Articles | Volume 7, issue 4
https://doi.org/10.5194/tc-7-1227-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-1227-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Reanalysing glacier mass balance measurement series
Department of Geography, University of Zurich (UZH), Zurich, Switzerland
E. Thibert
IRSTEA, UR ETGR Erosion Torrentielle, Neige et Avalanches, Saint-Martin-d'Hères, France
Department of Geosciences, University of Fribourg (UFR), Fribourg, Switzerland
International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal
C. Rolstad Denby
Department of Mathematical Sciences and Technology, The Norwegian University of Life Sciences (UMB), Ås, Norway
Department of Geosciences, University of Oslo (UiO), Oslo, Norway
S. U. Nussbaumer
Department of Geography, University of Zurich (UZH), Zurich, Switzerland
G. Moholdt
Scripps Institution of Oceanography, University of California, San Diego, USA
A. Mercer
Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden
C. Mayer
Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
P. C. Joerg
Department of Geography, University of Zurich (UZH), Zurich, Switzerland
P. Jansson
Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden
Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
A. Fischer
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria
H. Escher-Vetter
Commission for Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, Munich, Germany
H. Elvehøy
Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway
L. M. Andreassen
Norwegian Water Resources and Energy Directorate (NVE), Oslo, Norway
Related authors
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Jacqueline Huber, Alison J. Cook, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017, https://doi.org/10.5194/essd-9-115-2017, 2017
Short summary
Short summary
A glacier inventory of the AP (63°–70° S), consisting of glacier outlines accompanied by glacier-specific parameters (i.e., elevation distribution, slope, aspect, thickness and volume), was achieved by digitally combining already-existing data sets. This resulted in 1589 glaciers, covering an area of 95 273 km2. These freely available data provide new insights into AP glaciers, their behavior in response to a changing climate and their corresponding contribution to sea level rise.
S. H. Mernild, W. H. Lipscomb, D. B. Bahr, V. Radić, and M. Zemp
The Cryosphere, 7, 1565–1577, https://doi.org/10.5194/tc-7-1565-2013, https://doi.org/10.5194/tc-7-1565-2013, 2013
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Signe Hillerup Larsen, Daniel Binder, Anja Rutishauser, Bernhard Hynek, Robert Schjøtt Fausto, and Michele Citterio
Earth Syst. Sci. Data, 16, 4103–4118, https://doi.org/10.5194/essd-16-4103-2024, https://doi.org/10.5194/essd-16-4103-2024, 2024
Short summary
Short summary
The Greenland Ecosystem Monitoring programme has been running since 1995. In 2008, the Glaciological monitoring sub-program GlacioBasis was initiated at the Zackenberg site in northeast Greenland, with a transect of three weather stations on the A. P. Olsen Ice Cap. In 2022, the weather stations were replaced with a more standardized set up. Here, we provide the reprocessed and quality-checked data from 2008 to 2022, i.e., the first 15 years of continued monitoring.
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378, https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Short summary
Glacier retreat poses big challenges, making understanding how climate affects glaciers vital. But glacier measurements worldwide are limited. We created a simple machine-learning model called miniML-MB, which estimates annual changes in glacier mass in the Swiss Alps. As input, miniML-MB uses two climate variables: average temperature (May–Aug.) and total precipitation (Oct.–Febr.). Our model can accurately predict glacier mass from 1961–2021 but struggles for extreme years (2022 and 2023).
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Mette Kusk Gillespie, Liss Marie Andreassen, Matthias Huss, Simon de Villiers, Kamilla Hauknes Sjursen, Jostein Aasen, Jostein Bakke, Jan Magne Cederstrøm, Halgeir Elvehøy, Bjarne Kjøllmoen, Even Loe, Marte Meland, Kjetil Melvold, Sigurd Daniel Nerhus, Torgeir Opeland Røthe, Eivind Nagel Wilhelm Støren, Kåre Øst, and Jacob Clement Yde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-167, https://doi.org/10.5194/essd-2024-167, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an extensive new ice thickness dataset from Jostedalsbreen ice cap which will serve as baseline for future studies of regional climate-induced change. Results show that Jostedalsbreen currently (~2020) has a maximum ice thickness of ~630 m, a mean ice thickness of 154 m ± 22 m and an ice volume of 70.6 ± 10.2 km3. Ice of less than 50 m thickness covers two narrow regions of the ice cap, and Jostedalsbreen is likely to separate into three smaller ice caps in a warming climate.
Jennifer F. Arthur, Calvin Shackleton, Geir Moholdt, Kenichi Matsuoka, and Jelte van Oostveen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1704, https://doi.org/10.5194/egusphere-2024-1704, 2024
Short summary
Short summary
Lakes can form beneath the large ice sheets and can influence ice-sheet dynamics and stability. Some of these subglacial lakes are active, meaning they periodically drain and refill. Here we report seven new active subglacial lakes close to the Antarctic Ice Sheet margin using satellite measurements of ice surface height changes, in a region where little was known previously. These findings improve our understanding of subglacial hydrology and will help to refine subglacial hydrological models.
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
EGUsphere, https://doi.org/10.5194/egusphere-2024-1778, https://doi.org/10.5194/egusphere-2024-1778, 2024
Short summary
Short summary
Glacier models have historically been used to understand glacier melt’s contribution to sea level rise. The capacity to project seasonal glacier runoff is a relatively recent development for these models. In this study we provide the first model intercomparison of runoff projections for the glacier evolution models capable of simulating future runoff globally. We compare model projections from 2000 to 2100 for all major river basins larger than 3000 km2 with over 1 % of initial glacier cover.
Jérôme Lopez-Saez, Christophe Corona, Lenka Slamova, Matthias Huss, Valérie Daux, Kurt Nicolussi, and Markus Stoffel
Clim. Past, 20, 1251–1267, https://doi.org/10.5194/cp-20-1251-2024, https://doi.org/10.5194/cp-20-1251-2024, 2024
Short summary
Short summary
Glaciers in the European Alps have been retreating since the 1850s. Monitoring glacier mass balance is vital for understanding global changes, but only a few glaciers have long-term data. This study aims to reconstruct the mass balance of the Silvretta Glacier in the Swiss Alps using stable isotopes and tree ring proxies. Results indicate increased glacier mass until the 19th century, followed by a sharp decline after the Little Ice Age with accelerated losses due to anthropogenic warming.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646, https://doi.org/10.5194/egusphere-2024-646, 2024
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice-bedrock interface. In 4 months of seismic records, we detect spatiotemporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modeling techniques. This low-velocity layer results from temporary water storage within the glacier.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquin Munoz Cobo Belart, Fanny Brun, Liss Marie Andreassen, Brian Menounos, and Charlotte Blondel
EGUsphere, https://doi.org/10.5194/egusphere-2024-250, https://doi.org/10.5194/egusphere-2024-250, 2024
Short summary
Short summary
Repeat elevation measurements are crucial for monitoring glacier health and how they affect river flows and sea levels. Until recently, high resolution elevation data were mostly available for polar regions and High Mountain Asia. Our project, the Pléiades Glacier Observatory (PGO), now provides high-resolution topographies of 140 glacier sites worldwide. This is a novel and open dataset to monitor the impact of climate change on glacier at high resolution and accuracy.
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Berhnard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-267, https://doi.org/10.5194/hess-2023-267, 2024
Manuscript not accepted for further review
Short summary
Short summary
Triggered by global warming, glacier melt is repeatedly reaching peak values year by year. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and a change in meltwater runoff behavior. The study describes an essential development step of proglacial channel evolution using river engineering methods. This is relevant to adequately define glacifluvial processes and downstream sediment yields in these transitioning landscapes.
Bernhard Hynek, Daniel Binder, Michele Citterio, Signe Hillerup Larsen, Jakob Abermann, Geert Verhoeven, Elke Ludewig, and Wolfgang Schöner
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-157, https://doi.org/10.5194/tc-2023-157, 2023
Revised manuscript accepted for TC
Short summary
Short summary
A strong avalanche event in winter 2018 caused thick snow deposits on Freya Glacier, a mountain glacier in Northeast Greenland. The avalanche deposits led to positive elevation changes during the study period 2013–2021 and altered the mass balance of the glacier significantly. The eight year mass balance was positive, it would have been negative without avalanches. The contribution from snow avalanches might become more important with rising temperatures in the Arctic.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun
The Cryosphere, 17, 2285–2303, https://doi.org/10.5194/tc-17-2285-2023, https://doi.org/10.5194/tc-17-2285-2023, 2023
Short summary
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, Christoph Mayer, and Axel Bronstert
Hydrol. Earth Syst. Sci., 27, 1841–1863, https://doi.org/10.5194/hess-27-1841-2023, https://doi.org/10.5194/hess-27-1841-2023, 2023
Short summary
Short summary
We present a suitable method to reconstruct sediment export from decadal records of hydroclimatic predictors (discharge, precipitation, temperature) and shorter suspended sediment measurements. This lets us fill the knowledge gap on how sediment export from glacierized high-alpine areas has responded to climate change. We find positive trends in sediment export from the two investigated nested catchments with step-like increases around 1981 which are linked to crucial changes in glacier melt.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Joël Borner, and Daniel Farinotti
The Cryosphere, 17, 1895–1912, https://doi.org/10.5194/tc-17-1895-2023, https://doi.org/10.5194/tc-17-1895-2023, 2023
Short summary
Short summary
Summer heat waves have a substantial impact on glacier melt as emphasized by the extreme summer of 2022. This study presents a novel approach for detecting extreme glacier melt events at the regional scale based on the combination of automatically retrieved point mass balance observations and modelling approaches. The in-depth analysis of summer 2022 evidences the strong correspondence between heat waves and extreme melt events and demonstrates their significance for seasonal melt.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023, https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Short summary
Spatio-temporal reconstruction of winter glacier mass balance is important for assessing long-term impacts of climate change. However, high-altitude regions significantly lack reliable observations, which is limiting the calibration of glaciological and hydrological models. We aim at improving knowledge on the spatio-temporal variations in winter glacier mass balance by exploring the combination of data from reanalyses and direct snow accumulation observations on glaciers with machine learning.
Anirudha Mahagaonkar, Geir Moholdt, and Thomas V. Schuler
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-4, https://doi.org/10.5194/tc-2023-4, 2023
Revised manuscript not accepted
Short summary
Short summary
Surface meltwater lakes along the margins of the Antarctic Ice Sheet can be important for ice shelf dynamics and stability. We used optical satellite imagery to study seasonal evolution of meltwater lakes in Dronning Maud Land. We found large interannual variability in lake extents, but with consistent seasonal patterns. Although correlation with summer air temperature was strong locally, other climatic and environmental factors need to be considered to explain the large regional variability.
Michael Paster, Peter Flödl, Anton Neureiter, Gernot Weyss, Bernhard Hynek, Ulrich Pulg, Rannveig Øvrevik Skoglund, Helmut Habersack, and Christoph Hauer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-347, https://doi.org/10.5194/hess-2022-347, 2022
Manuscript not accepted for further review
Short summary
Short summary
Glaciers experienced record-breaking melting rates in recent years. This development leads to a continuous enlargement of glacier forelands, accompanied by increasing sediment availability and altered meltwater runoff behavior. This study describes the final development step of the gradual meltwater channel evolution using river engineering techniques. This is relevant to adequately define high alpine fluvial processes and sediment yields in these transitional landscapes.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, Mohd Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne H. Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radić, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere, 16, 3331–3356, https://doi.org/10.5194/tc-16-3331-2022, https://doi.org/10.5194/tc-16-3331-2022, 2022
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than under clear-sky conditions. Also, air temperature was related to clouds in opposite ways in different climates – warmer with clouds in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Lea Geibel, Matthias Huss, Claudia Kurzböck, Elias Hodel, Andreas Bauder, and Daniel Farinotti
Earth Syst. Sci. Data, 14, 3293–3312, https://doi.org/10.5194/essd-14-3293-2022, https://doi.org/10.5194/essd-14-3293-2022, 2022
Short summary
Short summary
Glacier monitoring in Switzerland started in the 19th century, providing exceptional data series documenting snow accumulation and ice melt. Raw point observations of surface mass balance have, however, never been systematically compiled so far, including complete metadata. Here, we present an extensive dataset with more than 60 000 point observations of surface mass balance covering 60 Swiss glaciers and almost 140 years, promoting a better understanding of the drivers of recent glacier change.
Tim Steffen, Matthias Huss, Rebekka Estermann, Elias Hodel, and Daniel Farinotti
Earth Surf. Dynam., 10, 723–741, https://doi.org/10.5194/esurf-10-723-2022, https://doi.org/10.5194/esurf-10-723-2022, 2022
Short summary
Short summary
Climate change is rapidly altering high-alpine landscapes. The formation of new lakes in areas becoming ice free due to glacier retreat is one of the many consequences of this process. Here, we provide an estimate for the number, size, time of emergence, and sediment infill of future glacier lakes that will emerge in the Swiss Alps. We estimate that up to ~ 680 potential lakes could form over the course of the 21st century, with the potential to hold a total water volume of up to ~ 1.16 km3.
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066, https://doi.org/10.5194/tc-16-2051-2022, https://doi.org/10.5194/tc-16-2051-2022, 2022
Short summary
Short summary
This study combines a variety of geophysical measurements in front of and beneath the Ekström Ice Shelf in order to identify and interpret geomorphological evidences of past ice sheet flow, extent and retreat.
The maximal extent of grounded ice in this region was 11 km away from the continental shelf break.
The thickness of palaeo-ice on the calving front around the LGM was estimated to be at least 305 to 320 m.
We provide essential boundary conditions for palaeo-ice-sheet models.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Johannes Marian Landmann, Hans Rudolf Künsch, Matthias Huss, Christophe Ogier, Markus Kalisch, and Daniel Farinotti
The Cryosphere, 15, 5017–5040, https://doi.org/10.5194/tc-15-5017-2021, https://doi.org/10.5194/tc-15-5017-2021, 2021
Short summary
Short summary
In this study, we (1) acquire real-time information on point glacier mass balance with autonomous real-time cameras and (2) assimilate these observations into a mass balance model ensemble driven by meteorological input. For doing so, we use a customized particle filter that we designed for the specific purposes of our study. We find melt rates of up to 0.12 m water equivalent per day and show that our assimilation method has a higher performance than reference mass balance models.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Joschka Geissler, Christoph Mayer, Juilson Jubanski, Ulrich Münzer, and Florian Siegert
The Cryosphere, 15, 3699–3717, https://doi.org/10.5194/tc-15-3699-2021, https://doi.org/10.5194/tc-15-3699-2021, 2021
Short summary
Short summary
The study demonstrates the potential of photogrammetry for analyzing glacier retreat with high spatial resolution. Twenty-three glaciers within the Ötztal Alps are analyzed. We compare photogrammetric and glaciologic mass balances of the Vernagtferner by using the ELA for our density assumption and an UAV survey for a temporal correction of the geodetic mass balances. The results reveal regions of anomalous mass balance and allow estimates of the imbalance between mass balances and ice dynamics.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Christoph Mayer, Markus Weber, Anja Wendt, and Wilfried Hagg
Polarforschung, 89, 1–7, https://doi.org/10.5194/polf-89-1-2021, https://doi.org/10.5194/polf-89-1-2021, 2021
Short summary
Short summary
Only five small glaciers exist in the German part of the Alps. They are too small to play an important role in the regional hydrological system, but are significant remnants of the earlier glaciation of the northern Alps. Therefore, they have been mapped already in the 19th century and are monitored since about 1950. A survey in 2018 documents the recent status of the glaciers. The synthesis of the long term monitoring and an estimate of the future for these small ice bodies is presented here.
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021, https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary
Short summary
To obtain reliable snowfall estimates in high mountain remains a challenge. This study uses daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glaciers to assess three
readily-available high-quality precipitation products. We find a large bias between in situ SWE and snowfall, which differs among the precipitation products, the two sites, the winter seasons and in situ meteorological conditions. All products have great potential for various applications in the Alps.
Ethan Welty, Michael Zemp, Francisco Navarro, Matthias Huss, Johannes J. Fürst, Isabelle Gärtner-Roer, Johannes Landmann, Horst Machguth, Kathrin Naegeli, Liss M. Andreassen, Daniel Farinotti, Huilin Li, and GlaThiDa Contributors
Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, https://doi.org/10.5194/essd-12-3039-2020, 2020
Short summary
Short summary
Knowing the thickness of glacier ice is critical for predicting the rate of glacier loss and the myriad downstream impacts. To facilitate forecasts of future change, we have added 3 million measurements to our worldwide database of glacier thickness: 14 % of global glacier area is now within 1 km of a thickness measurement (up from 6 %). To make it easier to update and monitor the quality of our database, we have used automated tools to check and track changes to the data over time.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, Mika Malinen, Emma C. Smith, and Hannes Eisermann
The Cryosphere, 14, 3917–3934, https://doi.org/10.5194/tc-14-3917-2020, https://doi.org/10.5194/tc-14-3917-2020, 2020
Short summary
Short summary
To reduce uncertainties associated with sea level rise projections, an accurate representation of ice flow is paramount. Most ice sheet models rely on simplified versions of the underlying ice flow equations. Due to the high computational costs, ice sheet models based on the complete ice flow equations have been restricted to < 1000 years. Here, we present a new model setup that extends the applicability of such models by an order of magnitude, permitting simulations of 40 000 years.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Michael Zemp, Matthias Huss, Nicolas Eckert, Emmanuel Thibert, Frank Paul, Samuel U. Nussbaumer, and Isabelle Gärtner-Roer
The Cryosphere, 14, 1043–1050, https://doi.org/10.5194/tc-14-1043-2020, https://doi.org/10.5194/tc-14-1043-2020, 2020
Short summary
Short summary
Comprehensive assessments of global glacier mass changes have been published at multi-annual intervals, typically in IPCC reports. For the years in between, we present an approach to infer timely but preliminary estimates of global-scale glacier mass changes from glaciological observations. These ad hoc estimates for 2017/18 indicate that annual glacier contributions to sea-level rise exceeded 1 mm sea-level equivalent, which corresponds to more than a quarter of the currently observed rise.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Rebecca Gugerli, Nadine Salzmann, Matthias Huss, and Darin Desilets
The Cryosphere, 13, 3413–3434, https://doi.org/10.5194/tc-13-3413-2019, https://doi.org/10.5194/tc-13-3413-2019, 2019
Short summary
Short summary
The snow water equivalent (SWE) in high mountain regions is crucial for many applications. Yet its quantification remains difficult. We present autonomous daily SWE observations by a cosmic ray sensor (CRS) deployed on a Swiss glacier for two winter seasons. Combined with snow depth observations, we derive the daily bulk snow density. The validation with manual field observations and its measurement reliability show that the CRS is a promising device for high alpine cryospheric environments.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Manuela I. Brunner, Daniel Farinotti, Harry Zekollari, Matthias Huss, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, https://doi.org/10.5194/hess-23-4471-2019, 2019
Short summary
Short summary
River flow regimes are expected to change and so are extreme flow regimes. We propose two methods for estimating extreme flow regimes and show on a data set from Switzerland how these extreme regimes are expected to change. Our results show that changes in low- and high-flow regimes are distinct for rainfall- and melt-dominated regions. Our findings provide guidance in water resource planning and management.
Clemens Schannwell, Reinhard Drews, Todd A. Ehlers, Olaf Eisen, Christoph Mayer, and Fabien Gillet-Chaulet
The Cryosphere, 13, 2673–2691, https://doi.org/10.5194/tc-13-2673-2019, https://doi.org/10.5194/tc-13-2673-2019, 2019
Short summary
Short summary
Ice rises are important ice-sheet features that archive the ice sheet's history in their internal structure. Here we use a 3-D numerical ice-sheet model to simulate mechanisms that lead to changes in the geometry of the internal structure. We find that changes in snowfall result in much larger and faster changes than similar changes in ice-shelf geometry. This result is integral to fully unlocking the potential of ice rises as ice-dynamic archives and potential ice-core drilling sites.
Katrin Lindbäck, Geir Moholdt, Keith W. Nicholls, Tore Hattermann, Bhanu Pratap, Meloth Thamban, and Kenichi Matsuoka
The Cryosphere, 13, 2579–2595, https://doi.org/10.5194/tc-13-2579-2019, https://doi.org/10.5194/tc-13-2579-2019, 2019
Short summary
Short summary
In this study, we used a ground-penetrating radar technique to measure melting at high precision under Nivlisen, an ice shelf in central Dronning Maud Land, East Antarctica. We found that summer-warmed ocean surface waters can increase melting close to the ice shelf front. Our study shows the use of and need for measurements in the field to monitor Antarctica's coastal margins; these detailed variations in basal melting are not captured in satellite data but are vital to predict future changes.
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Ian Allison, Charles Fierz, Regine Hock, Andrew Mackintosh, Georg Kaser, and Samuel U. Nussbaumer
Hist. Geo Space. Sci., 10, 97–107, https://doi.org/10.5194/hgss-10-97-2019, https://doi.org/10.5194/hgss-10-97-2019, 2019
Short summary
Short summary
The International Association of Cryospheric Sciences (IACS) became the eighth and most recent association of IUGG in July 2007. IACS was launched in recognition of the importance of the cryosphere, particularly at a time of significant global change. The forbears of IACS, however, start with the 1894 Commission Internationale des Glaciers (CIG). This paper traces the transition from CIG to IACS; scientific objectives that drove activities and changes, and key events and individuals involved.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Kathrin Naegeli, Matthias Huss, and Martin Hoelzle
The Cryosphere, 13, 397–412, https://doi.org/10.5194/tc-13-397-2019, https://doi.org/10.5194/tc-13-397-2019, 2019
Short summary
Short summary
The paper investigates the temporal changes of bare-ice glacier surface albedo in the Swiss Alps between 1999 and 2016 from a regional to local scale using satellite data. Significant negative trends were found in the lowermost elevations and margins of the ablation zones. Although significant changes of glacier ice albedo are only present over a limited area, we emphasize that albedo feedback will considerably enhance the rate of glacier mass loss in the Swiss Alps in the near future.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Julien Seguinot, Susan Ivy-Ochs, Guillaume Jouvet, Matthias Huss, Martin Funk, and Frank Preusser
The Cryosphere, 12, 3265–3285, https://doi.org/10.5194/tc-12-3265-2018, https://doi.org/10.5194/tc-12-3265-2018, 2018
Short summary
Short summary
About 25 000 years ago, Alpine glaciers filled most of the valleys and even extended onto the plains. In this study, with help from traces left by glaciers on the landscape, we use a computer model that contains knowledge of glacier physics based on modern observations of Greenland and Antarctica and laboratory experiments on ice, and one of the fastest computers in the world, to attempt a reconstruction of the evolution of Alpine glaciers through time from 120 000 years ago to today.
Katrin Lindbäck, Jack Kohler, Rickard Pettersson, Christopher Nuth, Kirsty Langley, Alexandra Messerli, Dorothée Vallot, Kenichi Matsuoka, and Ola Brandt
Earth Syst. Sci. Data, 10, 1769–1781, https://doi.org/10.5194/essd-10-1769-2018, https://doi.org/10.5194/essd-10-1769-2018, 2018
Short summary
Short summary
Tidewater glaciers terminate directly into the sea and the glacier fronts are important feeding areas for birds and marine mammals. Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts end on land. In this paper, we present digital maps of ice thickness and topography under five tidewater glaciers in Kongsfjorden, northwestern Svalbard, which will be useful in studies of future glacier changes in the area.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Alex S. Gardner, Geir Moholdt, Ted Scambos, Mark Fahnstock, Stefan Ligtenberg, Michiel van den Broeke, and Johan Nilsson
The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, https://doi.org/10.5194/tc-12-521-2018, 2018
Short summary
Short summary
We map present-day Antarctic surface velocities from Landsat imagery and compare to earlier estimates from radar. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and the western Antarctic Peninsula, account for 89 % of the observed increase in ice discharge. In contrast, glaciers draining the East Antarctic have been remarkably stable. Our work suggests that patterns of mass loss are part of a longer-term phase of enhanced flow.
Ulrich Strasser, Thomas Marke, Ludwig Braun, Heidi Escher-Vetter, Irmgard Juen, Michael Kuhn, Fabien Maussion, Christoph Mayer, Lindsey Nicholson, Klaus Niedertscheider, Rudolf Sailer, Johann Stötter, Markus Weber, and Georg Kaser
Earth Syst. Sci. Data, 10, 151–171, https://doi.org/10.5194/essd-10-151-2018, https://doi.org/10.5194/essd-10-151-2018, 2018
Short summary
Short summary
A hydrometeorological and glaciological data set is presented with recordings from several research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria). The data sets are spanning 150 years and represent a unique pool of high mountain observations, enabling combined research of atmospheric, cryospheric and hydrological processes in complex terrain, and the development of state-of-the-art hydroclimatological and glacier mass balance models.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Martin Hoelzle, Erlan Azisov, Martina Barandun, Matthias Huss, Daniel Farinotti, Abror Gafurov, Wilfried Hagg, Ruslan Kenzhebaev, Marlene Kronenberg, Horst Machguth, Alexandr Merkushkin, Bolot Moldobekov, Maxim Petrov, Tomas Saks, Nadine Salzmann, Tilo Schöne, Yuri Tarasov, Ryskul Usubaliev, Sergiy Vorogushyn, Andrey Yakovlev, and Michael Zemp
Geosci. Instrum. Method. Data Syst., 6, 397–418, https://doi.org/10.5194/gi-6-397-2017, https://doi.org/10.5194/gi-6-397-2017, 2017
Johannes Jakob Fürst, Fabien Gillet-Chaulet, Toby J. Benham, Julian A. Dowdeswell, Mariusz Grabiec, Francisco Navarro, Rickard Pettersson, Geir Moholdt, Christopher Nuth, Björn Sass, Kjetil Aas, Xavier Fettweis, Charlotte Lang, Thorsten Seehaus, and Matthias Braun
The Cryosphere, 11, 2003–2032, https://doi.org/10.5194/tc-11-2003-2017, https://doi.org/10.5194/tc-11-2003-2017, 2017
Short summary
Short summary
For the large majority of glaciers and ice caps, there is no information on the thickness of the ice cover. Any attempt to predict glacier demise under climatic warming and to estimate the future contribution to sea-level rise is limited as long as the glacier thickness is not well constrained. Here, we present a two-step mass-conservation approach for mapping ice thickness. Measurements are naturally reproduced. The reliability is readily assessible from a complementary map of error estimates.
Laurence Gray, David Burgess, Luke Copland, Thorben Dunse, Kirsty Langley, and Geir Moholdt
The Cryosphere, 11, 1041–1058, https://doi.org/10.5194/tc-11-1041-2017, https://doi.org/10.5194/tc-11-1041-2017, 2017
Short summary
Short summary
We use surface height data from west Greenland and Devon Ice Cap to check the performance of the new interferometric mode of the ESA CryoSat radar altimeter. The detailed height comparison allows an improved system calibration and processing methodology and measurement of the height of supraglacial lakes which form each summer around the periphery of the Greenland Ice Cap. The advantages of the SARIn mode suggest that future satellite radar altimeters for glacial ice should use this technology.
Daniel Farinotti, Douglas J. Brinkerhoff, Garry K. C. Clarke, Johannes J. Fürst, Holger Frey, Prateek Gantayat, Fabien Gillet-Chaulet, Claire Girard, Matthias Huss, Paul W. Leclercq, Andreas Linsbauer, Horst Machguth, Carlos Martin, Fabien Maussion, Mathieu Morlighem, Cyrille Mosbeux, Ankur Pandit, Andrea Portmann, Antoine Rabatel, RAAJ Ramsankaran, Thomas J. Reerink, Olivier Sanchez, Peter A. Stentoft, Sangita Singh Kumari, Ward J. J. van Pelt, Brian Anderson, Toby Benham, Daniel Binder, Julian A. Dowdeswell, Andrea Fischer, Kay Helfricht, Stanislav Kutuzov, Ivan Lavrentiev, Robert McNabb, G. Hilmar Gudmundsson, Huilin Li, and Liss M. Andreassen
The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, https://doi.org/10.5194/tc-11-949-2017, 2017
Short summary
Short summary
ITMIX – the Ice Thickness Models Intercomparison eXperiment – was the first coordinated performance assessment for models inferring glacier ice thickness from surface characteristics. Considering 17 different models and 21 different test cases, we show that although solutions of individual models can differ considerably, an ensemble average can yield uncertainties in the order of 10 ± 24 % the mean ice thickness. Ways forward for improving such estimates are sketched.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary
Short summary
Recent surging of Kyagar Glacier (Karakoram) caused a hazardous ice-dammed lake to form and burst in 2015 and 2016. We use remotely sensed glacier surface velocities and surface elevation to observe dramatic changes in speed and mass distribution during the surge. The surge was hydrologically controlled with rapid summer onset and dramatic termination following lake outburst. Since the surge, the potential outburst hazard has remained high, and continued remote monitoring is crucial.
Jacqueline Huber, Alison J. Cook, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017, https://doi.org/10.5194/essd-9-115-2017, 2017
Short summary
Short summary
A glacier inventory of the AP (63°–70° S), consisting of glacier outlines accompanied by glacier-specific parameters (i.e., elevation distribution, slope, aspect, thickness and volume), was achieved by digitally combining already-existing data sets. This resulted in 1589 glaciers, covering an area of 95 273 km2. These freely available data provide new insights into AP glaciers, their behavior in response to a changing climate and their corresponding contribution to sea level rise.
Pascal Bohleber, Leo Sold, Douglas R. Hardy, Margit Schwikowski, Patrick Klenk, Andrea Fischer, Pascal Sirguey, Nicolas J. Cullen, Mariusz Potocki, Helene Hoffmann, and Paul Mayewski
The Cryosphere, 11, 469–482, https://doi.org/10.5194/tc-11-469-2017, https://doi.org/10.5194/tc-11-469-2017, 2017
Short summary
Short summary
Our study is the first to use ground-penetrating radar (GPR) to investigate ice thickness and internal layering at Kilimanjaro’s largest ice body, the Northern Ice Field (NIF). For monitoring the ongoing ice loss, our ice thickness soundings allowed us to estimate the total ice volume remaining at NIF's southern portion. Englacial GPR reflections indicate undisturbed layers within NIF's center and provide a first link between age information obtained from ice coring and vertical wall sampling.
Stephan Gruber, Renate Fleiner, Emilie Guegan, Prajjwal Panday, Marc-Olivier Schmid, Dorothea Stumm, Philippus Wester, Yinsheng Zhang, and Lin Zhao
The Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, https://doi.org/10.5194/tc-11-81-2017, 2017
Short summary
Short summary
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya region. This is important because the area of permafrost exceeds that of glaciers in this region. Climate change will produce diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To mitigate this, a better understanding of high-elevation permafrost in subtropical latitudes as well as the pathways connecting environmental change and human livelihoods, is needed.
Walter Immerzeel, Philip Kraaijenbrink, and Liss Andreassen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-292, https://doi.org/10.5194/tc-2016-292, 2017
Revised manuscript not accepted
Short summary
Short summary
Unmanned Aerial Vehicles (UAV) have become increasingly popular in environmental monitoring. In this study we use a UAV to derive a very detailed digital elevation model (DEM) of Storbreen in Norway. We compare our results with a past DEM to derive the mass balance of this glacier. Our results confirm strong mass loss and retreat of continental glaciers in southern Norway and we conclude that UAVs are effective tools in stuyding mountain glaciers at a high level of detail.
Rune Strand Ødegård, Atle Nesje, Ketil Isaksen, Liss Marie Andreassen, Trond Eiken, Margit Schwikowski, and Chiara Uglietti
The Cryosphere, 11, 17–32, https://doi.org/10.5194/tc-11-17-2017, https://doi.org/10.5194/tc-11-17-2017, 2017
Short summary
Short summary
Despite numerous spectacular archaeological discoveries worldwide related to melting ice, governing processes related to ice patch development are still largely unexplored. We present new results from Jotunheimen in central southern Norway showing that the Juvfonne ice patch has existed continuously since ca. 7600 cal years BP. This is the oldest dating of ice in mainland Norway. Moss mats along the margin of Juvfonne in 2014 were covered by the expanding ice patch about 2000 years ago.
Janin Schaffer, Ralph Timmermann, Jan Erik Arndt, Steen Savstrup Kristensen, Christoph Mayer, Mathieu Morlighem, and Daniel Steinhage
Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, https://doi.org/10.5194/essd-8-543-2016, 2016
Short summary
Short summary
The RTopo-2 data set provides consistent maps of global ocean bathymetry and ice surface topographies for Greenland and Antarctica at 30 arcsec grid spacing. We corrected data from earlier products in the areas of Petermann, Hagen Bræ, and Helheim glaciers, incorporated original data for the floating ice tongue of Nioghalvfjerdsfjorden Glacier, and applied corrections for the geometry of Getz, Abbot, and Fimbul ice shelf cavities. The data set is available from the PANGAEA database.
Mauro Fischer, Matthias Huss, Mario Kummert, and Martin Hoelzle
The Cryosphere, 10, 1279–1295, https://doi.org/10.5194/tc-10-1279-2016, https://doi.org/10.5194/tc-10-1279-2016, 2016
Short summary
Short summary
This study provides the first thorough validation of geodetic glacier mass changes derived from close-range high-resolution remote sensing techniques, and highlights the potential of terrestrial laser scanning for repeated mass balance monitoring of very small alpine glaciers. The presented methodology is promising, as laborious and potentially dangerous in situ measurements as well as the spatial inter- and extrapolation of point measurements over the entire glacier can be circumvented.
James S. Douglas, Matthias Huss, Darrel A. Swift, Julie M. Jones, and Franco Salerno
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-116, https://doi.org/10.5194/tc-2016-116, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Glacier behaviour in high-mountain Asia is different from other regions due to debris cover and ice stagnation. This study incorporates these factors into a glacio-hydrological model for the first time at the Khumbu Glacier, Nepal. We show that including debris provides a more realistic representation of the Khumbu Glacier than in previous runoff models, and that changes to the debris surface significantly influence glacier and runoff evolution, with impacts on downstream water resources.
Mariano H. Masiokas, Duncan A. Christie, Carlos Le Quesne, Pierre Pitte, Lucas Ruiz, Ricardo Villalba, Brian H. Luckman, Etienne Berthier, Samuel U. Nussbaumer, Álvaro González-Reyes, James McPhee, and Gonzalo Barcaza
The Cryosphere, 10, 927–940, https://doi.org/10.5194/tc-10-927-2016, https://doi.org/10.5194/tc-10-927-2016, 2016
Short summary
Short summary
Glacier Echaurren Norte (ECH, 34° S) has the longest (> 35 yrs) mass-balance record in South America. A minimal model that explains 78 % of the variance in the ECH annual record identifies precipitation as the most important forcing. A regional streamflow series allows for extending the ECH annual record back to 1909 and shows a clear cumulative ice-mass loss. Similarities with documented glacier advances and other shorter mass-balance series suggest the ECH reconstruction is regionally representative.
Ursula Weiser, Marc Olefs, Wolfgang Schöner, Gernot Weyss, and Bernhard Hynek
The Cryosphere, 10, 775–790, https://doi.org/10.5194/tc-10-775-2016, https://doi.org/10.5194/tc-10-775-2016, 2016
Short summary
Short summary
Geometric effects induced by tilt errors lead to erroneous measurement of snow albedo. These errors are corrected where tilts of sensors and slopes are unknown. Atmospheric parameters are taken from a nearby reference measurement or a radiation model. The developed model is fitted to the measured data to determine tilts and directions which vary daily due to changing atmospheric conditions and snow cover. The results show an obvious under- or overestimation of albedo depending on the slope direction.
Liss M. Andreassen, Hallgeir Elvehøy, Bjarne Kjøllmoen, and Rune V. Engeset
The Cryosphere, 10, 535–552, https://doi.org/10.5194/tc-10-535-2016, https://doi.org/10.5194/tc-10-535-2016, 2016
Short summary
Short summary
This study provides homogenised and partly calibrated data series of glaciological and geodetic mass balance for the 10 Norwegian glaciers with long-term observations. In total, 21 periods of data were compared. Uncertainties were quantified for relevant sources of errors, both in the glaciological and geodetic series. The reanalysis processes altered seasonal, annual, and cumulative as well as ELA and AAR values for many of the years for the 10 glaciers presented.
M.-O. Schmid, P. Baral, S. Gruber, S. Shahi, T. Shrestha, D. Stumm, and P. Wester
The Cryosphere, 9, 2089–2099, https://doi.org/10.5194/tc-9-2089-2015, https://doi.org/10.5194/tc-9-2089-2015, 2015
Short summary
Short summary
The extent and distribution of permafrost in the mountainous parts of the Hindu Kush Himalayan (HKH) region are largely unknown. This article provides a first-order assessment of the two available permafrost maps in the HKH region based on the mapping of rock glaciers in Google Earth. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index does so with more success.
J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski
The Cryosphere, 9, 1385–1400, https://doi.org/10.5194/tc-9-1385-2015, https://doi.org/10.5194/tc-9-1385-2015, 2015
Short summary
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.
C. C. Clason, C. Coch, J. Jarsjö, K. Brugger, P. Jansson, and G. Rosqvist
Hydrol. Earth Syst. Sci., 19, 2701–2715, https://doi.org/10.5194/hess-19-2701-2015, https://doi.org/10.5194/hess-19-2701-2015, 2015
L. Sold, M. Huss, A. Eichler, M. Schwikowski, and M. Hoelzle
The Cryosphere, 9, 1075–1087, https://doi.org/10.5194/tc-9-1075-2015, https://doi.org/10.5194/tc-9-1075-2015, 2015
Short summary
Short summary
This study presents a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons in helicopter-borne ground-penetrating radar (GPR) data. In combination with a simple model for firn densification and refreezing of meltwater, GPR can be used not only to complement existing mass balance monitoring programmes but also to retrospectively extend newly initiated time series.
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
Short summary
Based on satellite laser altimetry over the Pamir--Karakoram Himalaya we detect strongest elevation losses over east Nyainqentanglha Shan and Spiti--Lahaul but slight elevation gains over west Kunlun Shan rather than over Karakoram. The current sea-level contribution of Pamir--Karakoram Himalaya glaciers is about 10% of the total global contribution of glaciers outside the ice sheets. We also improve estimates of glacier imbalance contribution to river discharge in the Himalayas.
M. Fischer, M. Huss, and M. Hoelzle
The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, https://doi.org/10.5194/tc-9-525-2015, 2015
A. Diez, O. Eisen, C. Hofstede, A. Lambrecht, C. Mayer, H. Miller, D. Steinhage, T. Binder, and I. Weikusat
The Cryosphere, 9, 385–398, https://doi.org/10.5194/tc-9-385-2015, https://doi.org/10.5194/tc-9-385-2015, 2015
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
S. H. Winsvold, L. M. Andreassen, and C. Kienholz
The Cryosphere, 8, 1885–1903, https://doi.org/10.5194/tc-8-1885-2014, https://doi.org/10.5194/tc-8-1885-2014, 2014
K. Lindbäck, R. Pettersson, S. H. Doyle, C. Helanow, P. Jansson, S. S. Kristensen, L. Stenseng, R. Forsberg, and A. L. Hubbard
Earth Syst. Sci. Data, 6, 331–338, https://doi.org/10.5194/essd-6-331-2014, https://doi.org/10.5194/essd-6-331-2014, 2014
H. Machguth and M. Huss
The Cryosphere, 8, 1741–1755, https://doi.org/10.5194/tc-8-1741-2014, https://doi.org/10.5194/tc-8-1741-2014, 2014
M. Huss and D. Farinotti
The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, https://doi.org/10.5194/tc-8-1261-2014, 2014
M. Juen, C. Mayer, A. Lambrecht, H. Han, and S. Liu
The Cryosphere, 8, 377–386, https://doi.org/10.5194/tc-8-377-2014, https://doi.org/10.5194/tc-8-377-2014, 2014
A. A. Borsa, G. Moholdt, H. A. Fricker, and K. M. Brunt
The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014, https://doi.org/10.5194/tc-8-345-2014, 2014
M. Engelhardt, T. V. Schuler, and L. M. Andreassen
Hydrol. Earth Syst. Sci., 18, 511–523, https://doi.org/10.5194/hess-18-511-2014, https://doi.org/10.5194/hess-18-511-2014, 2014
W. Colgan, W. Abdalati, M. Citterio, B. Csatho, X. Fettweis, S. Luthcke, G. Moholdt, and M. Stober
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-537-2014, https://doi.org/10.5194/tcd-8-537-2014, 2014
Revised manuscript not accepted
M. Thoma, K. Grosfeld, D. Barbi, J. Determann, S. Goeller, C. Mayer, and F. Pattyn
Geosci. Model Dev., 7, 1–21, https://doi.org/10.5194/gmd-7-1-2014, https://doi.org/10.5194/gmd-7-1-2014, 2014
M. Huss, A. Voinesco, and M. Hoelzle
Geogr. Helv., 68, 227–237, https://doi.org/10.5194/gh-68-227-2013, https://doi.org/10.5194/gh-68-227-2013, 2013
P. Wagnon, C. Vincent, Y. Arnaud, E. Berthier, E. Vuillermoz, S. Gruber, M. Ménégoz, A. Gilbert, M. Dumont, J. M. Shea, D. Stumm, and B. K. Pokhrel
The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, https://doi.org/10.5194/tc-7-1769-2013, 2013
J. F. Levinsen, K. Khvorostovsky, F. Ticconi, A. Shepherd, R. Forsberg, L. S. Sørensen, A. Muir, N. Pie, D. Felikson, T. Flament, R. Hurkmans, G. Moholdt, B. Gunter, R. C. Lindenbergh, and M. Kleinherenbrink
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-5433-2013, https://doi.org/10.5194/tcd-7-5433-2013, 2013
Revised manuscript not accepted
D. Farinotti and M. Huss
The Cryosphere, 7, 1707–1720, https://doi.org/10.5194/tc-7-1707-2013, https://doi.org/10.5194/tc-7-1707-2013, 2013
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
S. H. Mernild, W. H. Lipscomb, D. B. Bahr, V. Radić, and M. Zemp
The Cryosphere, 7, 1565–1577, https://doi.org/10.5194/tc-7-1565-2013, https://doi.org/10.5194/tc-7-1565-2013, 2013
Q. Liu, C. Mayer, and S. Liu
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4545-2013, https://doi.org/10.5194/tcd-7-4545-2013, 2013
Revised manuscript not accepted
D. Finger, A. Hugentobler, M. Huss, A. Voinesco, H. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner
Hydrol. Earth Syst. Sci., 17, 3261–3277, https://doi.org/10.5194/hess-17-3261-2013, https://doi.org/10.5194/hess-17-3261-2013, 2013
U. Minora, D. Bocchiola, C. D'Agata, D. Maragno, C. Mayer, A. Lambrecht, B. Mosconi, E. Vuillermoz, A. Senese, C. Compostella, C. Smiraglia, and G. Diolaiuti
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-2891-2013, https://doi.org/10.5194/tcd-7-2891-2013, 2013
Revised manuscript not accepted
M. Huss
The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, https://doi.org/10.5194/tc-7-877-2013, 2013
E. Collier, T. Mölg, F. Maussion, D. Scherer, C. Mayer, and A. B. G. Bush
The Cryosphere, 7, 779–795, https://doi.org/10.5194/tc-7-779-2013, https://doi.org/10.5194/tc-7-779-2013, 2013
Related subject area
Glaciers
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Linking Glacier Retreat with Climate Change on the Tibetan Plateau through Satellite Remote Sensing
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Everest South Col Glacier did not thin during the period 1984–2017
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Geometric controls of tidewater glacier dynamics
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
A simple parametrization of mélange buttressing for calving glaciers
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations
Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry
Calving localization at Helheim Glacier using multiple local seismic stations
Frontal destabilization of Stonebreen, Edgeøya, Svalbard
Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015
Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014
Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada)
Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate
Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau
3-D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect
Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
Basal buoyancy and fast-moving glaciers: in defense of analytic force balance
The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model
Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts
Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013
Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent
Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking
Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia
Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014
Modelling annual mass balances of eight Scandinavian glaciers using statistical models
Winter speed-up of quiescent surge-type glaciers in Yukon, Canada
Modelling glacier change in the Everest region, Nepal Himalaya
The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
Climate regime of Asian glaciers revealed by GAMDAM glacier inventory
A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1083, https://doi.org/10.5194/egusphere-2024-1083, 2024
Short summary
Short summary
Glacier retreat patterns and climatic drivers on the Tibetan Plateau are uncertain at finer resolutions. This study introduces a new glacier mapping method covering 1988 to 2022, with downscaled air temperature and precipitation data. It quantifies the impacts of annual and seasonal temperature and precipitation on retreat. Results show rapid and varied retreat, with annual temperature influencing retreat in the west and spring precipitation in the northwest.
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
EGUsphere, https://doi.org/10.5194/egusphere-2024-297, https://doi.org/10.5194/egusphere-2024-297, 2024
Short summary
Short summary
Some fjords contain dense packs of icebergs referred to as ice mélange. Ice mélange can affect the stability of marine-terminating glaciers by resisting the calving of new icebergs and by modifying fjord currents and water properties. We have developed the first numerical model of ice mélange that captures its granular nature and that is suitable for long time-scale simulations. The model is capable of explaining why some glaciers are more strongly influenced by ice mélange than others.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022, https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Short summary
The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was updated to revise the underestimated glacier area in the first version. The total number and area of glaciers are 134 770 and 100 693 ± 11 790 km2 from 453 Landsat images, which were carefully selected for the period from 1990 to 2010, to avoid mountain shadow, cloud cover, and seasonal snow cover.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Damodar Lamsal, Koji Fujita, and Akiko Sakai
The Cryosphere, 11, 2815–2827, https://doi.org/10.5194/tc-11-2815-2017, https://doi.org/10.5194/tc-11-2815-2017, 2017
Short summary
Short summary
This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered glacier in the easternmost Nepal Himalaya, between 1975 and 2010 using high-resolution DEMs. The rate of elevation change positively correlates with elevation and glacier velocity, and significant surface lowering is observed at supraglacial ponds. A difference in pond density would strongly affect the different geodetic mass balances of the Kanchenjunga and Khumbu glaciers.
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Short summary
In this study, we combine UAV (unmanned aerial vehicles) images taken over the Bowdoin Glacier, north-western Greenland, and a model describing the viscous motion of ice to track the propagation of crevasses responsible for the collapse of large icebergs at the glacier-ocean front (calving). This new technique allows us to explain the systematic calving pattern observed in spring and summer of 2015 and anticipate a possible rapid retreat in the future.
M. Jeffrey Mei, David M. Holland, Sridhar Anandakrishnan, and Tiantian Zheng
The Cryosphere, 11, 609–618, https://doi.org/10.5194/tc-11-609-2017, https://doi.org/10.5194/tc-11-609-2017, 2017
Short summary
Short summary
We determine a method to locate calving at Helheim Glacier. By using local seismometers, we are able to find the calving location at a much higher precision than previous studies. The signal–onset time differences at four local seismic stations are used to determine possible seismic-wave origins. We present a catalogue of 12 calving events from 2014 to 2015, which shows that calving preferentially happens at the northern end of Helheim Glacier, which will help to constrain models of calving.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017, https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Short summary
We used multiple digital elevation models to quantify melt on 32 glaciers in the Everest region of the Himalayas. We examined whether patterns of melt differed depending on whether the glacier terminated on land or in water. We found that glaciers terminating in large lakes had the highest melt rates, but that those terminating in small lakes had comparable melt rates to those terminating on land. We carried out this research because Himalayan people are highly dependent on glacier meltwater.
Torbjørn Ims Østby, Thomas Vikhamar Schuler, Jon Ove Hagen, Regine Hock, Jack Kohler, and Carleen H. Reijmer
The Cryosphere, 11, 191–215, https://doi.org/10.5194/tc-11-191-2017, https://doi.org/10.5194/tc-11-191-2017, 2017
Short summary
Short summary
We present modelled climatic mass balance for all glaciers in Svalbard for the period 1957–2014 at 1 km resolution using a coupled surface energy balance and snowpack model, thereby closing temporal and spatial gaps in direct and geodetic mass balance estimates.
Supporting previous studies, our results indicate increased mass loss over the period.
A detailed analysis of the involved energy fluxes reveals that increased mass loss is caused by atmospheric warming further amplified by feedbacks.
Nicholas E. Barrand, Robert G. Way, Trevor Bell, and Martin J. Sharp
The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017, https://doi.org/10.5194/tc-11-157-2017, 2017
Short summary
Short summary
This paper provides a comprehensive assessment of the state of small glaciers in the Canadian province of Labrador. These glaciers, the last in continental northeast North America, exist in heavily shaded locations within the remote Torngat Mountains National Park. Fieldwork, and airborne and spaceborne remote-sensing analyses were used to measure regional glacier area changes and individual glacier thinning rates. These results were then linked to trends in prevailing climatic conditions.
Argha Banerjee
The Cryosphere, 11, 133–138, https://doi.org/10.5194/tc-11-133-2017, https://doi.org/10.5194/tc-11-133-2017, 2017
Short summary
Short summary
Measurements of debris-covered and debris-free glaciers in the Himalaya-Karakoram show similar decadal scale thinning, despite a suppression of melt under the debris. Using physical arguments, supported by simulations of 1-D idealised glaciers, we analyse the evolution of thinning rates on both glacier types under a warming climate. The dynamics of the emergence velocity profile control the thinning rate evolution in general and lead to the observed trends in the thinning rate data.
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Short summary
DOC release of Laohugou Glacier No. 12 was 192 kg km−2 yr−1, of which 43.2 % could be decomposed and return to atmosphere as CO2 within 28 days, producing positive feedback in the warming process and influencing downstream ecosystems. Radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, accounting for about 10 % of the radiative forcing caused by BC. Therefore, DOC is also a light-absorbing agent in glacierized regions, influencing the albedo of glacier surface and glacier melting.
Lindsey I. Nicholson, Michał Pętlicki, Ben Partan, and Shelley MacDonell
The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, https://doi.org/10.5194/tc-10-1897-2016, 2016
Short summary
Short summary
An Xbox Kinect sensor was used as a close-range surface scanner to produce the first accurate 3D surface models of spikes of snow and ice (known as penitentes) that develop in cold, dry, sunny conditions. The data collected show how penitentes develop over time and how they affect the surface roughness of a glacier. These surface models are useful inputs to modelling studies of how penitentes alter energy exchanges between the atmosphere and the surface and how this affects meltwater production.
Colleen M. Lynch, Iestyn D. Barr, Donal Mullan, and Alastair Ruffell
The Cryosphere, 10, 1809–1821, https://doi.org/10.5194/tc-10-1809-2016, https://doi.org/10.5194/tc-10-1809-2016, 2016
Short summary
Short summary
Early 21st century changes in the extent of glaciers on Kamchatka were manually mapped from satellite imagery. This revealed 673 glaciers, with a total surface area of 775.7 ± 27.9 km2 in 2000, and 738 glaciers, with a total area of 592.9 ± 20.4 km2 in 2014. This ~24 % decline in glacier surface area is considered to reflect variations in climate (particularly rising summer temperatures), though the response of individual glaciers was likely modulated by other (non-climatic) factors.
Christian Vincent, Patrick Wagnon, Joseph M. Shea, Walter W. Immerzeel, Philip Kraaijenbrink, Dibas Shrestha, Alvaro Soruco, Yves Arnaud, Fanny Brun, Etienne Berthier, and Sonam Futi Sherpa
The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, https://doi.org/10.5194/tc-10-1845-2016, 2016
Short summary
Short summary
Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of these glaciers has not been measured directly. From terrestrial photogrammetry and unmanned aerial vehicle (UAV) methods, this study shows that the ablation is strongly reduced by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs.
C. J. van der Veen
The Cryosphere, 10, 1331–1337, https://doi.org/10.5194/tc-10-1331-2016, https://doi.org/10.5194/tc-10-1331-2016, 2016
Short summary
Short summary
This paper evaluates the geometric force balance, with application to Byrd Glacier, Antarctica. It is concluded that this approach does not yield physically reasonable results.
Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks
The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, https://doi.org/10.5194/tc-10-1089-2016, 2016
Short summary
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.
Ursula Weiser, Marc Olefs, Wolfgang Schöner, Gernot Weyss, and Bernhard Hynek
The Cryosphere, 10, 775–790, https://doi.org/10.5194/tc-10-775-2016, https://doi.org/10.5194/tc-10-775-2016, 2016
Short summary
Short summary
Geometric effects induced by tilt errors lead to erroneous measurement of snow albedo. These errors are corrected where tilts of sensors and slopes are unknown. Atmospheric parameters are taken from a nearby reference measurement or a radiation model. The developed model is fitted to the measured data to determine tilts and directions which vary daily due to changing atmospheric conditions and snow cover. The results show an obvious under- or overestimation of albedo depending on the slope direction.
M. Chernos, M. Koppes, and R. D. Moore
The Cryosphere, 10, 87–102, https://doi.org/10.5194/tc-10-87-2016, https://doi.org/10.5194/tc-10-87-2016, 2016
Short summary
Short summary
Ice loss from calving and surface melt is estimated at lake-terminating Bridge Glacier, British Columbia, Canada, from 1984 to 2013. Since the glacier's terminus began to float in 1991, calving has accounted for 10-25% of the glacier's total ice loss below the ELA. Overall, calving is a relatively small component of ice loss and is expected to decrease in importance in the future as the glacier retreats onto dry land. Hence, projections of future retreat remain dependent on climatic conditions.
B. Marzeion, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch
The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015, https://doi.org/10.5194/tc-9-2399-2015, 2015
Short summary
Short summary
We show that estimates of global glacier mass change during the 20th century, obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist on regional scales.
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
T. Smith, B. Bookhagen, and F. Cannon
The Cryosphere, 9, 1747–1759, https://doi.org/10.5194/tc-9-1747-2015, https://doi.org/10.5194/tc-9-1747-2015, 2015
Short summary
Short summary
We describe and apply a newly developed glacial mapping algorithm which uses spectral, topographic, velocity, and spatial data to quickly and accurately map glacial extents over a wide area. This method maps both clean glacier ice and debris-covered glacier tongues across diverse topographic, land cover, and spectral settings using primarily open-source tools.
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
M. Trachsel and A. Nesje
The Cryosphere, 9, 1401–1414, https://doi.org/10.5194/tc-9-1401-2015, https://doi.org/10.5194/tc-9-1401-2015, 2015
Short summary
Short summary
We employ statistical models to model annual glacier mass balances of eight Scandinavian glaciers as function of summer temperature and winter precipitation.
Relative importances of winter precipitation and summer temperature vary in time.
Relative importances are influenced by AMO and NAO.
T. Abe and M. Furuya
The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015, https://doi.org/10.5194/tc-9-1183-2015, 2015
Short summary
Short summary
Whereas glacier surge is known to often initiate in winter, we show significant winter speed-up signals in the upstream region even at quiescent surge-type glaciers in Yukon, Canada. Moreover, the winter speed-up region expanded from upstream to downstream. Given the absence of surface meltwater input in winter, we speculate the presence of englacial water storage that does not directly connect to the surface, yet can promote basal sliding through increased water pressure.
J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya
The Cryosphere, 9, 1105–1128, https://doi.org/10.5194/tc-9-1105-2015, https://doi.org/10.5194/tc-9-1105-2015, 2015
Short summary
Short summary
A glacier mass balance and redistribution model that integrates field observations and downscaled climate fields is developed to examine glacier sensitivity to future climate in the Everest region of Nepal. The modelled sensitivity of glaciers to future climate change is high, and glacier mass loss is sustained through the 21st century for both middle- and high-emission scenarios. Projected temperature increases will expose large glacier areas to melt and reduce snow accumulations.
T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita
The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015, https://doi.org/10.5194/tc-9-849-2015, 2015
Short summary
Short summary
We present a new glacier inventory for high-mountain Asia named “Glacier Area Mapping for Discharge from the Asian Mountains” (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999–2003, in conjunction with a digital elevation model and high-resolution Google EarthTM imagery. Our GAMDAM Glacier Inventory includes 87,084 glaciers covering a total area of 91,263 ± 13,689 km2 throughout high-mountain Asia.
A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal
The Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015, https://doi.org/10.5194/tc-9-865-2015, 2015
Short summary
Short summary
Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. Based on the GAMDAM glacier inventory, we estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude, by tuning adjustment parameters of precipitation.
J. Oerlemans and W. J. J. van Pelt
The Cryosphere, 9, 767–779, https://doi.org/10.5194/tc-9-767-2015, https://doi.org/10.5194/tc-9-767-2015, 2015
Short summary
Short summary
Many glaciers on Svalbard are surging glaciers. A surge is a rapid advance of the glacier snout during a few years, followed by a long period of quiescence. During the surge ice flows to lower terrain and experiences higher melt rates in summer. Here we investigate the impact of surging on the long-term effects of climate warming. We have modelled Abrahamsenbreen in northern Spitsbergen as a typical case. We show that surges tend to accelerate glacier retreat when temperature increases.
Cited articles
Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.: Guidelines on climate metadata and homogenization, World Climate Programme Data and Monitoring, 53, 50 pp., 2003.
Albrecht, O., Jansson, P., and Blatter, H.: Modelling glacier response to measured mass-balance forcing, Ann. Glaciol., 31, 91–96, 2000.
Alexander, D., Shulmeister, J., and Davies, T.: High basal melting rates within high-precipitation temperate glaciers, J. Glaciol., 57, 789–795, 2011.
Andreassen, L. M., Kjøllmoen, B., Rasmussen, A., Melvold, K., and Nordli, Ø.: Langfjordjøkelen, a rapidly shrinking glacier in northern Norway, J. Glaciol., 58, 581–593, 2012.
Arendt, A. A., Echelmeyer, K. A., Harrison, W. D., Lingle, C. S., and Valentine, V. B.: Rapid wastage of Alaska glaciers and their contribution to rising sea level, Science, 297, 382–6, 2002.
Begert, M., Schlegel, T., and Kirchhofer, W.: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000, Int. J. Climatol., 25, 65–80, 2005.
Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., and Chevallier, P.: Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India), Remote Sens. Environ., 108, 327–338, 2007.
Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., and Rémy, F.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci., 3, 92–95, 2010.
Cogley, J.: Geodetic and direct mass-balance measurements: comparison and joint analysis, Ann. Glaciol., 50, 96–100, 2009.
Cogley, J. G. and Adams, W. P.: Mass balance of glaciers other than the ice sheets, J. Glaciol., 44, 315–325, 1998.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, Paris, UNESCO-IHP, 114 pp., 2011.
Cox, L. H. and March, R. S.: Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, USA, J. Glaciol., 50, 363–370, 2004.
Cuffey, K. and Paterson, W. S. B.: The physics of glaciers, 5th Edn., Massachusetts Academic Press, Burlington, 704 pp., 2010.
Eckert, N., Thibert, E., and Vincent, C.: Extracting the temporal signal from a winter and summer mass-balance series: application to a six-decade record at Glacier de Sarennes, French Alps, J. Glaciol., 57, 134–150, 2011.
Elsberg, D. H., Harrison, W. D., Echelmeyer, K. A., and Krimmel, R. M.: Quantifying the effects of climate and surface change on glacier mass balance, J. Glaciol., 47, 649–658, 2001.
Elvehøy, H., Jackson, M., and Andreassen, L. M.: The influence of drainage boundaries on specific mass-balance results: a case study of Engabreen, Norway, Ann. Glaciol., 50, 135–140, 2009.
Escher-Vetter, H., Kuhn, M., and Weber, M.: Four decades of winter mass balance of Vernagtferner and Hintereisferner, Austria: methodology and results, Ann. Glaciol., 50, 87–95, 2009.
Etzelmüller, B.: On the quantification of surface changes using grid-based Digital Elevation Models (DEMs), Transactions in GIS, 4, 129–143, 2000.
Finsterwalder, R. and Rentsch, H.: Zur Höhenänderung von Ostalpengletschern im Zeitraum 1969–1979, Z. Gletscherkd. Glazialgeol., 16, 111–115, 1981.
Fischer, A.: Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner, Global Planet. Change, 71, 13–26, 2010.
Fischer, A.: Comparison of direct and geodetic mass balances on a multi-annual time scale, The Cryosphere, 5, 107–124, https://doi.org/10.5194/tc-5-107-2011, 2011.
Fischer, A. and Markl, G.: Mass balance measurements on Hintereisferner, Kesselwandferner and Jamtalferner 2003 to 2006: database and results, Z. Gletscherkd. Glazialgeol., 42, 47–83, 2009.
Fountain, A. G. and Vecchia, A.: How many stakes are required to measure the mass balance of a glacier?, Geogr. Ann. A, 81, 563–573, 1999.
Funk, M., Morelli, R., and Stahel, W.: Mass balance of Griesgletscher 1961–1994: Different methods of determination, Z. Gletscherkd. Glazialgeol., 33, 41–56, 1997.
GAA: Special issue on Methods of Mass Balance Measurements and Modelling, Geogr. Ann. A, 81, 461–796, 1999.
Geist, T., Elvehøy, H., Jackson M., and Stötter J.: Investigations on intra-annual elevation changes using multitemporal airborne laser scanning data – case study Engabreen, Norway, Ann. Glaciol., 42, 195–201, 2005.
Gerbaux, M., Genthon, C., Etchevers, P., Vincent, C., and Dedieu, J. P.: Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change, J. Glaciol., 51, 561–572, 2005.
Haeberli, W.: Historical evolution and operational aspects of worldwide glacier monitoring, in: Into the second century of worldwide glacier monitoring: Prospects and strategies, edited by: Haeberli, W., Hoelzle, M., and Suter, S., UNESCO-IHP, Paris, France, 35–51, 1998.
Hagen, J. O., Eiken, T., Kohler, J., and Melvold, K.: Geometry changes on Svalbard glaciers: mass-balance or dynamic response?, Ann. Glaciol., 42, 255–261, 2005.
Haug, T., Rolstad, C., Elvehøy, H., Jackson, M., and Maalen-Johansen, I.: Geodetic mass balance of the western Svartisen ice cap, Norway, in the periods 1968–1985 and 1985–2002, Ann. Glaciol., 50, 119–125, 2009.
Hoinkes, H. C.: Methoden und Möglichkeiten von Massenhaushaltsstudien auf Gletschern: Ergebnisse der Messreihe Hintereisferner (Ötztaler Alpen) 1953–1968, Z. Gletscherkd. Glazialgeol., 6, 37–90, 1970.
Holmlund, P.: Maps of Storglaciären and their use in glacier monitoring studies, Geogr. Ann. A, 78, 193–196, 1996.
Holmlund, P., Jansson, P., and Pettersson, R.: A re-analysis of the 58 year mass-balance record of Storglaciären, Sweden, Ann. Glaciol., 42, 389–394, 2005.
Hock, R. and Jensen, H.: Application of kriging interpolation for glacier mass balance computations, Geogr. Ann. A, 81, 611–619, 1999.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M., Bauder, A., and Funk, M.: Homogenization of long-term mass-balance time series, Ann. Glaciol., 50, 198–206, 2009.
Huss, M., Hock, R., Bauder, A., and Funk, M.: Conventional versus reference-surface mass balance, J. Glaciol., 58, 278–286, 2012.
Hynek, B., Unger, R., Schöner, W., Binder, D., and Weyss, G.: Comparison of direct and geodetic mass balances of three small glaciers in the Eastern Alps, Geophys. Res. Abstr., 14, EGU2012-9025, 2012.
IGS: Thematic issue on Mass Balance Measurements and Modelling, Ann. Glaciol., 50, 220 pp., 2009.
Jansson, P.: Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären, Geogr. Ann. A, 81, 633–642, 1999.
Joerg, P. C., Morsdorf, F., and Zemp, M.: Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier, Remote Sens. Environ., 127, 118–129, 2012.
Josberg, E. G., Bidlake, W. R., March, R. S., and Kennedy, B. W.: Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA, Ann. Glaciol., 46, 291–296, 2007.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.: Contrasting patterns of early twenty-first century glacier mass change in the Himalayas, Nature, 488, 495–498, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Dennis, J.: The NCEP/NCAR 40-year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kaser, G., Fountain, A. G., and Jansson, P.: A manual for monitoring the mass balance of mountain glaciers with particular attention to low latitude characteristics. A contribution to the UNESCO HKH-Friend programme, Paris, France, 107 pp., 2003.
Kaser, G., Cogley, J., Dyurgerov, M., Meier, M., and Ohmura, A.: Mass balance of glaciers and ice caps: consensus estimates for 1961–2004, Geophys. Res. Lett., 33, L19501, https://doi.org/10.1029/2006GL027511, 2006.
Kjøllmoen, B., Andreassen, L. M., Elvehøy, H., Jackson, M., and Giesen, R. H.: Glaciological investigations in Norway in 2010, NVE Report, 2011-3, 89 pp., 2011.
Koblet, T., Gärtner-Roer, I., Zemp, M., Jansson, P., Thee, P., Haeberli, W., and Holmlund, P.: Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 1: Determination of length, area, and volume changes, The Cryosphere, 4, 333–343, https://doi.org/10.5194/tc-4-333-2010, 2010.
Lang, H. and Patzelt, G.: Die Volumenänderungen des Hintereisferners (Ötztaler Alpen) im Vergleich zur Massenänderung im Zeitraum 1953–64, Z. Gletscherkd. Glazialgeol., 7, 229–238, 1971.
Lliboutry, L.: Multivariate statistical analysis of glacier annual balances. J. Glaciol., 13, 371–392, 1974.
Magnússon, E., Björnsson, H., Dall, J., and Pálsson, F.: Volume changes of Vatnajökull Ice Cap, Iceland, due to surface mass balance, ice flow, and subglacial melting at geothermal areas, Geophys. Res. Lett., 32, L05504, https://doi.org/10.1029/2004GL021615, 2005.
March, R. S. and Trabant, D. C.: Mass balance, meteorological, ice motion, surface altitude, and runoff data at Gulkana Glacier, Alaska, 1993 balance year, USGS Water-Resources Investigations Report, 96–4299, 30 pp., 1997.
Meier, M. F., Tangborn, W. V., Mayo, L. R., and Post, A.: Combined ice and water balances of Gulkana and Wolverine Glaciers, Alaska, and South Cascade Glacier, Washington, 1965 and 1966 hydrologic years, USGS Prof. Pap. 715-A, 23 pp., 1971.
Miller, M. and Pelto, M.: Mass balance measurements on the Lemon Creek Glacier, Juneau Icefield, Alaska 1953–1998, Geogr. Ann. A, 81, 671–681, 1999.
Moholdt, G., Nuth, C., Hagen, J., and Kohler, J.: Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry, Remote Sens. Environ., 114, 2756–2767, 2010.
Moser, H., Escher-Vetter, H., Oerter, H., Reinwarth, and Zunke, O. D.: Abfluß in und von Gletschern. GSF-Bericht 41/86, Teil I und II, GSF Gesellschaft für Strahlen- und Umweltforschung, München, 408 pp. and 147 pp., 1986.
Nussbaumer, S. U., Zemp, M., and Jansson, P.: Summary report on the "Workshop on Measurement and Uncertainty Assessment of Glacier Mass Balance", 9–11 July 2012, Tarfala, Sweden, World Glacier Monitoring Service, Zurich, Switzerland, 11 pp., 2012.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Nuth, C., Schuler, T. V., Kohler, J., Altena, B., and Hagen, J. O.: Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling, J. Glaciol., 58, 119–133, 2012.
Østrem, G. and Brugman, M.: Glacier mass-balance measurements: A manual for field and office work, NHRI Science Report, Saskatoon, Canada, 224 pp., 1991.
Østrem, G. and Haakensen, N.: Map comparison or traditional mass-balance measurements: which method is better?, Geogr. Ann. A, 81, 703–711, 1999.
Paul, F.: Calculation of glacier elevation changes with SRTM: Is there an elevation dependent bias?, J. Glaciol., 55, 945–946, 2008.
Paul, F.: The influence of changes in glacier extent and surface elevation on modeled mass balance, The Cryosphere, 4, 569–581, https://doi.org/10.5194/tc-4-569-2010, 2010.
Pelto, M. S.: The impact of sampling density on glacier mass balance determination, Hydrol. Proc., 14, 3215–3225, 2000.
Reijmer, C. and Hock, R.: Internal accumulation on Storglaciären, Sweden, in a multilayer snow model coupled to a distributed energy- and mass-balance model, J. Glaciol., 54, 61–72, 2008.
Reinwarth, O. and Escher-Vetter, H.: Mass balance of Vernagtferner, Austria, from 1964/65 to 1996/97: Results for three sections and the entire glacier, Geogr. Ann. A, 81, 743–751, 1999.
Reinwarth, O. and Rentsch, H.: Volume and mass balance of Vernagtferner / Oetztal Alps, Z. Gletscherkd. Glazialgeol., 30, 99–107, 1994.
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway, J. Glaciol., 55, 666–680, 2009.
Rykiel Jr., E. J.: Testing ecological models: the meaning of validation, Ecol. Model., 90, 229–244, 1996.
Sapiano, J., Harrison, W., and Echelmeyer, K.: Elevation, volume and terminus changes of nine glaciers in North America, J. Glaciol., 44, 119–135, 1998.
Schiefer, E., Menounos, B., and Wheate, R.: Recent volume loss of British Columbian glaciers, Canada, Geophys. Res. Lett., 34, L16503, https://doi.org/10.1029/2007GL030780, 2007.
Schneider, T. and Jansson, P.: Internal accumulation within firn and its significance for the mass balance of Storglaciären, Sweden, J. Glaciol., 50, 25–34, 2004.
Schytt, V.: Re-freezing melt-water on the surface glacier ice, Geogr. Ann. A, 31, 222–227, 1949.
Thibert, E. and Vincent, C.: Best possible estimation of mass balance combining glaciological and geodetic methods, Ann. Glaciol, 50, 112–118, 2009.
Thibert, E., Blanc, R., Vincent, C., and Eckert, N.: Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps, J. Glaciol., 54, 522–532, 2008.
Trabant, D. C. and Benson, C. S.: Influence of internal accumulation and superimposed ice formation on mass balance of McCall Glacier in Alaska, Data of Glaciological Studies, 58, 40–49, 1986.
Trabant, D. C. and Mayo, L. R.: Estimation and effects of internal accumulation on five glaciers in Alaska, Ann. Glaciol., 6, 113–117, 1985.
Vallon, M.: Errors in the determination of ablation using stakes, J. Glaciol., 7, 132–133, 1968.
Vallon, M. and Leiva, J.C.: Bilans de masse et fluctuations récentes du Glacier de Saint-Sorlin (Alpes Françaises), Z. Gletscherkd. Glazialgeol., 17, 143–167, 1981.
Van Beusekom, A. E., O'Neel, S. R., March, R. S., Sass, L. C., and Cox, L. H.: Re-analysis of Alaskan benchmark glacier mass-balance data using the index method, US Geological Survey Scientific Investigations Report, 5247, 16 pp., 2010.
Weber, M., Braun, L., Mauser, W., and Prasch, M.: Contribution of rain, snow- and icemelt in the upper Danube discharge today and in the future, Bulletino del Comitato Glaciologico Italiano, Ser. 3, Geogr. Fis. Din. Quat., 33, 221–230, 2010.
WGMS: Fluctuations of Glaciers 2005–2010, Volume X, edited by: Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., and Haeberli, W.: ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 336 pp., publication based on database version: https://doi.org/10.5904/wgms-fog-2012-11, 2012.
Wright, A. P., Wadham, J. L., Siegert, M. J., Luckman, A., Kohler, J., and Nuttall, A. M.: Modeling the refreezing of meltwater as superimposed ice on a high Arctic glacier: A comparison of approaches, J. Geophys. Res., 112, F04016, https://doi.org/10.1029/2007JF000818, 2007.
Zemp, M., Hoelzle, M., and Haeberli, W.: Six decades of glacier mass-balance observations: a review of the worldwide monitoring network, Ann. Glaciol., 50, 101–111, 2009.
Zemp, M., Jansson, P., Holmlund, P., Gärtner-Roer, I., Koblet, T., Thee, P., and Haeberli, W.: Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 2: Comparison of glaciological and volumetric mass balances, The Cryosphere, 4, 345–357, https://doi.org/10.5194/tc-4-345-2010, 2010.