Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-331-2017
https://doi.org/10.5194/tc-11-331-2017
Research article
 | 
01 Feb 2017
Research article |  | 01 Feb 2017

Future snow? A spatial-probabilistic assessment of the extraordinarily low snowpacks of 2014 and 2015 in the Oregon Cascades

Eric A. Sproles, Travis R. Roth, and Anne W. Nolin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Eric Sproles on behalf of the Authors (17 Oct 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (18 Oct 2016) by Ross Brown
RR by Anonymous Referee #1 (02 Nov 2016)
ED: Publish subject to minor revisions (Editor review) (02 Nov 2016) by Ross Brown
AR by Eric Sproles on behalf of the Authors (10 Nov 2016)
ED: Publish as is (15 Nov 2016) by Ross Brown
AR by Eric Sproles on behalf of the Authors (22 Nov 2016)
Download
Short summary
We present an innovative approach to quantify basin-wide snowpack using calculations of spatial exceedance probability. Our method quantifies how the extraordinarily low snowpacks of 2014 and 2015 in the Pacific Northwest of the United States compare to snowpacks in warmer conditions and the probability that similar snowpacks will occur. We present these extraordinarily low snowpacks as snow analogs to develop anticipatory capacity for natural resource management under warmer conditions.