Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
Volume 10, issue 1
The Cryosphere, 10, 401–415, 2016
https://doi.org/10.5194/tc-10-401-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
The Cryosphere, 10, 401–415, 2016
https://doi.org/10.5194/tc-10-401-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 17 Feb 2016

Research article | 17 Feb 2016

Late-summer sea ice segmentation with multi-polarisation SAR features in C and X band

Ane S. Fors et al.

Related authors

Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery
Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 11, 755–771, https://doi.org/10.5194/tc-11-755-2017,https://doi.org/10.5194/tc-11-755-2017, 2017
Short summary

Related subject area

Remote Sensing
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020,https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020,https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020,https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Opportunistic evaluation of modelled sea ice drift using passively drifting telemetry collars in Hudson Bay, Canada
Ron R. Togunov, Natasha J. Klappstein, Nicholas J. Lunn, Andrew E. Derocher, and Marie Auger-Méthé
The Cryosphere, 14, 1937–1950, https://doi.org/10.5194/tc-14-1937-2020,https://doi.org/10.5194/tc-14-1937-2020, 2020
Short summary
Global Positioning System interferometric reflectometry (GPS-IR) measurements of ground surface elevation changes in permafrost areas in northern Canada
Jiahua Zhang, Lin Liu, and Yufeng Hu
The Cryosphere, 14, 1875–1888, https://doi.org/10.5194/tc-14-1875-2020,https://doi.org/10.5194/tc-14-1875-2020, 2020
Short summary

Cited articles

Barber, D. G., Yackel, J. J., Wolf, R. L., and Lumsden, W.: Estimating the thermodynamic state of snow covered sea ice using time series Synthetic Aperture Radar (SAR) data, in: International Society of Offshore and Polar Engineers Vol. III, The Eighth International Offshore and Polar Engineering Conference, 24–29 May 1998, Montreal, Canada, 50–54, 1998.
Beckers, J. F., Renner, A. H. H., Spreen, G., Gerland, S., and Haas, C.: Sea-ice surface roughness estimates from airborne laser scanner and laser altimeter observations in Fram Strait and north of Svalbard, Ann. Glaciol., 56, 235–244, https://doi.org/10.3189/2015AoG69A717, 2015.
Bowman, A. W. and Azzalini, A.: Applied Smoothing Techniques for Data Analysis, Oxford University Press, New York, 1997.
Brath, M., Kern, S., and Stammer, D.: Sea ice classification during freeze-up conditions with multifrequency scatterometer data, IEEE T. Geosci. Remote, 51, 3336–3353, 2013.
Carlstrom, A. and Ulander, L.: C-band backscatter signatures of old sea ice in the central Arctic during freeze-up, IEEE T. Geosci. Remote, 31, 819–829, https://doi.org/10.1109/36.239904, 1993.
Publications Copernicus
Download
Short summary
This paper demonstrates how sea ice segmentation using high-resolution multi-polarisation synthetic aperture radar (SAR) can be used to retrieve valuable information about sea ice type during late summer. It adds knowledge to how choice of SAR features influence the information gain and highlights the sea ice segmentation capability of both the C and X band in late summer. The study contributes to an increased understanding of sea ice mapping and monitoring with SAR in the melt season.
This paper demonstrates how sea ice segmentation using high-resolution multi-polarisation...
Citation