Articles | Volume 11, issue 6
https://doi.org/10.5194/tc-11-2897-2017
https://doi.org/10.5194/tc-11-2897-2017
Research article
 | 
12 Dec 2017
Research article |  | 12 Dec 2017

Evaluation of different methods to model near-surface turbulent fluxes for a mountain glacier in the Cariboo Mountains, BC, Canada

Valentina Radić, Brian Menounos, Joseph Shea, Noel Fitzpatrick, Mekdes A. Tessema, and Stephen J. Déry

Related authors

Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024,https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Cloud forcing of surface energy balance from in situ measurements in diverse mountain glacier environments
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022,https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling
Sam Anderson and Valentina Radić
Hydrol. Earth Syst. Sci., 26, 795–825, https://doi.org/10.5194/hess-26-795-2022,https://doi.org/10.5194/hess-26-795-2022, 2022
Short summary
A multi-season investigation of glacier surface roughness lengths through in situ and remote observation
Noel Fitzpatrick, Valentina Radić, and Brian Menounos
The Cryosphere, 13, 1051–1071, https://doi.org/10.5194/tc-13-1051-2019,https://doi.org/10.5194/tc-13-1051-2019, 2019
Short summary
Evaluation of dynamically downscaled near-surface mass and energy fluxes for three mountain glaciers, British Columbia, Canada
Mekdes Ayalew Tessema, Valentina Radić, Brian Menounos, and Noel Fitzpatrick
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-154,https://doi.org/10.5194/tc-2018-154, 2018
Preprint withdrawn
Short summary

Related subject area

Energy Balance Obs/Modelling
Brief Communication: Accurate and autonomous snow water equivalent measurements using a cosmic ray sensor on a Himalayan glacier
Navaraj Pokhrel, Patrick Wagnon, Fanny Brun, Arbindra Khadka, Tom Matthews, Audrey Goutard, Dibas Shrestha, Baker Perry, and Marion Réveillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-1760,https://doi.org/10.5194/egusphere-2024-1760, 2024
Short summary
Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps)
Dominik Amschwand, Martin Scherler, Martin Hoelzle, Bernhard Krummenacher, Anna Haberkorn, Christian Kienholz, and Hansueli Gubler
The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024,https://doi.org/10.5194/tc-18-2103-2024, 2024
Short summary
Modeling snowpack dynamics and surface energy budget in boreal and subarctic peatlands and forests
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024,https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Evaluation of reanalysis data and dynamical downscaling for surface energy balance modeling at mountain glaciers in western Canada
Christina Draeger, Valentina Radić, Rachel H. White, and Mekdes Ayalew Tessema
The Cryosphere, 18, 17–42, https://doi.org/10.5194/tc-18-17-2024,https://doi.org/10.5194/tc-18-17-2024, 2024
Short summary
Brief communication: Surface energy balance differences over Greenland between ERA5 and ERA-Interim
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136, https://doi.org/10.5194/tc-17-5131-2023,https://doi.org/10.5194/tc-17-5131-2023, 2023
Short summary

Cited articles

Anderson, B., Mackintosh, A., Stumm, D., George, L., Kerr, T., Winter-Billington, A., and Fitzsimons, S.: Climate sensitivity of a high-precipitation glacier in New Zealand, J. Glaciol., 56, 114–128, 2010.
Andreas, E.: A theory for the scalar roughness and the scalar transfer coefficient over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, https://doi.org/10.1007/BF00121562, 1987.
Andreas, E. L., Persson, P. O. G., Jordan, R. E., Horst, T. W., Guest, P. S., Grachev, A. A., and Fairall, C. W.: Parameterizing Turbulent Exchange over Sea Ice in Winter, J. Hydrometeorol., 11, 87–104, https://doi.org/10.1175/2009JHM1102.1, 2010.
Arya, S. P.: Introduction to Micrometeorology, Academic Press, San Diego, 415 pp., 2001.
Axelsen, S. L. and van Dop, H.: Large-eddy simulation of katabatic winds, Part 1: Comparison with observations, Acta Geophys., 57, 803–836, https://doi.org/10.2478/s11600-009-0041-6, 2009.
Download
Short summary
Our overall goal is to improve the numerical modeling of glacier melt in order to better predict the future of glaciers in Western Canada and worldwide. Most commonly used models rely on simplifications of processes that dictate melting at a glacier surface, in particular turbulent processes of heat exchange. We compared modeled against directly measured turbulent heat fluxes at a valley glacier in British Columbia, Canada, and found that more improvements are needed in all the tested models.