Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2831-2024
https://doi.org/10.5194/tc-18-2831-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Microstructure-based simulations of the viscous densification of snow and firn

Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe

Viewed

Total article views: 1,347 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,008 283 56 1,347 54 45
  • HTML: 1,008
  • PDF: 283
  • XML: 56
  • Total: 1,347
  • BibTeX: 54
  • EndNote: 45
Views and downloads (calculated since 06 Sep 2023)
Cumulative views and downloads (calculated since 06 Sep 2023)

Viewed (geographical distribution)

Total article views: 1,347 (including HTML, PDF, and XML) Thereof 1,312 with geography defined and 35 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 28 Mar 2025
Download
Short summary
Understanding the settling of snow under its own weight has applications from avalanche forecasts to ice core interpretations. We study how this settling can be modeled using 3D images of the internal structure of snow and ice deformation mechanics. We found that classical ice mechanics, as used, for instance, in glacier flow, explain the compaction of dense polar snow but not that of lighter seasonal snow. How, exactly, the ice deforms during light snow compaction thus remains an open question.
Share