo feedback, one of the main contributors to Arctic amplification.
Falco Monsees, Alexei Rozanov, John P. Burrows, Mark Weber, Annette Rinke, Ralf Jaiser, and Peter von der Gathen
Atmos. Chem. Phys., 24, 9085–9099, https://doi.org/10.5194/acp-24-9085-2024, https://doi.org/10.5194/acp-24-9085-2024, 2024
Short summary
Short summary
Cyclones strongly influence weather predictability but still cannot be fully characterised in the Arctic because of the sparse coverage of meteorological measurements. A potential approach to compensate for this is the use of satellite measurements of ozone, because cyclones impact the tropopause and therefore also ozone. In this study we used this connection to investigate the correlation between ozone and the tropopause in the Arctic and to identify cyclones with satellite ozone observations.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-281, https://doi.org/10.5194/essd-2024-281, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign specific instrument operation, data processing, and data quality. The data set comprises in-situ and remote sensing observations from three research aircraft, HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024, https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated against airborne and ground-based measurements conducted in the European Arctic in different seasons between 2017 and 2022. We found a seasonally dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. The strongest effects of the albedo model bias on the net irradiance were most apparent in the presence of optically thin clouds.
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024, https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Melanie Lauer, Annette Rinke, Irina Gorodetskaya, Michael Sprenger, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 23, 8705–8726, https://doi.org/10.5194/acp-23-8705-2023, https://doi.org/10.5194/acp-23-8705-2023, 2023
Short summary
Short summary
We present a new method to analyse the influence of atmospheric rivers (ARs), cyclones, and fronts on the precipitation in the Arctic, based on two campaigns: ACLOUD (early summer 2017) and AFLUX (early spring 2019). There are differences between both campaign periods: in early summer, the precipitation is mostly related to ARs and fronts, especially when they are co-located, while in early spring, cyclones isolated from ARs and fronts contributed most to the precipitation.
Amelie U. Schmitt and Christof Lüpkes
The Cryosphere, 17, 3115–3136, https://doi.org/10.5194/tc-17-3115-2023, https://doi.org/10.5194/tc-17-3115-2023, 2023
Short summary
Short summary
In the last few decades, the region between Greenland and Svalbard has experienced the largest loss of Arctic sea ice in winter. We analyze how changes in air temperature, humidity and wind in this region differ for winds that originate from sea ice covered areas and from the open ocean. The largest impacts of sea ice cover are found for temperatures close to the ice edge and up to a distance of 500 km. Up to two-thirds of the observed temperature variability is related to sea ice changes.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Jan Chylik, Dmitry Chechin, Regis Dupuy, Birte S. Kulla, Christof Lüpkes, Stephan Mertes, Mario Mech, and Roel A. J. Neggers
Atmos. Chem. Phys., 23, 4903–4929, https://doi.org/10.5194/acp-23-4903-2023, https://doi.org/10.5194/acp-23-4903-2023, 2023
Short summary
Short summary
Arctic low-level clouds play an important role in the ongoing warming of the Arctic. Unfortunately, these clouds are not properly represented in weather forecast and climate models. This study tries to cover this gap by focusing on clouds over open water during the spring, observed by research aircraft near Svalbard. The study combines the high-resolution model with sets of observational data. The results show the importance of processes that involve both ice and the liquid water in the clouds.
Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, André Ehrlich, and Manfred Wendisch
Atmos. Chem. Phys., 23, 4685–4707, https://doi.org/10.5194/acp-23-4685-2023, https://doi.org/10.5194/acp-23-4685-2023, 2023
Short summary
Short summary
Clouds represent a very important component of the Arctic climate system, as they strongly reduce the amount of heat lost to space from the sea ice surface. Properties of clouds, as well as their persistence, strongly depend on the complex interaction of such small-scale properties as phase transitions, radiative transfer and turbulence. In this study we use airborne observations to learn more about the effect of clouds and radiative cooling on turbulence in comparison with other factors.
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Christian Melsheimer, Gunnar Spreen, Yufang Ye, and Mohammed Shokr
The Cryosphere, 17, 105–126, https://doi.org/10.5194/tc-17-105-2023, https://doi.org/10.5194/tc-17-105-2023, 2023
Short summary
Short summary
It is necessary to know the type of Antarctic sea ice present – first-year ice (grown in one season) or multiyear ice (survived one summer melt) – to understand and model its evolution, as the ice types behave and react differently. We have adapted and extended an existing method (originally for the Arctic), and now, for the first time, daily maps of Antarctic sea ice types can be derived from microwave satellite data. This will allow a new data set from 2002 well into the future to be built.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Annakaisa von Lerber, Mario Mech, Annette Rinke, Damao Zhang, Melanie Lauer, Ana Radovan, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 7287–7317, https://doi.org/10.5194/acp-22-7287-2022, https://doi.org/10.5194/acp-22-7287-2022, 2022
Short summary
Short summary
Snowfall is an important climate indicator. However, microphysical snowfall processes are challenging for atmospheric models. In this study, the performance of a regional climate model is evaluated in modeling the spatial and temporal distribution of Arctic snowfall when compared to CloudSat satellite observations. Excellent agreement in averaged annual snowfall rates is found, and the shown methodology offers a promising diagnostic tool to investigate the shown differences further.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022, https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
Short summary
A major goal of the Springtime Atmospheric Boundary Layer Experiment (STABLE) aircraft campaign was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea-ice-covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends in MCAOs.
Klaus Dethloff, Wieslaw Maslowski, Stefan Hendricks, Younjoo J. Lee, Helge F. Goessling, Thomas Krumpen, Christian Haas, Dörthe Handorf, Robert Ricker, Vladimir Bessonov, John J. Cassano, Jaclyn Clement Kinney, Robert Osinski, Markus Rex, Annette Rinke, Julia Sokolova, and Anja Sommerfeld
The Cryosphere, 16, 981–1005, https://doi.org/10.5194/tc-16-981-2022, https://doi.org/10.5194/tc-16-981-2022, 2022
Short summary
Short summary
Sea ice thickness anomalies during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) winter in January, February and March 2020 were simulated with the coupled Regional Arctic climate System Model (RASM) and compared with CryoSat-2/SMOS satellite data. Hindcast and ensemble simulations indicate that the sea ice anomalies are driven by nonlinear interactions between ice growth processes and wind-driven sea-ice transports, with dynamics playing a dominant role.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Carolina Viceto, Irina V. Gorodetskaya, Annette Rinke, Marion Maturilli, Alfredo Rocha, and Susanne Crewell
Atmos. Chem. Phys., 22, 441–463, https://doi.org/10.5194/acp-22-441-2022, https://doi.org/10.5194/acp-22-441-2022, 2022
Short summary
Short summary
We focus on anomalous moisture transport events known as atmospheric rivers (ARs). During ACLOUD and PASCAL, three AR events were identified: 30 May, 6 June, and 9 June 2017. We explore their spatio-temporal evolution and precipitation patterns using measurements, reanalyses, and a model. We show the importance of the following: Atlantic and Siberian pathways during spring–summer in the Arctic, AR-associated heat/moisture increase, precipitation phase transition, and high-resolution datasets.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Johannes Stapf, André Ehrlich, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-279, https://doi.org/10.5194/acp-2021-279, 2021
Preprint withdrawn
Short summary
Short summary
Airborne observations of the surface radiative energy budget in the marginal sea ice zone (the region between open ocean and closed sea ice) are presented. Atmospheric thermodynamic profiles and surface properties change on small spatial scales in this area and influence the impact of clouds on the radiative energy budget. The radiation budget over sea ice is compared to available studies in the Arctic and the influence of cold air outbreaks and warm air intrusions is illustrated.
Yu Zhang, Tingting Zhu, Gunnar Spreen, Christian Melsheimer, Marcus Huntemann, Nick Hughes, Shengkai Zhang, and Fei Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-85, https://doi.org/10.5194/tc-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
We developed an algorithm for ice-water classification using Sentinel-1 data during melting seasons in the Fram Strait. The proposed algorithm has the OA of nearly 90 % with STD less than 10 %. The comparison of sea ice concentration demonstrate that it can provide detailed information of sea ice with the spatial resolution of 1km. The time series shows the average June to September sea ice area does not change so much in 2015–2017 and 2019–2020, but it has a significant decrease in 2018.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Larysa Istomina, Henrik Marks, Marcus Huntemann, Georg Heygster, and Gunnar Spreen
Atmos. Meas. Tech., 13, 6459–6472, https://doi.org/10.5194/amt-13-6459-2020, https://doi.org/10.5194/amt-13-6459-2020, 2020
Ilias Bougoudis, Anne-Marlene Blechschmidt, Andreas Richter, Sora Seo, John Philip Burrows, Nicolas Theys, and Annette Rinke
Atmos. Chem. Phys., 20, 11869–11892, https://doi.org/10.5194/acp-20-11869-2020, https://doi.org/10.5194/acp-20-11869-2020, 2020
Short summary
Short summary
A 22-year (1996 to 2017) consistent Arctic tropospheric BrO dataset derived from four satellite remote sensing instruments is presented. An increase in tropospheric BrO VCDs over this period, and especially during polar springs, can be seen. Comparisons of tropospheric BrO VCDs with first-year sea ice reveal a moderate spatial and temporal correlation between the two, suggesting that the increase in first-year sea ice in the Arctic has an impact on tropospheric BrO abundancies.
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020, https://doi.org/10.5194/acp-20-9895-2020, 2020
Arantxa M. Triana-Gómez, Georg Heygster, Christian Melsheimer, Gunnar Spreen, Monia Negusini, and Boyan H. Petkov
Atmos. Meas. Tech., 13, 3697–3715, https://doi.org/10.5194/amt-13-3697-2020, https://doi.org/10.5194/amt-13-3697-2020, 2020
Short summary
Short summary
In the Arctic, in situ measurements are sparse and standard remote sensing retrieval methods have problems. We present advances in a retrieval algorithm for vertically integrated water vapour tuned for polar regions. In addition to the initial sensor used (AMSU-B), we can now also use data from the successor instrument (MHS). Additionally, certain artefacts are now filtered out. Comparison with radiosondes shows the overall good performance of the updated algorithm.
Christine Pohl, Larysa Istomina, Steffen Tietsche, Evelyn Jäkel, Johannes Stapf, Gunnar Spreen, and Georg Heygster
The Cryosphere, 14, 165–182, https://doi.org/10.5194/tc-14-165-2020, https://doi.org/10.5194/tc-14-165-2020, 2020
Short summary
Short summary
A spectral to broadband conversion is developed empirically that can be used in combination with the Melt Pond Detector algorithm to derive broadband albedo (300–3000 nm) of Arctic sea ice from MERIS data. It is validated and shows better performance compared to existing conversion methods. A comparison of MERIS broadband albedo with respective values from ERA5 reanalysis suggests a revision of the albedo values used in ERA5. MERIS albedo might be useful for improving albedo representation.
André Ehrlich, Manfred Wendisch, Christof Lüpkes, Matthias Buschmann, Heiko Bozem, Dmitri Chechin, Hans-Christian Clemen, Régis Dupuy, Olliver Eppers, Jörg Hartmann, Andreas Herber, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Leif-Leonard Kliesch, Franziska Köllner, Mario Mech, Stephan Mertes, Roland Neuber, Elena Ruiz-Donoso, Martin Schnaiter, Johannes Schneider, Johannes Stapf, and Marco Zanatta
Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, https://doi.org/10.5194/essd-11-1853-2019, 2019
Short summary
Short summary
During the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. The data set combines remote sensing and in situ measurement of cloud, aerosol, and trace gas properties, as well as turbulent and radiative fluxes, which will be used to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification.
Valentin Ludwig, Gunnar Spreen, Christian Haas, Larysa Istomina, Frank Kauker, and Dmitrii Murashkin
The Cryosphere, 13, 2051–2073, https://doi.org/10.5194/tc-13-2051-2019, https://doi.org/10.5194/tc-13-2051-2019, 2019
Short summary
Short summary
Sea-ice concentration, the fraction of an area covered by sea ice, can be observed from satellites with different methods. We combine two methods to obtain a product which is better than either of the input measurements alone. The benefit of our product is demonstrated by observing the formation of an open water area which can now be observed with more detail. Additionally, we find that the open water area formed because the sea ice drifted in the opposite direction and faster than usual.
Evelyn Jäkel, Johannes Stapf, Manfred Wendisch, Marcel Nicolaus, Wolfgang Dorn, and Annette Rinke
The Cryosphere, 13, 1695–1708, https://doi.org/10.5194/tc-13-1695-2019, https://doi.org/10.5194/tc-13-1695-2019, 2019
Short summary
Short summary
The sea ice surface albedo parameterization of a coupled regional climate model was validated against aircraft measurements performed in May–June 2017 north of Svalbard. The albedo parameterization was run offline from the model using the measured parameters surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes. An adjustment of the variables and additionally accounting for cloud cover reduced the root-mean-squared error.
Cătălin Paţilea, Georg Heygster, Marcus Huntemann, and Gunnar Spreen
The Cryosphere, 13, 675–691, https://doi.org/10.5194/tc-13-675-2019, https://doi.org/10.5194/tc-13-675-2019, 2019
Short summary
Short summary
Sea ice thickness is important for representing atmosphere–ocean interactions in climate models. A validated satellite sea ice thickness measurement algorithm is transferred to a new sensor. The results offer a better temporal and spatial coverage of satellite measurements in the polar regions. Here we describe the calibration procedure between the two sensors, taking into account their technical differences. In addition a new filter for interference from artificial radio sources is implemented.
Erlend M. Knudsen, Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, Daniel Kunkel, Marion Maturilli, Mario Mech, Carolina Viceto, Annette Rinke, Holger Schmithüsen, André Ehrlich, Andreas Macke, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 18, 17995–18022, https://doi.org/10.5194/acp-18-17995-2018, https://doi.org/10.5194/acp-18-17995-2018, 2018
Short summary
Short summary
The paper describes the synoptic development during the ACLOUD/PASCAL airborne and ship-based field campaign near Svalbard in spring 2017. This development is presented using near-surface and upperair meteorological observations, satellite, and model data. We first present time series of these data, from which we identify and characterize three key periods. Finally, we put our observations in historical and regional contexts and compare our findings to other Arctic field campaigns.
Wolfgang Dorn, Annette Rinke, Cornelia Köberle, Klaus Dethloff, and Rüdiger Gerdes
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-278, https://doi.org/10.5194/gmd-2018-278, 2018
Revised manuscript not accepted
Short summary
Short summary
A new version of the coupled Arctic climate model HIRHAM-NAOSIM has been designed to study interactions between atmosphere, sea ice, and ocean in the Arctic. This version utilizes upgraded, high-resolution model components and a revised coupling procedure. Simulations with the new version reveal that Arctic sea ice is thicker in all seasons and closer to observations than in the previous version. Wintertime biases in sea-ice extent and near-surface air temperatures are reduced as well.
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Short summary
Oceanographic data have been collected in the Arctic Ocean over many decades. They were measured by a large variety of platforms. Most of these data are publicly available from the World Ocean Database (WOD). This important online archive, however, does not contain all available modern data and has quality problems in the upper water layers. To enable a quick access to nearly all available temperature and salinity profiles, we compiled UDASH, a complete data archive with a higher quality.
Aleksey Malinka, Eleonora Zege, Larysa Istomina, Georg Heygster, Gunnar Spreen, Donald Perovich, and Chris Polashenski
The Cryosphere, 12, 1921–1937, https://doi.org/10.5194/tc-12-1921-2018, https://doi.org/10.5194/tc-12-1921-2018, 2018
Short summary
Short summary
Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere–ice–ocean system. The melt pond reflectance is modeled in the framework of the radiative transfer theory and validated with field observations. It improves understanding of melting sea ice and enables better parameterization of the surface in Arctic atmospheric remote sensing (clouds, aerosols, trace gases) and re-evaluating Arctic climatic feedbacks at a new accuracy level.
Hiroshi Sumata, Frank Kauker, Michael Karcher, Benjamin Rabe, Mary-Louise Timmermans, Axel Behrendt, Rüdiger Gerdes, Ursula Schauer, Koji Shimada, Kyoung-Ho Cho, and Takashi Kikuchi
Ocean Sci., 14, 161–185, https://doi.org/10.5194/os-14-161-2018, https://doi.org/10.5194/os-14-161-2018, 2018
Short summary
Short summary
We estimated spatial and temporal decorrelation scales of temperature and salinity in the Amerasian Basin in the Arctic Ocean. The estimated scales can be applied to representation error assessment in the ocean data assimilation system for the Arctic Ocean.
Gunnar Spreen, Ron Kwok, Dimitris Menemenlis, and An T. Nguyen
The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, https://doi.org/10.5194/tc-11-1553-2017, 2017
Paul Vallelonga, Niccolo Maffezzoli, Andrew D. Moy, Mark A. J. Curran, Tessa R. Vance, Ross Edwards, Gwyn Hughes, Emily Barker, Gunnar Spreen, Alfonso Saiz-Lopez, J. Pablo Corella, Carlos A. Cuevas, and Andrea Spolaor
Clim. Past, 13, 171–184, https://doi.org/10.5194/cp-13-171-2017, https://doi.org/10.5194/cp-13-171-2017, 2017
Short summary
Short summary
We present a study of bromine, iodine and sodium in an ice core from Law Dome, in coastal East Antarctica. We find that bromine and iodine variability at Law Dome is correlated to changes in the area of sea ice along the Law Dome coast as observed by satellite since the early 1970s. These findings are in agreement with a previous study based on MSA and confirm a long-term trend of sea ice decrease for this sector of Antarctica over the 20th century.
Carolina Cavazos Guerra, Axel Lauer, Andreas B. Herber, Tim M. Butler, Annette Rinke, and Klaus Dethloff
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-942, https://doi.org/10.5194/acp-2016-942, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Accurate description of the Arctic atmosphere is a challenge for the modelling comunity. We evaluate the performance of the Weather Research and Forecast model (WRF) in the Eurasian Arctic and analyse the implications of data to initialise the model and a land surface scheme. The results show that biases can be related to the quality of data used and in the case of black carbon concentrations, to emission data. More long term measurements are need for model Validation in the area.
Wenli Wang, Annette Rinke, John C. Moore, Duoying Ji, Xuefeng Cui, Shushi Peng, David M. Lawrence, A. David McGuire, Eleanor J. Burke, Xiaodong Chen, Bertrand Decharme, Charles Koven, Andrew MacDougall, Kazuyuki Saito, Wenxin Zhang, Ramdane Alkama, Theodore J. Bohn, Philippe Ciais, Christine Delire, Isabelle Gouttevin, Tomohiro Hajima, Gerhard Krinner, Dennis P. Lettenmaier, Paul A. Miller, Benjamin Smith, Tetsuo Sueyoshi, and Artem B. Sherstiukov
The Cryosphere, 10, 1721–1737, https://doi.org/10.5194/tc-10-1721-2016, https://doi.org/10.5194/tc-10-1721-2016, 2016
Short summary
Short summary
The winter snow insulation is a key process for air–soil temperature coupling and is relevant for permafrost simulations. Differences in simulated air–soil temperature relationships and their modulation by climate conditions are found to be related to the snow model physics. Generally, models with better performance apply multilayer snow schemes.
T. Krumpen, R. Gerdes, C. Haas, S. Hendricks, A. Herber, V. Selyuzhenok, L. Smedsrud, and G. Spreen
The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, https://doi.org/10.5194/tc-10-523-2016, 2016
Short summary
Short summary
We present an extensive data set of ground-based and airborne electromagnetic ice thickness measurements covering Fram Strait in summer between 2001 and 2012. An investigation of back trajectories of surveyed sea ice using satellite-based sea ice motion data allows us to examine the connection between thickness variability, ice age and source area. In addition, we determine across and along strait gradients in ice thickness and associated volume fluxes.
W. Wang, A. Rinke, J. C. Moore, X. Cui, D. Ji, Q. Li, N. Zhang, C. Wang, S. Zhang, D. M. Lawrence, A. D. McGuire, W. Zhang, C. Delire, C. Koven, K. Saito, A. MacDougall, E. Burke, and B. Decharme
The Cryosphere, 10, 287–306, https://doi.org/10.5194/tc-10-287-2016, https://doi.org/10.5194/tc-10-287-2016, 2016
Short summary
Short summary
We use a model-ensemble approach for simulating permafrost on the Tibetan Plateau. We identify the uncertainties across models (state-of-the-art land surface models) and across methods (most commonly used methods to define permafrost).
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
We differentiate between uncertainties stemming from climatic driving data or from physical process parameterization, and show how these uncertainties vary seasonally and inter-annually, and how estimates are subject to the definition of permafrost used.
A. Spolaor, T. Opel, J. R. McConnell, O. J. Maselli, G. Spreen, C. Varin, T. Kirchgeorg, D. Fritzsche, A. Saiz-Lopez, and P. Vallelonga
The Cryosphere, 10, 245–256, https://doi.org/10.5194/tc-10-245-2016, https://doi.org/10.5194/tc-10-245-2016, 2016
Short summary
Short summary
The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic) and halogen measurements. The results suggest a connection between bromine and sea ice, as well as a connection between iodine concentration in snow and summer sea ice.
S. Peng, P. Ciais, G. Krinner, T. Wang, I. Gouttevin, A. D. McGuire, D. Lawrence, E. Burke, X. Chen, B. Decharme, C. Koven, A. MacDougall, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, C. Delire, T. Hajima, D. Ji, D. P. Lettenmaier, P. A. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
The Cryosphere, 10, 179–192, https://doi.org/10.5194/tc-10-179-2016, https://doi.org/10.5194/tc-10-179-2016, 2016
Short summary
Short summary
Soil temperature change is a key indicator of the dynamics of permafrost. Using nine process-based ecosystem models with permafrost processes, a large spread of soil temperature trends across the models. Air temperature and longwave downward radiation are the main drivers of soil temperature trends. Based on an emerging observation constraint method, the total boreal near-surface permafrost area decrease comprised between 39 ± 14 × 103 and 75 ± 14 × 103 km2 yr−1 from 1960 to 2000.
F. Kauker, T. Kaminski, R. Ricker, L. Toudal-Pedersen, G. Dybkjaer, C. Melsheimer, S. Eastwood, H. Sumata, M. Karcher, and R. Gerdes
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5521-2015, https://doi.org/10.5194/tcd-9-5521-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The manuscript describes the use of remotely sensed sea ice observations for the initialization of seasonal sea ice predictions. Among other observations, CryoSat-2 ice thickness is, to our knowledge for the first time, utilized. While a direct assimilation with CryoSat ice thickness could improve the predictions only locally, the use an advanced data assimilation system (4dVar) allows to establish a bias correction scheme, which is shown to improve the seasonal predictions Arctic wide.
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014, https://doi.org/10.5194/tc-8-1757-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Mielke, N. S. Zinoviev, K. Dethloff, A. Rinke, V. J. Kustov, A. P. Makshtas, V. T. Sokolov, R. Neuber, M. Maturilli, D. Klaus, D. Handorf, and J. Graeser
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-11855-2014, https://doi.org/10.5194/acpd-14-11855-2014, 2014
Revised manuscript has not been submitted
H. Sumata, F. Kauker, R. Gerdes, C. Köberle, and M. Karcher
Ocean Sci., 9, 609–630, https://doi.org/10.5194/os-9-609-2013, https://doi.org/10.5194/os-9-609-2013, 2013
A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma
The Cryosphere, 7, 153–166, https://doi.org/10.5194/tc-7-153-2013, https://doi.org/10.5194/tc-7-153-2013, 2013
Related subject area
Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Assessing the representation of Arctic sea ice and the marginal ice zone in ocean–sea ice reanalyses
Sea-ice conditions from 1880 to 2017 on the Northeast Greenland continental shelf: a biomarker and observational record comparison
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Reconstruction of Arctic sea ice thickness (1992–2010) based on a hybrid machine learning and data assimilation approach
Improving short-term sea ice concentration forecasts using deep learning
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents
A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice thickness observation from 1995 to 2021
Rapid sea ice changes in the future Barents Sea
Causes and evolution of winter polynyas north of Greenland
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Perspectives on future sea ice and navigability in the Arctic
Lasting impact of winds on Arctic sea ice through the ocean's memory
Holocene sea-ice dynamics in Petermann Fjord in relation to ice tongue stability and Nares Strait ice arch formation
Presentation and evaluation of the Arctic sea ice forecasting system neXtSIM-F
Combined influence of oceanic and atmospheric circulations on Greenland sea ice concentration
Seasonal changes in sea ice kinematics and deformation in the Pacific sector of the Arctic Ocean in 2018/19
Year-round impact of winter sea ice thickness observations on seasonal forecasts
Ensemble-based estimation of sea-ice volume variations in the Baffin Bay
Sea ice drift and arch evolution in the Robeson Channel using the daily coverage of Sentinel-1 SAR data for the 2016–2017 freezing season
Brief communication: Arctic sea ice thickness internal variability and its changes under historical and anthropogenic forcing
Seasonal transition dates can reveal biases in Arctic sea ice simulations
The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission
The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf
Spectral attenuation of ocean waves in pack ice and its application in calibrating viscoelastic wave-in-ice models
New observations of the distribution, morphology and dissolution dynamics of cryogenic gypsum in the Arctic Ocean
Multidecadal Arctic sea ice thickness and volume derived from ice age
Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations
The Arctic sea ice extent change connected to Pacific decadal variability
Impact of sea ice floe size distribution on seasonal fragmentation and melt of Arctic sea ice
Induced surface fluxes: a new framework for attributing Arctic sea ice volume balance biases to specific model errors
Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution
Benchmark seasonal prediction skill estimates based on regional indices
On the timescales and length scales of the Arctic sea ice thickness anomalies: a study based on 14 reanalyses
Past and future interannual variability in Arctic sea ice in coupled climate models
Arctic sea-ice-free season projected to extend into autumn
Definition differences and internal variability affect the simulated Arctic sea ice melt season
The potential of sea ice leads as a predictor for summer Arctic sea ice extent
Arctic climate: changes in sea ice extent outweigh changes in snow cover
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024, https://doi.org/10.5194/tc-18-4687-2024, 2024
Short summary
Short summary
Arctic sea ice is thinning and retreating because of global warming. Thus, the region is transitioning to a new state featuring an expansion of the marginal ice zone, a region where mobile ice interacts with waves from the open ocean. By analyzing 30 years of sea ice reconstructions that combine numerical models and observations, this paper proves that an ensemble of global ocean and sea ice reanalyses is an adequate tool for investigating the changing Arctic sea ice cover.
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024, https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
Short summary
Here, we evaluate the use of biomarkers for reconstructing sea ice between 1880 and 2017 from three sediment cores located in a transect across the Northeast Greenland continental shelf. We find that key changes, specifically the decline in sea-ice cover identified in observational records between 1971 and 1984, align with our biomarker reconstructions. This outcome supports the use of biomarkers for longer reconstructions of sea-ice cover in this region.
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024, https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Short summary
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew uncrewed aerial vehicles (UAVs) equipped with sensors designed to quantify the sunlight that is reflected by sea ice at each wavelength over the sea ice of Kotzebue Sound, Alaska. We found that snow patches get darker (up to ~ 20 %) as they get smaller, while bare patches get darker (up to ~ 20 %) as they get larger. We believe that this difference is due to melting around the edges of small features.
Léo Edel, Jiping Xie, Anton Korosov, Julien Brajard, and Laurent Bertino
EGUsphere, https://doi.org/10.5194/egusphere-2024-1896, https://doi.org/10.5194/egusphere-2024-1896, 2024
Short summary
Short summary
This study developed a new method to estimate Arctic sea ice thickness from 1992 to 2010 using a combination of machine learning and data assimilation. By training a machine learning model on data from 2011–2022, past errors in sea ice thickness can be corrected, leading to improved estimations. This approach provides insights into historical changes on sea ice thickness, showing a notable decline from 1992 to 2022, and offers a valuable resource for future studies.
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024, https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Short summary
Sea ice forecasts are operationally produced using physically based models, but these forecasts are often not accurate enough for maritime operations. In this study, we developed a statistical correction technique using machine learning in order to improve the skill of short-term (up to 10 d) sea ice concentration forecasts produced by the TOPAZ4 model. This technique allows for the reduction of errors from the TOPAZ4 sea ice concentration forecasts by 41 % on average.
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024, https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary
Short summary
We retrieved sea ice drift in Fram Strait using the Chinese HaiYang 1D Coastal Zone Imager. The dataset is has hourly and daily intervals for analysis, and validation is performed using a synthetic aperture radar (SAR)-based product and International Arctic Buoy Programme (IABP) buoys. The differences between them are explained by investigating the spatiotemporal variability in sea ice motion. The accuracy of flow direction retrieval for sea ice drift is also related to sea ice displacement.
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024, https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Short summary
In this study, we analysed 14 sea-ice proxy records and compared them with the results from two different climate simulations from the Atlantic sector of the Arctic Ocean over the Common Era (last 2000 years). Both proxy and model approaches demonstrated a long-term sea-ice increase. The good correspondence suggests that the state-of-the-art sea-ice proxies are able to capture large-scale climate drivers. Short-term variability, however, was less coherent due to local-to-regional scale forcings.
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024, https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024, https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Short summary
We used satellite images to create sea ice maps of Hornsund fjord, Svalbard, for nine seasons and calculated the percentage of the fjord that was covered by ice. On average, sea ice was present in Hornsund for 158 d per year, but it varied from year to year. April was the "iciest'" month and 2019/2020, 2021/22 and 2014/15 were the "iciest'" seasons. Our data can be used to understand sea ice conditions compared with other fjords of Svalbard and in studies of wave modelling and coastal erosion.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Geoffrey J. Dawson and Jack C. Landy
The Cryosphere, 17, 4165–4178, https://doi.org/10.5194/tc-17-4165-2023, https://doi.org/10.5194/tc-17-4165-2023, 2023
Short summary
Short summary
In this study, we compared measurements from CryoSat-2 and ICESat-2 over Arctic summer sea ice to understand any possible biases between the two satellites. We found that there is a difference when we measure elevation over summer sea ice using CryoSat-2 and ICESat-2, and this is likely due to surface melt ponds. The differences we found were in good agreement with theoretical predictions, and this work will be valuable for summer sea ice thickness measurements from both altimeters.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023, https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Sascha Willmes, Günther Heinemann, and Frank Schnaase
The Cryosphere, 17, 3291–3308, https://doi.org/10.5194/tc-17-3291-2023, https://doi.org/10.5194/tc-17-3291-2023, 2023
Short summary
Short summary
Sea ice is an important constituent of the global climate system. We here use satellite data to identify regions in the Arctic where the sea ice breaks up in so-called leads (i.e., linear cracks) regularly during winter. This information is important because leads determine, e.g., how much heat is exchanged between the ocean and the atmosphere. We here provide first insights into the reasons for the observed patterns in sea-ice leads and their relation to ocean currents and winds.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023, https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Short summary
Sea ice has a large interannual variability, and studying its evolution requires long time series of observations. In this paper, we propose the first method to extend Arctic sea ice thickness time series to the ERS-2 altimeter. The developed method is based on a neural network to calibrate past missions on the current one by taking advantage of their differences during the mission-overlap periods. Data are available as monthly maps for each year during the winter period between 1995 and 2021.
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023, https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary
Short summary
The Barents Sea is the region of most intense winter sea ice loss, and future projections show a continued decline towards ice-free conditions by the end of this century but with large fluctuations. Here we use climate model simulations to look at the occurrence and drivers of rapid ice change events in the Barents Sea that are much stronger than the average ice loss. A better understanding of these events will contribute to improved sea ice predictions in the Barents Sea.
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023, https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Short summary
During 1979–2020, four winter polynyas occurred in December 1986 and February 2011, 2017, and 2018 north of Greenland. Instead of ice melting due to the anomalous warm air intrusion, the extreme wind forcing resulted in greater ice transport offshore. Based on the two ensemble runs, representing a 1980s thicker ice vs. a 2010s thinner ice, a dominant cause of these winter polynyas stems from internal variability of atmospheric forcing rather than from the forced response to a warming climate.
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023, https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Short summary
We present upgrades to winter Arctic sea ice thickness estimates from NASA's ICESat-2. Our new thickness results show better agreement with independent data from ESA's CryoSat-2 compared to our first data release, as well as new, very strong comparisons with data collected by moorings in the Beaufort Sea. We analyse three winters of thickness data across the Arctic, including 50 cm thinning of the multiyear ice over this 3-year period.
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635, https://doi.org/10.5194/tc-16-4617-2022, https://doi.org/10.5194/tc-16-4617-2022, 2022
Short summary
Short summary
Indicators for the start and end of annual breakup and freeze-up of sea ice at various coastal locations around the Arctic are developed. Relative to broader offshore areas, some of the coastal indicators show an earlier freeze-up and later breakup, especially at locations where landfast ice is prominent. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in synthesized metrics of the coastal breakup/freeze-up indicators.
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022, https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Short summary
The timing of Arctic sea ice melt each year is an important metric for assessing how sea ice in climate models compares to satellite observations. Here, we utilize a new tool for creating more direct comparisons between climate model projections and satellite observations of Arctic sea ice, such that the melt onset dates are defined the same way. This tool allows us to identify climate model biases more clearly and gain more information about what the satellites are observing.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022, https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Short summary
A record minimum July sea ice extent, since 1979, was observed in 2020. Our results reveal that an anomalously high advection of energy and water vapor prevailed during spring (April to June) 2020 over regions with noticeable sea ice retreat. The large-scale atmospheric circulation and cyclones act in concert to trigger the exceptionally warm and moist flow. The convergence of the transport changed the atmospheric characteristics and the surface energy budget, thus causing a severe sea ice melt.
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021, https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Short summary
Sea ice is retreating with rapid warming in the Arctic. It will continue and approach the worst predicted pathway released by the IPCC. The irreversible tipping point might show around 2060 when the oldest ice will have completely disappeared. It has a huge impact on human production. Ordinary merchant ships will be able to pass the Northeast Passage and Northwest Passage by the midcentury, and the opening time will advance to the next 10 years for icebreakers with moderate ice strengthening.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Timothy Williams, Anton Korosov, Pierre Rampal, and Einar Ólason
The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-15-3207-2021, https://doi.org/10.5194/tc-15-3207-2021, 2021
Short summary
Short summary
neXtSIM (neXt-generation Sea Ice Model) includes a novel and extremely realistic way of modelling sea ice dynamics – i.e. how the sea ice moves and deforms in response to the drag from winds and ocean currents. It has been developed over the last few years for a variety of applications, but this paper represents its first demonstration in a forecast context. We present results for the time period from November 2018 to June 2020 and show that it agrees well with satellite observations.
Sourav Chatterjee, Roshin P. Raj, Laurent Bertino, Sebastian H. Mernild, Meethale Puthukkottu Subeesh, Nuncio Murukesh, and Muthalagu Ravichandran
The Cryosphere, 15, 1307–1319, https://doi.org/10.5194/tc-15-1307-2021, https://doi.org/10.5194/tc-15-1307-2021, 2021
Short summary
Short summary
Sea ice in the Greenland Sea (GS) is important for its climatic (fresh water), economical (shipping), and ecological contribution (light availability). The study proposes a mechanism through which sea ice concentration in GS is partly governed by the atmospheric and ocean circulation in the region. The mechanism proposed in this study can be useful for assessing the sea ice variability and its future projection in the GS.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Guangyu Zuo, Dawei Gui, Qiongqiong Cai, H. Jakob Belter, and Wangxiao Yang
The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, https://doi.org/10.5194/tc-15-1321-2021, 2021
Short summary
Short summary
Quantification of ice deformation is useful for understanding of the role of ice dynamics in climate change. Using data of 32 buoys, we characterized spatiotemporal variations in ice kinematics and deformation in the Pacific sector of Arctic Ocean for autumn–winter 2018/19. Sea ice in the south and west has stronger mobility than in the east and north, which weakens from autumn to winter. An enhanced Arctic dipole and weakened Beaufort Gyre in winter lead to an obvious turning of ice drifting.
Beena Balan-Sarojini, Steffen Tietsche, Michael Mayer, Magdalena Balmaseda, Hao Zuo, Patricia de Rosnay, Tim Stockdale, and Frederic Vitart
The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, https://doi.org/10.5194/tc-15-325-2021, 2021
Short summary
Short summary
Our study for the first time shows the impact of measured sea ice thickness (SIT) on seasonal forecasts of all the seasons. We prove that the long-term memory present in the Arctic winter SIT is helpful to improve summer sea ice forecasts. Our findings show that realistic SIT initial conditions to start a forecast are useful in (1) improving seasonal forecasts, (2) understanding errors in the forecast model, and (3) recognizing the need for continuous monitoring of world's ice-covered oceans.
Chao Min, Qinghua Yang, Longjiang Mu, Frank Kauker, and Robert Ricker
The Cryosphere, 15, 169–181, https://doi.org/10.5194/tc-15-169-2021, https://doi.org/10.5194/tc-15-169-2021, 2021
Short summary
Short summary
An ensemble of four estimates of the sea-ice volume (SIV) variations in Baffin Bay from 2011 to 2016 is generated from the locally merged satellite observations, three modeled sea ice thickness sources (CMST, NAOSIM, and PIOMAS) and NSIDC ice drift data (V4). Results show that the net increase of the ensemble mean SIV occurs from October to April with the largest SIV increase in December, and the reduction occurs from May to September with the largest SIV decline in July.
Mohammed E. Shokr, Zihan Wang, and Tingting Liu
The Cryosphere, 14, 3611–3627, https://doi.org/10.5194/tc-14-3611-2020, https://doi.org/10.5194/tc-14-3611-2020, 2020
Short summary
Short summary
This paper uses sequential daily SAR images covering the Robeson Channel to quantitatively study kinematics of individual ice floes with exploration of wind influence and the evolution of the ice arch at the entry of the channel. Results show that drift of ice floes within the Robeson Channel and the arch are both significantly influenced by wind. The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring sea ice cover in narrow water passages.
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020, https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change.
The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.
Abigail Smith, Alexandra Jahn, and Muyin Wang
The Cryosphere, 14, 2977–2997, https://doi.org/10.5194/tc-14-2977-2020, https://doi.org/10.5194/tc-14-2977-2020, 2020
Short summary
Short summary
The annual cycle of Arctic sea ice can be used to gain more information about how climate model simulations of sea ice compare to observations. In some models, the September sea ice area agrees with observations for the wrong reasons because biases in the timing of seasonal transitions compensate for other unrealistic sea ice characteristics. This research was done to provide new process-based metrics of Arctic sea ice using satellite observations, the CESM Large Ensemble, and CMIP6 models.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Thomas Krumpen, Florent Birrien, Frank Kauker, Thomas Rackow, Luisa von Albedyll, Michael Angelopoulos, H. Jakob Belter, Vladimir Bessonov, Ellen Damm, Klaus Dethloff, Jari Haapala, Christian Haas, Carolynn Harris, Stefan Hendricks, Jens Hoelemann, Mario Hoppmann, Lars Kaleschke, Michael Karcher, Nikolai Kolabutin, Ruibo Lei, Josefine Lenz, Anne Morgenstern, Marcel Nicolaus, Uwe Nixdorf, Tomash Petrovsky, Benjamin Rabe, Lasse Rabenstein, Markus Rex, Robert Ricker, Jan Rohde, Egor Shimanchuk, Suman Singha, Vasily Smolyanitsky, Vladimir Sokolov, Tim Stanton, Anna Timofeeva, Michel Tsamados, and Daniel Watkins
The Cryosphere, 14, 2173–2187, https://doi.org/10.5194/tc-14-2173-2020, https://doi.org/10.5194/tc-14-2173-2020, 2020
Short summary
Short summary
In October 2019 the research vessel Polarstern was moored to an ice floe in order to travel with it on the 1-year-long MOSAiC journey through the Arctic. Here we provide historical context of the floe's evolution and initial state for upcoming studies. We show that the ice encountered on site was exceptionally thin and was formed on the shallow Siberian shelf. The analyses presented provide the initial state for the analysis and interpretation of upcoming biogeochemical and ecological studies.
Sukun Cheng, Justin Stopa, Fabrice Ardhuin, and Hayley H. Shen
The Cryosphere, 14, 2053–2069, https://doi.org/10.5194/tc-14-2053-2020, https://doi.org/10.5194/tc-14-2053-2020, 2020
Short summary
Short summary
Wave states in ice in polar oceans are mostly studied near the ice edge. However, observations in the internal ice field, where ice morphology is very different from the ice edge, are rare. Recently derived wave data from satellite imagery are easier and cheaper than field studies and provide large coverage. This work presents a way of using these data to have a close view of some key features in the wave propagation over hundreds of kilometers and calibrate models for predicting wave decay.
Jutta E. Wollenburg, Morten Iversen, Christian Katlein, Thomas Krumpen, Marcel Nicolaus, Giulia Castellani, Ilka Peeken, and Hauke Flores
The Cryosphere, 14, 1795–1808, https://doi.org/10.5194/tc-14-1795-2020, https://doi.org/10.5194/tc-14-1795-2020, 2020
Short summary
Short summary
Based on an observed omnipresence of gypsum crystals, we concluded that their release from melting sea ice is a general feature in the Arctic Ocean. Individual gypsum crystals sank at more than 7000 m d−1, suggesting that they are an important ballast mineral. Previous observations found gypsum inside phytoplankton aggregates at 2000 m depth, supporting gypsum as an important driver for pelagic-benthic coupling in the ice-covered Arctic Ocean.
Yinghui Liu, Jeffrey R. Key, Xuanji Wang, and Mark Tschudi
The Cryosphere, 14, 1325–1345, https://doi.org/10.5194/tc-14-1325-2020, https://doi.org/10.5194/tc-14-1325-2020, 2020
Short summary
Short summary
This study provides a consistent and accurate multi-decadal product of ice thickness and ice volume from 1984 to 2018 based on satellite-derived ice age. Sea ice volume trends from this dataset are stronger than the trends from other datasets. Changes in sea ice thickness contribute more to overall sea ice volume trends than changes in sea ice area do in all months.
Alice K. DuVivier, Patricia DeRepentigny, Marika M. Holland, Melinda Webster, Jennifer E. Kay, and Donald Perovich
The Cryosphere, 14, 1259–1271, https://doi.org/10.5194/tc-14-1259-2020, https://doi.org/10.5194/tc-14-1259-2020, 2020
Short summary
Short summary
In autumn 2019, a ship will be frozen into the Arctic sea ice for a year to study system changes. We analyze climate model data from a group of experiments and follow virtual sea ice floes throughout a year. The modeled sea ice conditions along possible tracks are highly variable. Observations that sample a wide range of sea ice conditions and represent the variety and diversity in possible conditions are necessary for improving climate model parameterizations over all types of sea ice.
Xiao-Yi Yang, Guihua Wang, and Noel Keenlyside
The Cryosphere, 14, 693–708, https://doi.org/10.5194/tc-14-693-2020, https://doi.org/10.5194/tc-14-693-2020, 2020
Short summary
Short summary
The post-2007 Arctic sea ice cover is characterized by a remarkable increase in annual cycle amplitude, which is attributed to multiyear variability in spring Bering sea ice extent. We demonstrated that changes of NPGO mode, by anomalous wind stress curl and Ekman pumping, trigger subsurface variability in the Bering basin. This accounts for the significant decadal oscillation of spring Bering sea ice after 2007. The study helps us to better understand the recent Arctic climate regime shift.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
Alex West, Mat Collins, Ed Blockley, Jeff Ridley, and Alejandro Bodas-Salcedo
The Cryosphere, 13, 2001–2022, https://doi.org/10.5194/tc-13-2001-2019, https://doi.org/10.5194/tc-13-2001-2019, 2019
Short summary
Short summary
This study presents a framework for examining the causes of model errors in Arctic sea ice volume, using HadGEM2-ES as a case study. Simple models are used to estimate how much of the error in energy arriving at the ice surface is due to error in key Arctic climate variables. The method quantifies how each variable affects sea ice volume balance and shows that for HadGEM2-ES an annual mean low bias in ice thickness is likely due to errors in surface melt onset.
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Short summary
A warm bias and higher total precipitation and snowfall were found in ERA5 compared with ERA-Interim (ERA-I) over Arctic sea ice. The warm bias in ERA5 was larger in the cold season when 2 m air temperature was < −25 °C and smaller in the warm season than in ERA-I. Substantial anomalous Arctic rainfall in ERA-I was reduced in ERA5, particularly in summer and autumn. When using ERA5 and ERA-I to force a 1-D sea ice model, the effects on ice growth are very small (cm) during the freezing period.
John E. Walsh, J. Scott Stewart, and Florence Fetterer
The Cryosphere, 13, 1073–1088, https://doi.org/10.5194/tc-13-1073-2019, https://doi.org/10.5194/tc-13-1073-2019, 2019
Short summary
Short summary
Persistence-based statistical forecasts of a Beaufort Sea ice severity index as well as September pan-Arctic ice extent show significant statistical skill out to several seasons when the data include the trend. However, this apparent skill largely vanishes when the trends are removed from the data. This finding is consistent with the notion of a springtime “predictability barrier” that has been found in sea ice forecasts based on more sophisticated methods.
Leandro Ponsoni, François Massonnet, Thierry Fichefet, Matthieu Chevallier, and David Docquier
The Cryosphere, 13, 521–543, https://doi.org/10.5194/tc-13-521-2019, https://doi.org/10.5194/tc-13-521-2019, 2019
Short summary
Short summary
The Arctic is a main component of the Earth's climate system. It is fundamental to understand the behavior of Arctic sea ice coverage over time and in space due to many factors, e.g., shipping lanes, the travel and tourism industry, hunting and fishing activities, mineral resource extraction, and the potential impact on the weather in midlatitude regions. In this work we use observations and results from models to understand how variations in the sea ice thickness change over time and in space.
John R. Mioduszewski, Stephen Vavrus, Muyin Wang, Marika Holland, and Laura Landrum
The Cryosphere, 13, 113–124, https://doi.org/10.5194/tc-13-113-2019, https://doi.org/10.5194/tc-13-113-2019, 2019
Short summary
Short summary
Arctic sea ice is projected to thin substantially in every season by the end of the 21st century with a corresponding increase in its interannual variability as the rate of ice loss peaks. This typically occurs when the mean ice thickness falls between 0.2 and 0.6 m. The high variability in both growth and melt processes is the primary factor resulting in increased ice variability. This study emphasizes the importance of short-term variations in ice cover within the mean downward trend.
Marion Lebrun, Martin Vancoppenolle, Gurvan Madec, and François Massonnet
The Cryosphere, 13, 79–96, https://doi.org/10.5194/tc-13-79-2019, https://doi.org/10.5194/tc-13-79-2019, 2019
Short summary
Short summary
The present analysis shows that the increase in the Arctic ice-free season duration will be asymmetrical, with later autumn freeze-up contributing about twice as much as earlier spring retreat. This feature is robustly found in a hierarchy of climate models and is consistent with a simple mechanism: solar energy is absorbed more efficiently than it can be released in non-solar form and should emerge out of variability within the next few decades.
Abigail Smith and Alexandra Jahn
The Cryosphere, 13, 1–20, https://doi.org/10.5194/tc-13-1-2019, https://doi.org/10.5194/tc-13-1-2019, 2019
Short summary
Short summary
Here we assessed how natural climate variations and different definitions impact the diagnosed and projected Arctic sea ice melt season length using model simulations. Irrespective of the definition or natural variability, the sea ice melt season is projected to lengthen, potentially by as much as 4–5 months by 2100 under the business as usual scenario. We also find that different definitions have a bigger impact on melt onset, while natural variations have a bigger impact on freeze onset.
Yuanyuan Zhang, Xiao Cheng, Jiping Liu, and Fengming Hui
The Cryosphere, 12, 3747–3757, https://doi.org/10.5194/tc-12-3747-2018, https://doi.org/10.5194/tc-12-3747-2018, 2018
Aaron Letterly, Jeffrey Key, and Yinghui Liu
The Cryosphere, 12, 3373–3382, https://doi.org/10.5194/tc-12-3373-2018, https://doi.org/10.5194/tc-12-3373-2018, 2018
Short summary
Short summary
Significant reductions in Arctic sea ice and snow cover on Arctic land have led to increases in absorbed solar energy by the surface. Does one play a more important role in Arctic climate change? Using 34 years of satellite data we found that solar energy absorption increased by 10 % over the ocean, which was 3 times greater than over land. Therefore, the decreasing sea ice cover, not changes in terrestrial snow cover, has been the dominant feedback mechanism over the last few decades.
Cited articles
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C.
W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over
summer sea ice and the marginal ice zone, Q. J. Roy.
Meteor. Soc., 136, 927–943, 2010.
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air
stress on Arctic ice, J. Geophys. Res., 78,
7092–7099, 1973.
Arya, S. P. S.: A drag partition theory for determining the large-scale
roughness parameter and wind stress on the Arctic pack ice, J.
Geophys. Res., 80, 3447–3454, 1975.
Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M.,
Kallberg, P., Kobayashi, S., Uppala, S., and Simmons, A.: The ERA-Interim
archive Version 2.0, ERA Report Series 1, ECMWF, Shinfield Park, Reading,
UK, 13177, 2011.
Birnbaum, G. and Lüpkes, C.: A new parameterization of surface drag in
the marginal sea ice zone, Tellus A,
54, 107–123, https://doi.org/10.3402/tellusa.v54i1.12121, 2002.
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Variability
of Arctic sea-ice topography and its impact on the atmospheric surface drag,
J. Geophys. Res.-Oceans, 119, 6743–6762,
https://doi.org/10.1002/2013JC009712, 2014.
Castellani, G., Losch, M., Ungermann, M., and Gerdes, R.: Sea-ice drag as a
function of deformation and ice cover: Effects on simulated sea ice and
ocean circulation in the Arctic, Ocean Model., 128, 48–66, 2018.
Comiso, J.: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS, version 3, NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, CO, 2017.
Comiso, J. C.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3, available at: https://nsidc.org/data/nsidc-0079, last access: 25 May 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q.
J. Roy. Meteor. Soc., 137, 553–597, 2011.
Docquier, D., Massonnet, F., Barthélemy, A., Tandon, N. F., Lecomte, O., and Fichefet, T.: Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6, The Cryosphere, 11, 2829–2846, https://doi.org/10.5194/tc-11-2829-2017, 2017.
Dorn, W., Dethloff, K., and Rinke, A.: Improved simulation of feedbacks between atmosphere and sea ice over the Arctic Ocean in a coupled regional climate model, Ocean Modell., 29, 103–114, https://doi.org/10.1016/j.ocemod.2009.03.010, 2009.
Dorn, W., Rinke, A., Köberle, C., Dethloff, K., and Gerdes, R.:
Evaluation of the Sea-Ice Simulation in the Upgraded Version of the Coupled
Regional Atmosphere-Ocean- Sea Ice Model HIRHAM–NAOSIM 2.0, Atmosphere, 10, https://doi.org/10.3390/atmos10080431,
2019.
ECMWF: ERA Interim, Monthly Means of Daily Means, available at: https://apps.ecmwf.int/datasets/data/interim-full-moda/, last access: 5 March 2019.
Elvidge, A. D., Renfrew, I. A., Weiss, A. I., Brooks, I. M., Lachlan-Cope, T. A., and King, J. C.: Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation, Atmos. Chem. Phys., 16, 1545–1563, https://doi.org/10.5194/acp-16-1545-2016, 2016.
Fieg, K., Gerdes, R., Fahrbach, E., Beszczynska-Möller, A., and Schauer,
U.: Simulation of oceanic volume transports through Fram Strait 1995–2005,
Ocean Dynam., 60, 491–502, 2010.
Giorgetta, M. A., Roeckner, E., Mauritsen, T., Bader, J., Crueger, T., Esch, M., Rast, S., Kornblueh, L., Schmidt, H., Kinne, S., Hohenegger, C., Möbis, B., Krismer, T., Wieners, K.-H., and Stevens, B.: The atmospheric general circulation model ECHAM6-model description, Tech. rep., Max Planck Institute for Meteorology, Hamburg, Germany, https://doi.org/10.17617/2.1810480, 2013.
Harder, M., Lemke, P., and Hilmer, M.: Simulation of sea ice transport
through Fram Strait: Natural variability and sensitivity to forcing, J.
Geophys. Res.-Oceans., 103, 5595–5606, 1998.
Hendricks, S. and Ricker, R.: Product User Guide & Algorithm
Specification: AWI CryoSat-2 Sea Ice Thickness (version 2.1), Technical
Report, hdl:10013/epic.7dacf2fe-bead-4a1b-a266-c4fdd022877f, 2019.
Hibler, W. D.: A dynamic thermodynamic sea ice model, J. Phys.
Oceanogr., 9, 815–846, 1979.
Johnson, M., Proshutinsky, A., Aksenov, Y., Nguyen, A. T., Lindsay, R.,
Haas, C., Zhang, J., Diansky, N., Kwok, R., Maslowski, W., Häkkinen, S.,
Ashik, I., and de Cuevas, B.: Evaluation of Arctic sea ice thickness
simulated by Arctic Ocean Model Intercomparison Project models, J.
Geophys. Res.-Oceans, 117, C00D13, https://doi.org/10.1029/2011JC007257, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M.,
Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang,
J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc.,
77, 437–472, 1996.
Kimura, N. and Wakatsuchi, M.: Relationship between sea-ice motion and
geostrophic wind in the northern hemisphere, Geophys. Res. Lett.,
27, 3735–3738, 2000.
Kimura, N. and Wakatsuchi, M.: Increase and decrease of sea ice area in the
Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in
convergence zones, J. Geophys. Res.-Oceans, 109, C09S03, https://doi.org/10.1029/2003JC001901, 2004.
Kimura, N., Nishimura, A., Tanaka, Y., and Yamaguchi, H.: Influence of
winter sea-ice motion on summer ice cover in the Arctic, Polar Res., 32, https://doi.org/10.3402/polar.v32i0.20193,
2013.
Köberle, C. and Gerdes, R.: Mechanisms Determining the Variability of
Arctic Sea Ice Conditions and Export, J. Climate, 16, 2843–2858,
2003.
Kushner, P. J., Mudryk, L. R., Merryfield, W., Ambadan, J. T., Berg, A., Bichet, A., Brown, R., Derksen, C., Déry, S. J., Dirkson, A., Flato, G., Fletcher, C. G., Fyfe, J. C., Gillett, N., Haas, C., Howell, S., Laliberté, F., McCusker, K., Sigmond, M., Sospedra-Alfonso, R., Tandon, N. F., Thackeray, C., Tremblay, B., and Zwiers, F. W.: Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system, The Cryosphere, 12, 1137–1156, https://doi.org/10.5194/tc-12-1137-2018, 2018.
Leppäranta, M.: The drift of sea ice, Springer Science & Business
Media, 2011.
Levitus, S. and Boyer, T. P.: World Ocean Atlas 1994, Volume 4: Temperature, NOAA Atlas NESDIS 4, Washington DC, USA, 117 pp., 1994.
Levitus, S., Burgett, R., and Boyer, T. P.: World Ocean Atlas 1994, Volume 3: Salinity, NOAA Atlas NESDIS 3, Washington DC, USA, 99 pp., 1994.
Lund, B., Graber, H. C., Persson, P. O. G., Smith, M., Doble, M., Thomson,
J., and Wadhams, P.: Arctic Sea Ice Drift Measured by Shipboard Marine
Radar, J. Geophys. Res.-Oceans, 123, 4298–4321, 2018.
Lüpkes, C. and Gryanik, V. M.: A stability-dependent parametrization of
transfer coefficients for momentum and heat over polar sea ice to be used in
climate models, J. Geophys. Res.-Atmos., 120, 552–581,
2015.
Lüpkes, C., Gryanik, V. M., Hartmann, J., and Andreas, E. L.: A
parametrization, based on sea ice morphology, of the neutral atmospheric
drag coefficients for weather prediction and climate models, J.
Geophys. Res.-Atmos., 117, D13112, https://doi.org/10.1029/2012JD017630, 2012a.
Lüpkes, C., Vihma, T., Birnbaum, G., Dierer, S., Garbrecht, T., Gryanik,
V. M., Gryschka, M., Hartmann, J., Heinemann, G., Kaleschke, L., Raasch, S.,
Savijärvi, H., Schlünzen, K. H., and Wacker, U.: Mesoscale Modelling
of the Arctic Atmospheric Boundary Layer and Its Interaction with Sea Ice,
in: Arctic Climate Change: The ACSYS Decade and Beyond, edited by: Lemke, P. and
Jacobi, H.-W., Springer Netherlands, Dordrecht, 2012b.
Nakayama, Y., Ohshima, K. I., and Fukamachi, Y.: Enhancement of sea ice
drift due to the dynamical interaction between sea ice and a coastal ocean,
J. Phys. Oceanogr., 42, 179–192, 2012.
National Institute of Polar Research: VISHOP, available at: https://ads.nipr.ac.jp/vishop/, last access: 1 March 2019.
Olason, E. and Notz, D.: Drivers of variability in Arctic sea-ice drift
speed, J. Geophys. Res.-Oceans, 119, 5755–5775, 2014.
Pacanowski, R.: MOM 2 documentation user's guide and reference manual,
Version 2.0, Geophysical Fluid Dynamics Laboratory Ocean Technical Report,
NOAA, GFDL, 232, 1996.
Rampal, P., Weiss, J., Dubois, C., and Campin, J. M.: IPCC climate models do
not capture Arctic sea ice drift acceleration: Consequences in terms of
projected sea ice thinning and decline, J. Geophys. Res.,
116, C00D07, https://doi.org/10.1029/2011JC007110, 2011.
Renfrew, I. A., Elvidge, A. D., and Edwards, J. M.: Atmospheric sensitivity
to marginal-ice-zone drag: local and global responses, Q. J.
Roy. Meteor. Soc., 145, 1165–1179, https://doi.org/10.1002/qj.3486, 2019.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., and Manzini, E.: The atmospheric general circulation model ECHAM 5. PART I: Model description, Tech. Rep., Max Planck Institute for Meteorology, Hamburg, Germany, https://doi.org/10.17617/2.995269, 2003.
Rossby, C.-G. and Montgomery, R. B.: The layer of frictional influence in wind and ocean currents, Pap. Phys. Oceanogr. Meteor., 3, 1–101, 1935.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys.
Res., 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.
Semtner, A. J.: A model for the thermodynamic growth of sea ice in numerical
investigations of climate, J. Phys. Oceanogr., 6, 379–389,
1976.
Serreze, M. C. and Stroeve, J.: Arctic sea ice trends, variability and
implications for seasonal ice forecasting, Philos. T.
R. Soc. A, 373, https://doi.org/10.1098/rsta.2014.0159,
2015.
Serreze, M. C., Holland, M. M., and Stroeve, J.: Perspectives on the
Arctic's Shrinking Sea-Ice Cover, Science, 315, 1533–1536, 2007.
Shirokov, K.: Vliyanie splochennosti na vetrovoj dreif l'dov, Sb. Rab.
Leningr. GMO, 9, 46–53, 1977.
Shu, Q., Song, Z., and Qiao, F.: Assessment of sea ice simulations in the CMIP5 models, The Cryosphere, 9, 399–409, https://doi.org/10.5194/tc-9-399-2015, 2015.
Spreen, G., Kwok, R., and Menemenlis, D.: Trends in Arctic sea ice drift and
role of wind forcing: 1992–2009, Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970, 2011.
Steele, M., Morison, J. H., and Untersteiner, N.: The partition of air-ice
ocean momedntum exchange as a function of sea ice concentration, floe size,
and draft, J. Geophys. Res., 94, 12739–12750, 1989.
Stroeve, J., Barrett, A., Serreze, M., and Schweiger, A.: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness, The Cryosphere, 8, 1839–1854, https://doi.org/10.5194/tc-8-1839-2014, 2014.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and
Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research
synthesis, Climatic Change, 110, 1005–1027, 2012.
Sumata, H., Kwok, R., Gerdes, R., Kauker, F., and Karcher, M.: Uncertainty
of Arctic summer ice drift assessed by high-resolution SAR data, J.
Geophys. Res.-Oceans, 120, 5285–5301, 2015a.
Sumata, H., Gerdes, R., Kauker, F., and Karcher, M.: Empirical error
functions for monthly mean Arctic sea-ice drift, J. Geophys.
Res.-Oceans, 120, 7450–7475, https://doi.org/10.1002/2015jc011151, 2015b.
Tandon, N. F., Kushner, P. J., Docquier, D., Wettstein, J. J., and Li, C.:
Reassessing Sea Ice Drift and Its Relationship to Long-Term Arctic Sea Ice
Loss in Coupled Climate Models, J. Geophys. Res.-Oceans,
123, 4338–4359, 2018.
Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic
winds, J. Geophys. Res.-Oceans, 87, 5845–5852, 1982.
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L.,
Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of variable atmospheric and
oceanic form drag on simulations of Arctic sea ice, J. Phys.
Oceanogr., 44, 1329–1353, 2014.
Undén, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., Cuxart, J., Eerola, K., Fortelius, C., Antonio Garcia‐Moya, J., Jones, C., Lenderlink, G., McDonald, A., McGrath, R., Navascues, B., Woetman Nielsen, N., Ødegaard, V, Rodriguez, E., Rummukainen, M., Rõõoom, R., Sattler, K., Sass, B.H., Savijäarvi, H., Wichers Schreur, B., Sigg, R., The, H., and Tijm, A.: HIRLAM-5 Scientific Documentation, Tech. rep., Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden, 2002.
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates, Mon. Weather Rev., 131, 845–861, 2003.
Short summary
This study presents an evaluation of Arctic sea ice drift speed for the period 2003–2014 in a state-of-the-art coupled regional model for the Arctic, called HIRHAM–NAOSIM. In particular, the dependency of the drift speed on the near-surface wind speed and sea ice conditions is presented. Effects of sea ice form drag included by an improved parameterization of the transfer coefficients for momentum and heat over sea ice are discussed.
This study presents an evaluation of Arctic sea ice drift speed for the period 2003–2014 in a...