Articles | Volume 11, issue 4
https://doi.org/10.5194/tc-11-1967-2017
https://doi.org/10.5194/tc-11-1967-2017
Research article
 | 
29 Aug 2017
Research article |  | 29 Aug 2017

Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

Wolfgang Dierking, Oliver Lang, and Thomas Busche

Related authors

A comparison of constant false alarm rate object detection algorithms for iceberg identification in L- and C-band SAR imagery of the Labrador Sea
Laust Færch, Wolfgang Dierking, Nick Hughes, and Anthony P. Doulgeris
The Cryosphere, 17, 5335–5355, https://doi.org/10.5194/tc-17-5335-2023,https://doi.org/10.5194/tc-17-5335-2023, 2023
Short summary
Linking sea ice deformation to ice thickness redistribution using high-resolution satellite and airborne observations
Luisa von Albedyll, Christian Haas, and Wolfgang Dierking
The Cryosphere, 15, 2167–2186, https://doi.org/10.5194/tc-15-2167-2021,https://doi.org/10.5194/tc-15-2167-2021, 2021
Short summary
Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays
Wolfgang Dierking, Harry L. Stern, and Jennifer K. Hutchings
The Cryosphere, 14, 2999–3016, https://doi.org/10.5194/tc-14-2999-2020,https://doi.org/10.5194/tc-14-2999-2020, 2020
Short summary
Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images
Xi Zhang, Wolfgang Dierking, Jie Zhang, Junmin Meng, and Haitao Lang
The Cryosphere, 10, 1529–1545, https://doi.org/10.5194/tc-10-1529-2016,https://doi.org/10.5194/tc-10-1529-2016, 2016
Short summary
Sea ice draft in the Weddell Sea, measured by upward looking sonars
A. Behrendt, W. Dierking, E. Fahrbach, and H. Witte
Earth Syst. Sci. Data, 5, 209–226, https://doi.org/10.5194/essd-5-209-2013,https://doi.org/10.5194/essd-5-209-2013, 2013

Related subject area

Remote Sensing
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Veit Helm, Alireza Dehghanpour, Ronny Hänsch, Erik Loebel, Martin Horwath, and Angelika Humbert
The Cryosphere, 18, 3933–3970, https://doi.org/10.5194/tc-18-3933-2024,https://doi.org/10.5194/tc-18-3933-2024, 2024
Short summary
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary

Cited articles

Aulard-Macler, M.: Sentinel-1 Product Definition, MDA Technical Note Ref. S1-RS-MDA-52-7440, MacDonald, Dettwiler and Associates (MDA): Richmond, BC, Canada, 2012.
Bamler, R. and Hartl, P.: Synthetic aperture radar interferometry, Inverse Probl., 14, R1, https://doi.org/10.1088/0266-5611/14/4/001, 1998.
Berg, A., Dammert, P., and Eriksson, L. E. B.: X-band interferometric SAR observations of Baltic fast ice, IEEE T. Geosci. Remote, 53, 1248–1256, https://doi.org/10.1109/TGRS.2014.2336752, 2015.
Börner, T., De Zan, F., López-Dekker, F., Krieger, G., Hajnsek, I., Papathanassiou, K., Villano, M., Younis, M., Danklmayer, A., Dierking, W., Nagler, T., Rott, H., Lehner, S., Fügen, T., and Moreira, A.: SIGNAL: SAR for Ice, Glacier and Global Dynamics, 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, Hawaii, 25–30 July 2010, https://doi.org/10.1109/IGARSS.2010.5653162, 2010.
Dall, J.: InSAR elevation bias caused by penetration into uniform volumes, IEEE T. Geosci. Remote, 45, 2319–2324, https://doi.org/10.1109/TGRS.2007.896613, 2007.
Download
Short summary
Information on the sea ice surface topography is valuable in geophysical investigations such as studies on atmosphere–sea ice interactions or sea ice mechanics. We investigated whether space-borne radar systems can be used to measure sea ice elevation. The answer is yes, but disturbing effects have to be considered, in particular sea ice drift and certain technical constraints. With future satellite radar missions, a fast wide-coverage acquisition of sea ice topography may be possible.