Articles | Volume 12, issue 3
https://doi.org/10.5194/tc-12-891-2018
https://doi.org/10.5194/tc-12-891-2018
Research article
 | 
12 Mar 2018
Research article |  | 12 Mar 2018

Improving gridded snow water equivalent products in British Columbia, Canada: multi-source data fusion by neural network models

Andrew M. Snauffer, William W. Hsieh, Alex J. Cannon, and Markus A. Schnorbus

Related authors

Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023,https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC)
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021,https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Multivariate bias corrections of climate simulations: which benefits for which losses?
Bastien François, Mathieu Vrac, Alex J. Cannon, Yoann Robin, and Denis Allard
Earth Syst. Dynam., 11, 537–562, https://doi.org/10.5194/esd-11-537-2020,https://doi.org/10.5194/esd-11-537-2020, 2020
Short summary
High-resolution meteorological forcing data for hydrological modelling and climate change impact analysis in the Mackenzie River Basin
Zilefac Elvis Asong, Mohamed Ezzat Elshamy, Daniel Princz, Howard Simon Wheater, John Willard Pomeroy, Alain Pietroniro, and Alex Cannon
Earth Syst. Sci. Data, 12, 629–645, https://doi.org/10.5194/essd-12-629-2020,https://doi.org/10.5194/essd-12-629-2020, 2020
Short summary
Regional scenarios of change over Canada: future climate projections
Zilefac Elvis Asong, Mohamed Elshamy, Daniel Princz, Howard Wheater, John Pomeroy, Alain Pietroniro, and Alex Cannon
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-249,https://doi.org/10.5194/hess-2019-249, 2019
Publication in HESS not foreseen

Related subject area

Seasonal Snow
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024,https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024,https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024,https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Characterization of Non-Gaussianity in the Snow Distributions of Various Landscapes
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
EGUsphere, https://doi.org/10.5194/egusphere-2024-395,https://doi.org/10.5194/egusphere-2024-395, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary

Cited articles

Anderton, S., White, S., and Alvera, B.: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, 2004. a
Aschbacher, J.: Land surface studies and atmospheric effects by satellite microwave radiometry, PhD thesis, University of Innsbruck, Innsbruck, Austria, 1989. a, b
Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T., and Vitart, F.: ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389–407, https://doi.org/10.5194/hess-19-389-2015, 2015. a
Binaghi, E., Pedoia, V., Guidali, A., and Guglielmin, M.: Snow cover thickness estimation using radial basis function networks, The Cryosphere, 7, 841–854, https://doi.org/10.5194/tc-7-841-2013, 2013. a
Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, 1995. a
Download
Short summary
Estimating winter snowpack throughout British Columbia is challenging due to the complex terrain, thick forests, and high snow accumulations present. This paper describes a way to make better snow estimates by combining publicly available data using machine learning, a branch of artificial intelligence research. These improved estimates will help water resources managers better plan for changes in rivers and lakes fed by spring snowmelt and will aid other research that supports such planning.