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Abstract. Estimates of surface snow water equivalent (SWE)
in mixed alpine environments with seasonal melts are par-
ticularly difficult in areas of high vegetation density, topo-
graphic relief, and snow accumulations. These three con-
founding factors dominate much of the province of British
Columbia (BC), Canada. An artificial neural network (ANN)
was created using as predictors six gridded SWE products
previously evaluated for BC. Relevant spatiotemporal covari-
ates were also included as predictors, and observations from
manual snow surveys at stations located throughout BC were
used as target data. Mean absolute errors (MAEs) and inter-
annual correlations for April surveys were found using cross-
validation. The ANN using the three best-performing SWE
products (ANN3) had the lowest mean station MAE across
the province. ANN3 outperformed each product as well as
product means and multiple linear regression (MLR) models
in all of BC’s five physiographic regions except for the BC
Plains. Subsequent comparisons with predictions generated
by the Variable Infiltration Capacity (VIC) hydrologic model
found ANN3 to better estimate SWE over the VIC domain
and within most regions. The superior performance of ANN3
over the individual products, product means, MLR, and VIC
was found to be statistically significant across the province.

1 Introduction

In areas of the world with significant alpine regions, many
drainage basins exhibit a predominantly nival regime. Under
such conditions, which are characteristic of the province of
British Columbia (BC), Canada, accurate snow water equiv-
alent (SWE) estimation is particularly crucial for water sup-
ply, hydropower generation, and flood forecasting and plan-
ning purposes. The ability of current methods and products
to give accurate SWE estimates is limited by a number of
topographic and climate factors. Forest cover, topography,
and large SWE accumulations pose challenges for physi-
cal models containing multiple simplifications and param-
eterizations, as well as for satellite-based products, which
can experience signal masking and wash-out (Chang et al.,
1996; Derksen, 2008). Likewise, reanalysis and assimilation-
based products are susceptible to biases arising from vari-
ous structural limitations (e.g., elevation biases tied to spa-
tial resolution) and uncertainties in the climate mean state
(Dutra et al., 2011; Reichler and Kim, 2008). Mudryk et al.
(2015) compared various gridded products across the North-
ern Hemisphere and observed large spreads in SWE with
magnitudes on the order of the SWE interannual variability.
These spreads were seen particularly in alpine regions with
complex topography and in the Arctic, a region of large data
gaps.
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A similar set of gridded products was examined and
ranked by Snauffer et al. (2016) over the rugged, forested
topography of British Columbia. Product correlations, bi-
ases, and MAEs were determined by comparison with in
situ manual snow surveys and reported by survey month and
physiographic region. While the best products were gener-
ally superior performers across the determined statistics and
the majority of regions, all products were found to underes-
timate SWE and imperfectly represent interannual fluctua-
tions, particularly in the regions of highest snow accumula-
tion. Against this backdrop, the current work set out to im-
prove the accuracy of SWE estimates in the same topograph-
ically complex region by combining an ensemble of products
with relevant site covariates utilizing a data fusion approach.

Numerous models and estimation techniques have at-
tempted to better characterize SWE. Nascent satellite-based
efforts involved the use of multiple linear regression (MLR)
to retrieve snow parameters from passive microwave data.
Though newer platforms have become available, many of
the early algorithms (Chang et al., 1987; Foster et al., 1997;
Tait, 1998) rely on the Defense Meteorological Satellite Pro-
gram (DMSP) Special Sensor Microwave/Imager (SSM/I)
brightness temperature data, which constitute a long pas-
sive microwave record covering July 1987 to December 2015
derived from intercalibrated measurements across several
spaceborne platforms (Wentz, 2013). While the early linear
approaches performed well in areas of low snow accumu-
lation, forest cover, and topographic relief, mountainous re-
gions with dense vegetation and deep snowpacks were not as
well represented.

Machine learning methods began to become an impor-
tant tool in the environmental sciences in the 1990s and
have since spread to many application areas (Hsieh, 2009).
Early applications of machine learning methods for retriev-
ing SWE were developed by Chen et al. (2001) and Guo et al.
(2003) using artificial neural networks (ANNs). Inputs were
based on a snow hydrology model, and outputs derived from
a dense media radiative transfer model were iteratively com-
puted until the ANN results converged on observations. The
model improved on previous efforts by improving grain size
representation and applying a spatially distributed snow ac-
cumulation and melt model. Tedesco et al. (2004) compared
SWE retrieved from an ANN to values from the spectral po-
larization difference (SPD) algorithm (Aschbacher, 1989),
the Helsinki University of Technology (HUT) snow emis-
sion model (Pulliainen et al., 1999), and the Chang algo-
rithm (Chang et al., 1987; Foster et al., 1997). The ANN
used SSM/I 19 and 37 GHz vertical and horizontal brightness
temperatures as inputs and the national operational snow ob-
servations of the Finnish Environment Institute or HUT sim-
ulated brightness temperatures as the target data. Under dry
snow conditions enforced by only considering days on which
the maximum temperature was lower than −5 ◦C, the ANN
outperformed these other methods when trained with obser-
vations. Evora et al. (2008) developed a data fusion model-

ing framework utilizing ANNs, passive microwave data, and
geostatistics. Predictors for this framework were seven pas-
sive microwave channels and the interpolated minimum tem-
perature. The target SWE field was derived from snow depth
and density measured manually at snow stations and inter-
polated by a kriging with external drift (KED) algorithm us-
ing elevation as the secondary variable. More recently Tong
et al. (2010) compared SWE predictions of ANNs using mi-
crowave brightness temperatures (TBs) to those of the SPD
algorithm Aschbacher (1989) and other TB difference algo-
rithms (Chang et al., 1987; Derksen, 2008) in the Quesnel
River Basin of BC, finding that ANNs which included the
most TB channels outperformed other networks and algo-
rithms. Binaghi et al. (2013) applied radial basis function
networks to estimate snow cover thickness in the Italian Cen-
tral Alps, finding that this approach outperformed inverse
distance weight and spline interpolation methods commonly
used in similar contexts with limited numbers of homoge-
neously distributed measurement sites. These and other stud-
ies covered in various review papers (Gan, 1996; Evora and
Coulibaly, 2009; Shi et al., 2016) demonstrate the promise of
more accurate snow estimates via machine learning methods,
but they do not incorporate existing SWE products directly.

Manual snow surveys, taken on courses extending tens of
meters, cannot be accurately represented by large-scale grid-
ded products with resolutions on the order of tens of kilo-
meters (Mudryk et al., 2015). Inherent SWE differences can
be introduced by disparities between mean grid cell eleva-
tion and station elevation, as well as other topographic con-
trols. Even higher-resolution covariates such as the GLOBE
1 km DEM (Hastings et al., 1999) still fail to adequately re-
flect important physical contexts at survey sites (e.g., local
slope and aspect) which can significantly affect measured
values. In spite of the scale mismatch, the combination of
large-scale gridded products with covariates such as finer ter-
rain information and physiographic context may capture the
spatiotemporal patterns in the manual snow surveys. Scale
issues are further addressed in Sect. 3.2.

The objective of this work is to apply data fusion tech-
niques to readily available gridded SWE products, manual
snow surveys, and covariates in order to better estimate SWE
in BC. Means of six products are evaluated, as are means of
the best three of these products based on previous rankings
(Snauffer et al., 2016). Relevant covariates are further com-
bined with these sets of products in MLR models as well as
nonlinear ANNs. The assumptions and limitations underly-
ing this approach are discussed in detail in Sect. 3.2.

2 Study area

The study area, namely the province of BC, can be separated
into five physiographic regions, which are shown in Fig. 1.
These regions vary considerably in terms of their topogra-
phy and climate, as well as the amount of snow they receive,
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as reported in Snauffer et al. (2016). Along the entire west-
ern edge of BC, the Coast Mountains and Islands region is a
highly rugged series of mountain ranges and troughs with a
mean station SWE of 782 mm in April. The Columbia Moun-
tains and Southern Rockies region to the southeast is also
very rugged with high mean elevation and an average April
SWE of 565 mm. Possessing a more moderate 337 mm mean
SWE as measured during April surveys, the Northern and
Central Plateaus and Mountains region is relatively flat along
the plateaus in the north and has low mountain ranges scat-
tered throughout. The Interior Plateau region in the middle
of the province is mostly flat except in the east and has a
similarly moderate April mean station SWE of 283 mm. To
the northeast of the province, the region of the Great Plains of
British Columbia, referred to in this work as the “BC Plains”,
has the lowest relief and SWE accumulations, reporting a sta-
tion average of 88 mm SWE in April. Further descriptions of
the study area are detailed by British Columbia Ministry of
Forests (1995) and Holland (1964).

3 Methods

Various publicly available SWE data sets have global to
hemispheric coverage and can provide information on snow
spatiotemporal distribution over BC. This study considered
four reanalysis products (ERA-Interim; ERA-Interim/Land,
hereinafter identified as “ERALand”; MERRA; and MER-
RALand), a land data assimilation system (GLDAS2), and
an observation-based product (GlobSnow). Key predictors of
snow distribution and evolution are these gridded SWE prod-
ucts, and the target data are manual snow surveys conducted
throughout the province.

3.1 Input data

The following gridded SWE products were used as pre-
dictors in this study and are described in further detail in
Snauffer et al. (2016). ERA-Interim (Dee et al., 2011), a
reanalysis product of the European Centre for Medium-
Range Weather Forecasts (ECMWF), assimilates land sur-
face, oceanographic, atmospheric, and spaceborne measure-
ments from numerous sources using the Integrated Forecast
System (IFS) at T255 spectral (∼ 80 km) horizontal reso-
lution. ERA-Interim/Land (Balsamo et al., 2015) is an of-
fline rerun of ERA-Interim using an improved land sur-
face model known as HTESSEL (Hydrology-Tiled ECMWF
Scheme for Surface Exchanges over Land) and precipitation
adjustments based on the Global Precipitation Climatology
Project (GPCP) v2.1. The Modern-Era Retrospective anal-
ysis for Research and Applications, or MERRA (Rienecker
et al., 2011), ingests a host of land, oceanic, and atmospheric
data using the Goddard Earth Observing System Data Assim-
ilation System Version 5 (GEOS-5) at a resolution of one-
half degree latitude by two-thirds degree longitude. MER-

RALand (Reichle et al., 2011) is an offline land surface sim-
ulation based on MERRA which uses the land surface model
Fortuna-2.5 and makes precipitation adjustments based on
the NOAA Climate Prediction Center “Unified” (CPCU)
product. The Global Land Data Assimilation System Version
2, known as GLDAS-2 (Rodell et al., 2004) and produced by
NASA, runs forcings from the Princeton meteorological data
set (Sheffield et al., 2006) on one of four land surface mod-
els, including the 0.25◦ Noah implementation that is used in
this study. GlobSnow (Takala et al., 2011), the “mountains
unmasked” data set provided by the Finnish Meteorological
Institute (FMI), relies on a background field of snow depths
created using synoptic observations and a forward model of
satellite-based microwave radiometer measurements to con-
struct a 25 km horizontal resolution SWE field. Other evalu-
ated products in Snauffer et al. (2016), GLDAS-1 and CMC,
do not cover the early part of the study period (1980–2010)
and hence are not included in this work.

The target data are manual snow surveys (MSSs) con-
ducted by the Snow Survey Network Program for the BC
River Forecast Centre (Ministry of Environment and Climate
Change Strategy, 2015). At each designated survey site a col-
umn of snow is extracted using a standard Federal snow sam-
pler and weighed to determine SWE. The mean of SWE mea-
surements at 5 to 10 points along a snow course is calculated
to find the station areal average, which is then reported. Sur-
veys are taken up to eight times a year, once at the beginning
of months January through June and once mid-month in May
and June, and they are currently conducted at 167 stations
throughout the province with another 216 stations with his-
torical but no current measurements. Sampling frequencies
and temporal ranges vary considerably by station, with some
records dating back to 1935.

Automated snow pillow data were also examined as a part
of this work. These data were found to be considerably more
prone to obvious errors than the manual snow surveys. Such
errors included negative values, snow accumulation and melt
curves that contained sudden jumps, drops and unrecogniz-
able noise, missing values that were sometimes interpolated,
and other problems. In addition to passing such errors into
the model, the likelihood exists to introduce redundancy, as
many of the snow pillows are co-located with manual snow
survey sites. Consequently, only the manual snow surveys
were used as target data.

3.2 Artificial neural network construction

An ensemble ANN (hereafter ANN) was constructed follow-
ing Cannon and McKendry (2002) using the implementa-
tion by Cannon (2015). ANN topology consisted of an input
layer, one hidden layer, and an output later with a single node
for SWE. A single hidden layer is adequate to model any
nonlinear continuous function (Hsieh, 2009). The hyperbolic
tangent sigmoid function was used as the hidden layer acti-
vation function, the identity function was used for the output
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Figure 1. Physiographic regions of British Columbia, Canada, overlaid on the GLOBE 1 km DEM. Elevations are shown according to the leg-
end with units of meters above sea level. The five physiographic regions are outlined in red: (A) Coast Mountains and Islands, (B) Columbia
Mountains and Southern Rockies, (C) Northern and Central Plateaus and Mountains, (D) Interior Plateau, and (E) BC Plains. SWE accumu-
lations generally increase from region A to region E. Outlined in blue is the VIC domain run by the Pacific Climate Impacts Consortium,
covering four basins throughout BC: (I) the Peace, (II) upper Columbia, (III) Fraser, and (IV) Campbell River watersheds. Manual snow
survey station locations are indicated by green dots. Inset: a map of Canada (source: Wikimedia Commons) shows BC highlighted in red.
The province is bordered to the south by the contiguous United States (USA) and to the west by the US state of Alaska (AK).

layer, and predictor and predictand variables were standard-
ized (zero mean and unit standard deviation) prior to model
training. Initial model weights were set randomly in the range
of ±
√

0.8/din, where din is the number of inputs (Thimm
and Fiesler, 1997). The optimization function employed was
the Broyden–Fletcher–Goldfarb–Shanno method or “BFGS
method” (Fletcher, 1970; Nash, 1979). Training data sets for
the individual ANN ensemble members were created using
the block bootstrap (Davison and Hinkley, 1997), with each
block made up of all training cases for a given station. To pre-
vent overfitting, early stopping was used to regularize indi-
vidual ensemble members; ANN training was stopped when
validation error, as monitored on the out-of-bootstrap cases,
reached a minimum. The optimal number of hidden nodes
for each test split was determined by minimizing the ensem-
ble’s out-of-bootstrap RMSE over the training data. Follow-
ing model selection and training, predictions from the 50 en-
semble members were averaged for each test split, and statis-
tics for each test split station were calculated accordingly.

In total, manual snow survey data from 386 stations across
BC were available for training and testing. Of those stations
256 had at least 10 years of measurements within the over-
lapping period of record of the six gridded products (1980–
2010). This was considered to be an adequate length to gen-
erate representative statistics for testing the ANN by cross-
validation. Ten test splits were created by selecting every
tenth station, stratified by watershed, such that for each split
one-tenth of the stations were excluded from training. The
result was an approximately uniform spread of test stations
throughout the province in each split, as shown in Fig. 2
(green dots). Inevitably there were large areas with little in
situ data, particularly along the coast and in the BC Plains
to the north, but the use of all available data outside the test
split maximized the spatial coverage of the training set. The
MAE and April survey correlation reported at each station
were computed using predictions from the ANN which did
not include data from that station in its training set.

Due to their coarse spatial resolution, the gridded prod-
ucts tend to capture broad spatiotemporal SWE patterns over
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Table 1. Mean station MAEs (in mm SWE) for individual and combinations of products and corresponding MLR and ANN runs, with the
mean station MAEs computed using only the VIC stations given in parenthesis. Products shown are ERA-Interim (E), GlobSnow (GS),
MERRALand (ML), MERRA (M), GLDAS2 (G2), and ERALand (EL).

Gridded products

E GS ML M G2 EL Mean product MLR ANN

X 411 (400) 214 (217) 184 (184)
X 407 (396) 220 (218) 196 (194)

X 362 (349) 211 (209) 178 (180)
X 315 (303) 196 (191) 172 (168)

X 308 (294) 206 (205) 177 (176)
X 305 (290) 202 (201) 173 (176)

X X 292 (282) 196 (194) 171 (173)
X X 295 (287) 192 (186) 166 (163)
X X 295 (287) 190 (186) 170 (165)
X X X 289 (281) 188 (185) 163 (159)

X X X X 302 (295) 189 (185) 165 (162)
X X X X X 316 (311) 189 (186) 167 (167)

X X X X X X 328 (324) 189 (186) 168 (166)

BC, but values still exhibit large biases with respect to MSS
observations (Snauffer et al., 2016). In addition to the grid-
ded SWE products, the following base set of predictors were
included in the model: elevation, elevation bias, latitude, lon-
gitude, physiographic region, year, and sine and cosine of 2π
times the elapsed year fraction. These predictors represented
major spatial and temporal dimensions to the ANN training,
as well as broad location context information (e.g., physio-
graphic region). Predictor screening was not necessary be-
cause relatively few base covariates were identified, and cor-
relations between predictors would not diminish model per-
formance. Station elevation biases were calculated as the grid
cell mean elevations found from the GLOBE 1 km DEM
(Hastings et al., 1999) minus the reported station elevations,
and elevation biases corresponding to each included prod-
uct were used as predictors. Physiographic regions were rep-
resented in the model using discrete logical variables for
each region, so-called 1-of-c coding as described in Bishop
(1995). These predictors provide specific spatial and tempo-
ral information as well as broad location context information.

From a temporal perspective, the most important predic-
tor of seasonal SWE is the fraction of the year elapsed at
the time of observation. This elapsed year fraction is mod-
eled using trigonometric predictors (sine and cosine) as it is
a periodic signal. The stationarity of each utilized data set
was not evaluated in the course of this study. In order to han-
dle the prospect of non-stationary data, linear or otherwise,
the value of the observation year was included as a predictor,
allowing the ANN to account for changes in the joint proba-
bility distribution over time.

The assumptions underlying this approach include that the
SWE field can be reliably resolved by an ANN topology that
includes a single hidden layer, which is suitable for modeling
any nonlinear continuous function (Hsieh, 2009). Overfitting

is assumed to be adequately mitigated using early stopping
and an ensemble of 50 members. It is also implicitly as-
sumed that enough predictors are employed to adequately
cover the solution space, though the number of predictors is
less important than the quality of those predictors. Outside
the given study area and time window, SWE estimates are
less reliable, as properly trained ANNs perform nonlinear in-
terpolation well but extrapolate poorly, potentially leading to
significant deviations from the true signal beyond the bounds
of the predictor training space (Hsieh, 2009).

As previously mentioned, MSS values found at sites on
the order of 10 m do not adequately represent SWE averaged
across gridded product cells. Since elevation is a key indi-
cator in both SWE accumulation and melt (Anderton et al.,
2004), among the most apparent scale issues is the differ-
ence between survey site elevation and grid cell mean eleva-
tion. Including such elevation differences as predictors adds
important site-specific context but also carries limitations in
capturing interactions of topography and the atmosphere. Lo-
cal elevation minima and maxima may be subject to wind
redistribution from peaks to valleys depending on surround-
ing topography, and weather systems drop different amounts
of snow on windward and leeward mountain slopes. Nev-
ertheless, elevation and grid cell elevation differences may
provide a basic indication of subgrid SWE variability. An-
other important piece of local context is location within the
province, key covariates of which include latitude, longitude,
and physiographic region.

Efforts to include additional local information were lim-
ited by lack of extensive site-specific metadata and appropri-
ate regional scale representations. For instance, while vari-
ous ground cover products are available, the actual site for-
est cover is highly dependent on snow course location, time
since last maintenance, and other factors, which vary consid-
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Figure 2. MSS station locations used in evaluating combination
products. Green dots show the distribution of 10 test splits for com-
paring means, MLRs, and ANNs to gridded SWE products through-
out BC by cross-validation. Blue crosses show the distribution of
seven test splits for comparing ANNs to VIC runs in four BC wa-
tersheds. Physiographic regions are outlined in red.

erably across the MSS data set (Tony Litke, personal commu-
nication, 2016). As a result, only this base set of covariates
has been employed. The main focus of this work, however,
was to find which combination(s) of products lead to the best
result. While other covariates may incrementally improve the
ANN performance, use of this base covariate set should suf-
fice for this purpose.

The gridded SWE product combinations shown in Table 1
were used as predictors in the ANNs. Multiple linear regres-
sion (MLR) models were run using the same sets of predic-
tors and test station splits, and their results are listed along-
side those of the ANN models for comparison of linear and
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Figure 3. SWE time series for manual snow survey stations, the best
three gridded SWE products, MLR3, and ANN3. Gridded products
are ordered by increasing overall performance, with darker blues
for better-performing products. MLR3 and ANN3 estimates are
masked outside the mean first and final survey dates (2 January and
15 June respectively). A representative station is shown for each of
the five physiographic regions of BC: (a) station 1D08 Stave Lake in
the Coast Mountains and Islands, (b) station 2A25 Kirbyville Lake
in the Columbia Mountains and Southern Rockies, (c) station 4B08
Mount Cronin in the Northern and Central Plateaus and Mountains,
(d) station 2F11 Isintok Lake in the Interior Plateau, and (e) station
4C05 Fort Nelson Airport in the BC Plains.

nonlinear data fusion techniques. The predictor combinations
included each gridded product run individually as well as
in combination with better-performing products. In addition,
each two-product combination of the three best products was
run. The rationale for this approach was the desire to limit the
total number of ANN runs to substantially less than all 63
possible combinations of any number of products, running
those most likely to give performance insights and improve-
ments. The three best-performing products had mean station
MAEs across BC that were within 5 % of each other, whereas
other products had mean station MAEs 15–30 % higher than
the top product, ERALand. Furthermore, it was not antici-
pated, for instance, that adding the poorest-performing prod-
uct to an ANN of the best three would outperform an ANN
of the best four. Only observations for which all six gridded
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Figure 4. Mean station MAE for several SWE products/combinations for regions of BC in order of descending mean accumulations: (a) Coast
Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau, (e) BC
Plains, and (f) province-wide (combining all data from the five preceding panels). Shown are MAEs with 95 % confidence intervals based
on n= 5000 bootstrap samples for the six gridded products in blue: ERA-Interim (E), GlobSnow (GS), MERRALand (ML), MERRA (M),
GLDAS2 (G2), and ERALand (EL). Dark blue indicates three best-performing products. Also shown are three fusion techniques (mean,
MLR, and ANN) using all six products (green) and the three best-performing products (brown). Note the vertical scale in panels (a) and (b)
is double that of panels (c) through (f).

products had SWE values within 7 days of the observation
date were used, so that all models were based on the same
set of observations.

A number of alternative machine learning methods were
investigated in the course of this work. Bayesian neural net-
work (BNN) and support vector machine (SVM) runs were
executed but did not result in notable improvements over the
ANN in spite of additional computational cost. While stud-
ies (e.g., Xue and Forman, 2015; Forman and Reichle, 2015)
have shown machine learning methods such as SVM to be
superior over ANNs for snow-related parameters, Lima et al.
(2015) found that in an evaluation of four different nonlin-

ear methods across nine different environmental data sets, no
single nonlinear method consistently outperformed the oth-
ers. Though an exhaustive exploration of machine learning
algorithms was not the objective of this manuscript, the ma-
chine learning runs completed indicated that, of the investi-
gated algorithms, the ANN was at least comparable, if not
superior, for this application and data sets.

3.3 Hydrologic model comparison

The Variable Infiltration Capacity (VIC) hydrologic model is
used by the Pacific Climate Impacts Consortium (PCIC) to
conduct hydrologic assessments for the province of British
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Figure 5. Mean station April correlation for several SWE products/combinations for regions of BC in order of descending mean accumula-
tions: (a) Coast Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior
Plateau, (e) BC Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4.

Columbia (Pacific Climate Impacts Consortium, 2014). VIC
is a macroscale hydrologic model that solves full surface wa-
ter and energy balances (Liang et al., 1994), sharing many
basic features with land surface models (LSMs) in global
climate models (GCMs). The land surface is modeled as a
grid of large, flat, uniform cells, and sub-grid heterogeneity
is handled via statistical distributions. The land–atmosphere
fluxes and water and energy balances are simulated at a daily
or sub-daily time step. Water can only enter a grid cell via
the atmosphere, which means that water in the channel net-
work stays in the channels and subsurface flow between grid
cells is not included in the water balance. For the 1/16◦ grid
cells used in the PCIC implementation, this is a reasonable
approximation.

The PCIC VIC implementation currently covers four wa-
tersheds throughout BC (Pacific Climate Impacts Consor-

tium, 2014), as shown in Fig. 1. Relevant model parame-
ters, specifically snow/rain temperature thresholds and snow
albedo decay curves, were explicitly adjusted to reproduce
observed SWE at snow pillows, with subsequent automated
multi-objective calibration to reproduce streamflow series
and volume errors (Schnorbus et al., 2010). The model
is forced with daily observations for minimum and maxi-
mum temperature, precipitation, and wind on a 1/16◦ grid
(Schnorbus et al., 2014).

A second set of ANN runs was conducted using a subset
of the test stations previously used. Only the MSS stations
that were within the VIC domain and that had at least 10
years of measurements were used for testing. The 173 sta-
tions which met this criterion were divided into seven test
splits of 24 or 25 stations each, ordered by watershed, such
that for each split one-seventh of the VIC long record stations
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Figure 6. Bootstrap mean station MAE differences between several SWE products/combinations and the reference (the mean of six products).
First quartile, median, and third quartile are plotted respectively as the bottom, waist, and top of each box, and 95 % confidence intervals
are indicated by whiskers. MAE difference spreads are shown for regions of BC in order of descending mean accumulations: (a) Coast
Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau, (e) BC
Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4. Note differences in vertical scale.

were excluded from training. This selection results in a rel-
atively uniform spread of test stations for each split over the
VIC domain as shown in Fig. 2 (blue crosses). Model train-
ing and MAE and correlation computation for each station
were performed as in the full-province runs.

4 Results

Results of ANN runs for different combinations of products
in this study are shown in Table 1. The gridded products used
are listed in order of increasing performance across the en-
tire province: ERA-Interim (E), GlobSnow (GS), MERRA-
Land (ML), MERRA (M), GLDAS2 (G2), and ERALand
(EL). Mean station MAEs are presented for single and av-

erage gridded product SWE values, plus MLRs and ANNs
constructed using test splits of 256 stations across BC. Mean
station biases were found to mirror mean station MAEs, as
errors are largely the result of underestimates of SWE in
most regions of the province (see the Supplement). MAEs
are also shown for those same combinations based on test
splits of 173 stations within the VIC domain. Using the in-
dividual products in an ANN with a base set of relevant spa-
tiotemporal covariates improves the mean station MAE by
43 to 55 %. ANNs and MLRs based on combinations of the
products further improve the mean station MAE, and MAEs
for the ANNs are consistently lower than the correspond-
ing values for the MLR models. While ANNs using multi-
ple products all outperform those using single products, the
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Figure 7. Bootstrap mean station April correlation differences between several SWE products/combinations and the reference (the mean of
six products). Quartiles and 95 % confidence intervals are shown for regions of BC in order of descending mean accumulations: (a) Coast
Mountains and Islands, (b) Columbia Mountains and Southern Rockies, (c) Northern Plateaus and Mountains, (d) Interior Plateau, (e) BC
Plains, and (f) province-wide. Product and combination abbreviations and colors are as in Fig. 4. Note differences in vertical scale.

best performance was achieved by a combination of the three
best products: MERRA, ERALand, and GLDAS2. The dif-
ferences in mean station MAE between the three-product
ANN and ANNs that use more products are very small, sug-
gesting that adding the products that do not perform as well
does not bring additional useful information into the model.
These results are consistent both for ANNs that use test splits
of all 256 stations and for those that rely on test splits of the
173 VIC stations.

While comparing snow statistics aggregated across BC is
useful for broad comparisons, SWE is a highly inhomoge-
neous field due to climatic and topographic variability in the
province. Figure 3 illustrates the variability at stations across
the five physiographic regions of the province. SWE values
from manual snow surveys, gridded products, and combina-

tions are plotted for representative stations, each of which
has a station MAE close to the mean for the encompassing
region. Regions are ordered by decreasing mean SWE accu-
mulations in panels (a) through (e). The time interval shown
covers snow seasons of 1999, a year of relatively high accu-
mulations across the province, to 2005, a relatively low year.
A wide range of accumulations across the regions was ob-
served, with a peak SWE of 50 to 150 mm observed in the
BC Plains (panel e) while 500 to over 3000 mm SWE was
measured in the Coast Mountains and Islands (panel a). Sig-
nificant temporal disparities were also seen. Peak SWE in
the Coast Mountains and Islands in 1999 was over 5 times
that of 2005, while there is less than a 40 % difference for
these years in the BC Plains. Underestimates in peak SWE
are apparent for most gridded products and snow seasons.
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Figure 8. Box plots of bootstrap station differences in MAEs and
April correlations showing quartiles and 95 % confidence intervals
for ANNs of six products, ANN6 (green), and of the best three
products, ANN3 (red), relative to MLR6 and MLR3 respectively.
Bootstrap difference distributions are shown for (a) ANN6−MLR6
MAEs, (b) ANN3−MLR3 MAEs, (c) ANN6−MLR6 April corre-
lations, and (d) ANN3−MLR3 April correlations. Shown are the
differences for each physiographic region: Coast Mountains and
Islands (CM), Columbia Mountains and Southern Rockies (CR),
Northern and Central Plateaus and Mountains (NP), the Interior
Plateau (IP), and the BC Plains (BP), as well as province-wide (BC).

The largest underestimates were in the Coast Mountains and
Islands and the Columbia Mountains and Southern Rock-
ies (panels a and b respectively), the regions of heaviest
snow. The MLR model using the combination of the three
best products (MLR3) mostly improved the underestimates
of SWE apparent at these highest accumulation stations. The
MLR still significantly underpredicted SWE in the two re-
gions of highest accumulations but then also overpredicted
in the three other regions with lower accumulations, partic-
ularly in the BC Plains (panel a). The ANN using the three
best products (ANN3) partially corrected these errors, esti-
mating lower SWE values at the stations averaging less snow
and higher SWE values at those with more snow relative to
MLR3. Very high accumulation seasons are still particularly
challenging for both products and statistical models, espe-
cially 1999 in panels (a) and (b). This finding indicates that
while the ANN is better able to estimate SWE in most con-
texts, the very highest SWE values remain challenging to as-
sess.

Further analyzing mean station MAE and April correlation
by physiographic region may reveal spatial dependencies and
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Figure 9. Box plots of bootstrap station differences in MAEs and
April correlations showing quartiles and 95 % confidence inter-
vals for ANNs of six products, ANN6 (purple), and of the best
three products, ANN3 (orange), with respect to VIC. Bootstrap
difference distributions are shown for (a) ANN6−VIC MAEs,
(b) ANN3−VIC MAEs, (c) ANN6−VIC April correlations, and
(d) ANN3−VIC April correlations. Notation for the physiographic
regions follows Fig. 8.

in turn give insight into model performance. Mean station
MAEs (Fig. 4) and April correlations (Fig. 5) are shown for
the five major physiographic regions of BC in order of de-
creasing mean SWE accumulations (panels a through e) and
for the province as a whole (panel f). In order to measure
the ability of the gridded products to capture peak SWE in-
terannual variability, correlations were calculated using time
series constructed from April surveys only, as April is the
survey of highest mean SWE for all regions (Snauffer et al.,
2016). Mean station biases were also calculated but found
to mirror mean station MAEs, likely due to underestimates
of SWE across most of the province (see Fig. S1 in the
Supplement). Whiskers on the bars represent 95 % confi-
dence intervals determined by n= 5000 bootstrap samples
as described in Jolliffe (2007). Blue bars show mean sta-
tion values for the six SWE gridded products, with dark
blue highlighting the three best performers. Across the four
physiographic regions of highest accumulations, ERALand,
GLDAS2, and MERRA are consistently the best perform-
ers in both mean station MAE and April correlation values,
though in many cases the 95 % confidence intervals overlap.
In the BC Plains, the region of lowest snow accumulations,
GlobSnow has the lowest MAE and a similar April correla-
tion to that of MERRA and ERA-Interim, though the differ-

www.the-cryosphere.net/12/891/2018/ The Cryosphere, 12, 891–905, 2018



902 A. M. Snauffer et al.: Improving gridded SWE products in BC: data fusion by ANNs

ences in this region are relatively small. The green bars rep-
resent different ways of combining all six products (mean,
MLR, and ANN), while the brown bars represent the same
combinations but use only the three best-performing prod-
ucts. In terms of mean station MAEs, the regional story is
again similar to that of the entire province for the four re-
gions of highest accumulations. MAEs for the three-product
means are slightly lower than those of the six-product means.
MLRs show notable performance improvements over multi-
product means and are virtually identical for both three- and
six-product combinations. ANNs further show improved per-
formance over the MLRs. Three-product ANNs perform very
slightly better than the six-product networks and are the best
performers of all ANNs. For the BC Plains, both three- and
six-product means produce results comparable to those of the
individual products, but the MLRs and ANNs have a higher
mean station MAE. This result is likely due to the fact that
relatively few stations exist in this region, causing the models
to be less well trained in the BC Plains. In terms of April cor-
relations, however, the combination products are relatively
high across all regions, with the three-product means and
ANNs generally being the best performers.

The relative performance of each gridded or combination
product relative to a reference was found using the confi-
dence intervals for differences approach of Jolliffe (2007).
Briefly, 5000 bootstrap samples of the mean station MAE and
April correlation differences between each product and the
reference were plotted on box plots (Figs. 6 and 7), in which
the boxes extend between lower and upper quartiles and the
whiskers span 95 % of the distribution. If the whiskers do not
cross the origin, the difference in the product and reference
is said to be significant, rejecting the null hypothesis at the
5 % level. The mean of all six products (Mean6) was used
as the reference and was compared to the remaining grid-
ded and SWE fusion products. Negative mean station MAE
differences (Fig. 6) and positive mean station April correla-
tion differences (Fig. 7) indicate that the evaluated product
performed better than Mean6. The best three products sig-
nificantly outperformed Mean6 in MAE across the province
and in some of its regions, but Mean6 was often a better per-
former than the individual products in April correlation. The
mean of these best three (Mean3) was consistently better than
that of Mean6 under both metrics, and this difference is sta-
tistically significant across the province and all regions ex-
cept the BC Plains. The ANN using all six products (ANN6)
and the one using the best three products (ANN3) also signif-
icantly outperformed Mean6 and slightly outperformed cor-
responding multiple linear regressions (MLR6 and MLR3)
province-wide and in all physiographic regions except for
the BC Plains. In the BC Plains MLRs were slightly better
than Mean6 in April correlation but significantly underper-
formed in MAE. ANN performance in this region was simi-
lar, though the underperformance in MAE was less notable.
This failure of the MLRs and ANNs to perform well in MAE

was likely due to the lower accumulations of SWE here, ac-
companied by the scarcity of manual snow survey stations.

A closer examination of ANN performance revealed im-
provements over comparable MLR. Figure 8 shows the re-
sults of n= 5000 bootstrap samples of mean station MAE
and April correlation differences between the ANNs and
MLRs using six products (panels a and c) and the best three
products (panels b and d). Negative mean station MAE dif-
ferences (panels a and b) and positive mean station April cor-
relation differences (panels c and d) indicate the regions in
which the ANN performed better than the comparable MLR.
ANN improvements over MLR were seen across all regions,
and those improvements were statistically significant in most
regions and across the province. While nonsignificant differ-
ences between ANNs and MLRs were found for the best
three-product MAEs and correlations in the Northern and
Central Plateaus and Mountains (panels b and d) and for both
combinations’ correlations in the BC Plains (panels c and d),
median ANN improvements over MLR were observed. This
result suggests nonlinear modeling of the SWE survey data
set may merit further investigation as a tool to better estimate
province-wide and regional SWE.

The performances of the six-product and three-product
ANNs were also compared to that of VIC runs for the four
major watersheds in BC shown in Fig. 1 (Pacific Climate Im-
pacts Consortium, 2014). As these four watersheds do not
cover all of the available manual snow stations, station test
splits were redrawn, and the ANN runs were conducted sep-
arately from those mentioned above. Figure 9 shows the re-
sults of n= 5000 bootstrap samples of mean station MAE
and April correlation differences between the ANNs and VIC
using six products (panels a and c) and the best three products
(panels b and d). Negative mean station MAE differences
(panels a and b) and positive mean station April correlation
differences (panels c and d) indicate the regions in which the
ANNs performed better than VIC. Across the province, the
ANNs outperformed VIC in MAEs and April correlations
across most regions. The exceptions included MAEs in the
Northern and Central Plateaus and Mountains and BC Plains,
where VIC performed slightly better than the ANNs, and
April correlations in the Coast Mountains and Islands, where
the two are nearly tied. Statistically significant differences
were seen only for MAEs in the Columbia Mountains and
Southern Rockies and for April correlations in the Northern
and Central Plateaus and Mountains. However, across the en-
tire province ANN3 significantly outperformed VIC in both
MAEs and April correlations. This result suggests that con-
sideration of a large enough data set and the use of the best
gridded products for the province as inputs to an ANN can
produce better estimates of SWE in BC, both spatially and
temporally.
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5 Conclusions

Six gridded products have been used to predict SWE at
manual snow survey stations using data fusion techniques.
The products estimated lower snow accumulations than were
measured, but ANNs combining a single gridded SWE prod-
uct with a base set of relevant predictors reduced the prod-
ucts’ mean station MAEs by 43 to 55 % (average 48 %)
across the province, improvements that are mirrored within
most physiographic regions. ANNs which used multiple
gridded products as predictors performed better than those
using single products. The best-performing ANN used the
best three products (ERALand, MERRA, and GLDAS2),
with no improvement seen by including additional products
in the ANN. This ANN was found to have a mean station
MAE 47 to 60 % (average 53 %) lower than the six individ-
ual products considered in this study. Both MLRs and ANNs
significantly outperformed the mean of six products in terms
of MAEs and April correlations across the province and in
four regions. Only in the BC Plains, a region of low accu-
mulations and few stations, did the products themselves have
lower MAEs, while still underperforming the SWE fusion
products in April correlations. The ANNs also outperformed
comparable MLRs using the same gridded products; this as-
sessment was statistically significant across the province and
in most physiographic regions. Comparing ANNs with runs
of the hydrologic model VIC, it was found that the ANNs
performed better across the province and in three regions,
though statistical significance was found in only one region
and across the province for the ANN using the best three
products.

While estimating SWE using a fusion of available gridded
products and a base set of relevant spatiotemporal covariates
poses limits in context and process understanding, from an
operational standpoint it can potentially improve the repre-
sentation of SWE via a far more efficient approach. Further
development of the ANNs, including the incorporation of ad-
ditional covariates and data sources (e.g., terrain information,
a simple snow model), may result in further improvements to
the estimation of snow in BC.

Data availability. Manual snow survey data (Ministry of Environ-
ment and Climate Change Strategy, 2015) are available from the
British Columbia River Forecast Centre web site (http://bcrfc.env.
gov.bc.ca/data). ERA-Interim and ERALand data (European Cen-
tre for Medium-Range Weather Forecasts, 2011a, b) can be ob-
tained from the European Centre for Medium-Range Weather Fore-
casts Public Datasets web interface (http://apps.ecmwf.int/datasets).
The Goddard Earth Sciences Data and Information Services Center
(GES DISC, https://disc.sci.gsfc.nasa.gov/datasets) supplies data
for GLDAS2 (Rodell and Beaudoing, 2015) plus MERRA and
MERRALand (Global Modeling and Assimilation Office, 2008a,
b). The GlobSnow “mountains unmasked” data set was not pub-
licly available because it was considered a prototype product. This
data set was necessary for this work, however, as most of British

Columbia was masked in the publicly available data. The GlobSnow
“mountains unmasked” data set can be obtained by contacting the
GlobSnow team (see http://www.globsnow.info).
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online at: https://doi.org/10.5194/tc-12-891-2018-supplement.
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