Articles | Volume 7, issue 4
https://doi.org/10.5194/tc-7-1017-2013
https://doi.org/10.5194/tc-7-1017-2013
Research article
 | 
01 Jul 2013
Research article |  | 01 Jul 2013

A regional climate model hindcast for Siberia: analysis of snow water equivalent

K. Klehmet, B. Geyer, and B. Rockel

Related authors

Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution
Peter Berg, Ole B. Christensen, Katharina Klehmet, Geert Lenderink, Jonas Olsson, Claas Teichmann, and Wei Yang
Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019,https://doi.org/10.5194/nhess-19-957-2019, 2019
Short summary

Related subject area

Seasonal Snow
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024,https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
From snow accumulation to snow depth distributions by quantifying meteoric ice fractions in the Weddell Sea
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024,https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024,https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
EGUsphere, https://doi.org/10.5194/egusphere-2024-201,https://doi.org/10.5194/egusphere-2024-201, 2024
Short summary

Cited articles

ACIA: Arctic Climate Impact Assessment, Cambridge University Press, 2005.
Alexander, M. A., Tomas, R., Deser, C., and Lawrence, D. M.: The Atmospheric Response to Projected Terrestrial Snow Changes in the Late Twenty-First Century, J. Climate, 23, 6430–6437, https://doi.org/10.1175/2010JCLI3899.1, 2010.
Alexeev, V., Esau, I., Polyakov, I., Byam, S., and Sorokina, S.: Vertical structure of recent arctic warming from observed data and reanalysis products, Climatic Change, 111, 215–239, https://doi.org/10.1007/s10584-011-0192-8, 2012.
Allen, R. J. and Zender, C. S.: The role of eastern Siberian snow and soil moisture anomalies in quasi-biennial persistence of the Arctic and North Atlantic Oscillations, J. Geophys. Res., 116, D16125, https://doi.org/10.1029/2010JD015311, 2011.
Armstrong, R. L., Brodzik, M. J., Knowles, K., and Savoie, M.: Global Monthly EASE-Grid Snow Water Equivalent Climatology, Tech. rep., Boulder, Colorado USA: National Snow and Ice Data Center, Digital media, 2007.
Download