Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2831-2024
https://doi.org/10.5194/tc-18-2831-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Microstructure-based simulations of the viscous densification of snow and firn

Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe

Related authors

Version 3.0 of the Crocus snowpack model
Matthieu Lafaysse, Marie Dumont, Basile De Fleurian, Mathieu Fructus, Rafife Nheili, Léo Viallon-Galinier, Matthieu Baron, Aaron Boone, Axel Bouchet, Julien Brondex, Carlo Carmagnola, Bertrand Cluzet, Kévin Fourteau, Ange Haddjeri, Pascal Hagenmuller, Giulia Mazzotti, Marie Minvielle, Samuel Morin, Louis Quéno, Léon Roussel, Pierre Spandre, François Tuzet, and Vincent Vionnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-4540,https://doi.org/10.5194/egusphere-2025-4540, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Saharan dust impacts on the surface mass balance of Argentière Glacier (French Alps)
Léon Roussel, Marie Dumont, Marion Réveillet, Delphine Six, Marin Kneib, Pierre Nabat, Kévin Fourteau, Diego Monteiro, Simon Gascoin, Emmanuel Thibert, Antoine Rabatel, Jean-Emmanuel Sicart, Mylène Bonnefoy, Luc Piard, Olivier Laarman, Bruno Jourdain, Mathieu Fructus, Matthieu Vernay, and Matthieu Lafaysse
The Cryosphere, 19, 5201–5230, https://doi.org/10.5194/tc-19-5201-2025,https://doi.org/10.5194/tc-19-5201-2025, 2025
Short summary
Explicit representation of liquid water retention over bare ice using the SURFEX/ISBA-Crocus model: implications for mass balance at Mera glacier (Nepal)
Audrey Goutard, Marion Réveillet, Fanny Brun, Delphine Six, Kevin Fourteau, Charles Amory, Xavier Fettweis, Mathieu Fructus, Arbindra Khadka, and Matthieu Lafaysse
EGUsphere, https://doi.org/10.5194/egusphere-2025-2947,https://doi.org/10.5194/egusphere-2025-2947, 2025
Short summary
Numerical strategies for representing Richards' equation and its couplings in snowpack models
Kévin Fourteau, Julien Brondex, Clément Cancès, and Marie Dumont
EGUsphere, https://doi.org/10.5194/egusphere-2025-444,https://doi.org/10.5194/egusphere-2025-444, 2025
Short summary
Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions
Xavier Faïn, Sophie Szopa, Vaishali Naïk, Patricia Martinerie, David M. Etheridge, Rachael H. Rhodes, Cathy M. Trudinger, Vasilii V. Petrenko, Kévin Fourteau, and Philip Place
Atmos. Chem. Phys., 25, 1105–1119, https://doi.org/10.5194/acp-25-1105-2025,https://doi.org/10.5194/acp-25-1105-2025, 2025
Short summary

Cited articles

Alley, R.: Firn densification by grain-boundary sliding: a first model, Le Journal de Physique Colloques, 48, C1-249, https://doi.org/10.1051/jphyscol:1987135, 1987. a, b, c, d
Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, in: Physics of ice core records, edited by: Hondoh, T., Hokkaido University Press, 285–305, http://hdl.handle.net/2115/32472 (last access: 22 August 2023), 2000. a, b, c
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth, 115, F03011, https://doi.org/10.1029/2009JF001306, 2010. a, b
Auriault, J., Bouvard, D., Dellis, C., and Lafer, M.: Modelling of hot compaction of metal powder by homogenization, Mech. Mater., 13, 247–255, https://doi.org/10.1016/0167-6636(92)90005-X, 1992. a
Auriault, J.-L., Boutin, C., and Geindreau, C.: Homogenization of coupled phenomena in heterogenous media, vol. 149, John Wiley & Sons, https://doi.org/10.1002/9780470612033, 2009. a, b
Download
Short summary
Understanding the settling of snow under its own weight has applications from avalanche forecasts to ice core interpretations. We study how this settling can be modeled using 3D images of the internal structure of snow and ice deformation mechanics. We found that classical ice mechanics, as used, for instance, in glacier flow, explain the compaction of dense polar snow but not that of lighter seasonal snow. How, exactly, the ice deforms during light snow compaction thus remains an open question.
Share