Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-331-2017
https://doi.org/10.5194/tc-11-331-2017
Research article
 | 
01 Feb 2017
Research article |  | 01 Feb 2017

Future snow? A spatial-probabilistic assessment of the extraordinarily low snowpacks of 2014 and 2015 in the Oregon Cascades

Eric A. Sproles, Travis R. Roth, and Anne W. Nolin

Related authors

Influence of Snow Spatial Variability on Cosmic Ray Neutron SWE
Haejo Kim, Eric Sproles, and Samuel E. Tuttle
EGUsphere, https://doi.org/10.5194/egusphere-2025-31,https://doi.org/10.5194/egusphere-2025-31, 2025
Short summary
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022,https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
GRACE storage-runoff hystereses reveal the dynamics of regional watersheds
E. A. Sproles, S. G. Leibowitz, J. T. Reager, P. J. Wigington Jr, J. S. Famiglietti, and S. D. Patil
Hydrol. Earth Syst. Sci., 19, 3253–3272, https://doi.org/10.5194/hess-19-3253-2015,https://doi.org/10.5194/hess-19-3253-2015, 2015
Short summary
Hydrologic landscape classification evaluates streamflow vulnerability to climate change in Oregon, USA
S. G. Leibowitz, R. L. Comeleo, P. J. Wigington Jr., C. P. Weaver, P. E. Morefield, E. A. Sproles, and J. L. Ebersole
Hydrol. Earth Syst. Sci., 18, 3367–3392, https://doi.org/10.5194/hess-18-3367-2014,https://doi.org/10.5194/hess-18-3367-2014, 2014
Climate change impacts on maritime mountain snowpack in the Oregon Cascades
E. A. Sproles, A. W. Nolin, K. Rittger, and T. H. Painter
Hydrol. Earth Syst. Sci., 17, 2581–2597, https://doi.org/10.5194/hess-17-2581-2013,https://doi.org/10.5194/hess-17-2581-2013, 2013

Related subject area

Seasonal Snow
Sublimation measurements of tundra and taiga snowpack in Alaska
Kelsey A. Stockert, Eugénie S. Euskirchen, and Svetlana L. Stuefer
The Cryosphere, 19, 1739–1755, https://doi.org/10.5194/tc-19-1739-2025,https://doi.org/10.5194/tc-19-1739-2025, 2025
Short summary
Insights into microphysical and optical properties of typical mineral dust within industrial-polluted snowpack via wet/dry deposition in Changchun, Northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-124,https://doi.org/10.5194/egusphere-2025-124, 2025
Short summary
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025,https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Influence of Snow Spatial Variability on Cosmic Ray Neutron SWE
Haejo Kim, Eric Sproles, and Samuel E. Tuttle
EGUsphere, https://doi.org/10.5194/egusphere-2025-31,https://doi.org/10.5194/egusphere-2025-31, 2025
Short summary

Cited articles

Abatzoglou, J. T., Rupp, D. E., and Mote, P. W.: Seasonal climate variability and change in the Pacific Northwest of the United States, J. Climate, 27, 2125–2142, 2014.
Adam, J. C., Hamlet, A. F., and Lettenmaier, D. P.: Implications of global climate change for snowmelt hydrology in the twenty-first century, Hydrol. Process., 23, 962–972, https://doi.org/10.1002/hyp.7201, 2009.
Associated Press: Drought has city near Eugene imposing water restrictions, The Washington Times, available at: http://www.washingtontimes.com/news/2015/jul/29/drought, last access: 15 September 2016, 29 July 2015.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Brooks, J. R., Wigington, P. J., Phillips, D. L., Comeleo, R., and Coulombe, R.: Willamette River Basin surface water isoscape (δ18O and δ2H): temporal changes of source water within the river, Ecosphere, 3, 39, https://doi.org/10.1890/ES11-00338.1, 2012.
Download
Short summary
We present an innovative approach to quantify basin-wide snowpack using calculations of spatial exceedance probability. Our method quantifies how the extraordinarily low snowpacks of 2014 and 2015 in the Pacific Northwest of the United States compare to snowpacks in warmer conditions and the probability that similar snowpacks will occur. We present these extraordinarily low snowpacks as snow analogs to develop anticipatory capacity for natural resource management under warmer conditions.
Share