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Abstract. Accurate models for the viscous densification of
snow (understood here as a density below 550 kgm−3) and
firn (a density above 550 kgm−3) under mechanical stress
are of primary importance for various applications, includ-
ing avalanche prediction and the interpretation of ice cores.
Formulations of snow and firn compaction in models are
still largely empirical instead of using microstructures from
micro-computed tomography to numerically compute the
mechanical behavior directly from the physics at the mi-
croscale. The main difficulty of the latter approach is the
choice of the correct rheology/constitutive law governing the
deformation of the ice matrix, which is still controversially
discussed. Being aware of these uncertainties, we conducted
a first systematic attempt of microstructure-based modeling
of snow and firn compaction. We employed the finite ele-
ment suite Elmer FEM using snow and firn microstructures
from different sites in the Alps and Antarctica to explore
which ice rheologies are able to reproduce observations. We
thereby extended the ParStokes solver in Elmer FEM to facil-
itate parallel computing of transverse isotropic material laws
for monocrystalline ice. We found that firn densification can
be reasonably well simulated across different sites assuming
a polycrystalline rheology (Glen’s law) that is traditionally
used in glacier or ice sheet modeling. In contrast, for snow,
the observations are in contradiction with this rheology. To
further comprehend this finding, we conducted a sensitivity
study on different ice rheologies. None of the material mod-
els is able to explain the observed high compactive viscosity
of depth hoar compared to rounded grains having the same

density. While, on one hand, our results re-emphasize the
limitations of our current mechanical understanding of the
ice in snow, they constitute, on the other hand, a confirmation
of the common picture of firn as a foam of polycrystalline ice
through microstructure-based simulations.

1 Introduction

Once deposited on the ground, snow and firn are subject to
the overburden stress imposed by the weight of the overly-
ing snow or firn column. This causes the slow and viscous
compaction of the snow and firn layers and their densifica-
tion over time (e.g., Kojima, 1975; Herron and Langway,
1980). Accurate prediction of the rate of the compaction is
of primary importance for various applications. For instance,
the densification of firn determines the timescale at which
atmospheric gases are enclosed in polar ice (Schwander et
al., 1993). Faithful modeling of firn densification is, thus, a
critical component for the interpretation of ice cores (Gou-
jon et al., 2003; Witrant et al., 2012; Buizert, 2021). How-
ever, observed variations in the densification rate of different
layers of similar density that are subjected to similar over-
burden stress still lack a conclusive explanation in view of
either microstructural or compositional origins (Hörhold et
al., 2012; Fujita et al., 2016). This situation is remarkably
similar in snow. The slow densification of seasonal snow de-
termines the timescale for the existence of persistent weak
layers as a major source of avalanche danger (Schweizer
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and Lütschg, 2001). Faithful modeling of snow densification
would greatly improve the capacity of a detailed snowpack
model to predict this timescale and the presence of persistent
weak layers over the winter season. Still, for snow, there are
well-known differences in densification rates between differ-
ent layers (rounded grains and depth hoar) (Kojima, 1975;
Calonne et al., 2020a) that still lack a conclusive explanation.
In view of these similarities, holistic approaches to snow and
firn densification are desired in order to identify common mi-
crostructural controls.

Due to the progress in micro-computed tomography
(µCT) in cryospheric sciences within the last decade, 3D mi-
crostructures of snow and firn samples are now widely used
(e.g., Löwe et al., 2013; Calonne et al., 2019; Letcher et al.,
2022). Based on µCT, effective material properties of snow
or firn can now be derived in a physically consistent manner,
based on the underlying microstructure and the physics at
the pore scale. This leads to an effective (upscaled) material
characterization using homogenization methods and numer-
ical simulations (Torquato, 2002; Auriault et al., 2009). For
example, for the thermal conductivity of snow and firn, up-
scaling methods have been widely used, yielding a fairly con-
sistent picture of how the microstructure determines the ef-
fective thermal properties (Calonne et al., 2011, 2019; Löwe
et al., 2013; Riche and Schneebeli, 2013; Fourteau et al.,
2021). For snow and firn compaction, such a consistent pic-
ture is still lacking.

Despite the pressing need for an accurate model, the for-
mulation of the slow compaction of snow and firn in models
remains largely empirical (e.g., Vionnet et al., 2012; Lundin
et al., 2017) and lacks a detailed microstructure-based justi-
fication. To the best of our knowledge, so far only Theile et
al. (2011), Chandel et al. (2014), and Wautier et al. (2017)
have attempted to estimate the effective viscous response of
snow usingµCT images and microstructure-based nonelastic
(plastic or viscoplastic) simulations. While all of them led to
an apparent agreement with measurements, they were based
on very different assumptions about the rheology of the ice
material accommodating the deformation at the microscale.
The main difficulty for developing a microstructure-based
formulation of compaction and its integration in snow and
firn models is the present disagreement concerning the dom-
inating mechanism(s) driving the mechanical deformation of
the ice material at the microscale. While it is generally ac-
cepted that firn densification occurs through creep in the ice
matrix, several types of creep have been proposed in the lit-
erature. For instance, Arthern et al. (2010) assume the ice
to deform according to a Nabarro–Herring creep, where de-
formation occurs through vacancy diffusion in the crystals,
while Barnola et al. (1991) or Salamatin et al. (2009) assume
a power-law creep that originates from dislocation creep. For
snow, the mechanism of deformation remains even more elu-
sive. Some studies support the idea that the ice in snow de-
forms through a dislocation-creep mechanism (Kirchner et
al., 2001; Scapozza and Bartelt, 2003; Wautier et al., 2017).

This led to the appealing concept of snow as being a foam
of (polycrystalline) ice (Kirchner et al., 2001). Other stud-
ies, rather, support the idea that the compaction of snow in-
volves grain boundary sliding (Alley, 1987; Salamatin et al.,
2009; Schultz et al., 2022). This uncertainty is, for instance,
reflected by the choice of Wautier et al. (2017) who consid-
ered three different ice power-law rheologies with an ice flu-
idity about 1000 times higher than the usually reported value
(e.g., in Chap. 3 of Cuffey and Paterson, 2010). Therefore,
the most promising approach is to allow for flexibility in
the material model when comparing simulated densification
rates with observations using diverse data sets.

The aim of this article is to study whether the viscous
compaction of snow and firn can be simulated consistently
directly from the microstructure using a common numer-
ical approach. We use different microstructures (rounded
snow, faceted snow, and dense firn) to assess the validity of
this modeling approach over a broad range of possible mi-
crostructures. Snow and firn microstructures were obtained
by µCT imaging of snow and firn cores from different sites
in the Alps and in Antarctica where observed densification
rates are also available. We employ and extend Elmer FEM
as the computational platform, as it is already established in
the ice flow modeling community. In this setup, we investi-
gate which viscous ice matrix rheology (variants of Glen’s
law) is able, or not able, to appropriately reproduce the ob-
servations of snow and firn compaction.

The paper is organized as follows. Section 2 presents the
minimal theoretical background used throughout this work.
Section 3 details the setup of the data and numerical simula-
tions that were used for the study, and Sect. 4 presents and
discusses our results.

2 Theoretical background

In snowpack and firn models, it would be impossible to ex-
plicitly represent the 3D microstructure of a whole snowpack
or firn column. Instead, these models rely on an upscaled (or
volume averaged) description where the snow/firn can be de-
scribed as a homogeneous medium characterized by effective
material properties (Torquato, 2002; Auriault et al., 2009)
that are often referred to as macroscopic in order to empha-
size the separation of scales from the characteristic (micro-
scopic) length scales where the theoretical description is for-
mulated. Accordingly, the compaction of snow and firn is de-
scribed in terms of a macroscopic strain rate Ė resulting from
the macroscopic overburden stress 6. For snow or firn mod-
eling purposes, a macroscopic constitutive law Ė = f (6) is
required. Here, f is a function that characterizes the mechan-
ical response of snow/firn that depends on the snow/firn mi-
crostructure and other relevant variables, such as the temper-
ature (Arnaud et al., 2000; Bartelt and Lehning, 2002; Vion-
net et al., 2012). The aim of this section is to provide some
general considerations about the functional form of f .
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2.1 Conservation laws

We start from the equations governing the mechanical re-
sponse at the microscale. As we are interested in the slow
compaction of snow and firn over timescales of days to years,
we resort to the common assumption that elastic stresses have
been relaxed and that the ice in the microstructure is respond-
ing in a purely viscous fashion. This assumption is supported
by the relaxation timescale, in the order of hours (Theile et
al., 2011), of elastic stresses in snow. Technically, this as-
sumption allows us to describe the ice as an incompressible,
(nonlinear) viscous fluid, and the deformation of the viscous
ice matrix is then governed by the Stokes equations as

∇ · σ (x)= 0 x ∈�i, (1)
∇ ·u(x)= 0 x ∈�i, (2)

where x is the three-dimensional position vector, σ (x) is the
microscopic stress tensor field, u(x) is the microscopic de-
formation velocity field, �i is the three-dimensional domain
that is occupied by the ice matrix, and ∇· denotes the di-
vergence operator. The Stokes equations need to be comple-
mented by a constitutive law that characterizes the rheology
of the ice.

2.2 Constitutive law

The constitutive laws considered in this work, which are vari-
ants of Glen’s law, involve a power-law nonlinearity of the
form

ε̇(x)= sn−1
eq a(x,T ) : s. (3)

Here, ε̇(x) is the microscopic strain rate tensor, s is the devia-
toric part of the microscopic stress tensor σ , seq =

√
sij sij is

the equivalent deviatoric stress, n is a nonlinearity exponent,
and a is referred to as the fluidity. In the general case, the flu-
idity a is a fourth-order tensor that depends on temperature T
and potentially on the position x in the microstructure if, for
example, the c-axis orientation is allowed to vary in space.
The double product a : s yields a second-order tensor whose
ij th component is

∑
klaijklskl . The tensorial nature of a is re-

quired to represent anisotropic materials that deform prefer-
entially in some directions (such as the ice monocrystal; e.g.,
Meyssonnier and Philip, 1996; Gagliardini and Meyssonnier,
1999). In the case of an isotropic rheology, the fluidity a is
a scalar a times the unit tensor (e.g., Schulson and Duval,
2009). The constitutive material law given by Eq. (3) corre-
sponds to viscoplastic creep, where the deformation occurs
through dislocation movement within the ice material.

With the constitutive law given by Eq. (3), it can be shown
(Auriault et al., 1992; Suquet, 1993; Orgéas et al., 2007;
Tsuda et al., 2010) that the macroscopic strain rate of a sam-
ple under compression in a snowpack or in a firn column can
be expressed in the form

Ė = A(µ,T )6n, (4)

where A is a scalar that does not depend on the overburden
stress 6 but on the snow/firn microstructure µ and poten-
tially on the temperature T . Physically, A represents a form
of fluidity, analogous to the fluidity tensor a at the micro-
scopic scale. We also stress that the macroscopic nonlinear-
ity exponent n in Eq. (4) is the same as in the microscopic
deformation law of Eq. (3). In snow sciences, the viscous
compaction of snow and firn is traditionally expressed in the
form

Ė =
6n

η
, (5)

where we refer to η = A−1 as the compactive viscosity (fac-
tor). Again, η does not depend on the magnitude of the
loading 6 but only on the microstructure and the temper-
ature of the sample. We note that the compactive viscos-
ity is sometimes defined by the ratio 6/Ė (e.g., Kojima,
1967; Wiese and Schneebeli, 2017) irrespective of the non-
linearity of the constitutive law. While only the latter def-
inition of the compactive viscosity also has physical units
of a viscosity (i.e., Pa s), we do not follow this convention
here as, in this case, the compactive viscosity is not an in-
trinsic (microstructure- and temperature-dependent) property
of the snow/firn sample. It would also depend on the over-
burden stress 6. Also, this study is limited to the investiga-
tion of vertical compaction in snowpacks/firn columns and
does not consider other directions of deformation (e.g., lat-
eral compaction). Therefore, we do not quantify the potential
anisotropy of the compactive viscosity.

Since the microscopic constitutive law characterizes
visco-plastic processes in the ice, the microscopic rheology
depends on temperature. This temperature dependence is in-
herited by the macroscopic compactive viscosity η (Kirchner
et al., 2001). Typically, the fluidity a in the microscopic law
involves an Arrhenius factor with an activation energy Q,
which implies the same temperature dependence,

A(µ,T )= A0(µ)exp
[
Q

R

(
1
T0
−

1
T

)]
, (6)

at the macroscopic scale. Here, A0 is a reference macro-
scopic fluidity that only depends on the microstructure, and
T0 is a reference temperature. Re-expressed in terms of com-
pactive viscosity, this implies

η(µ,T )= η0(µ)exp
[
−Q

R

(
1
T0
−

1
T

)]
, (7)

where η0 = 1/A0 is a reference compactive viscosity that
only depends on the microstructure.

2.3 Viscosity ratios

For the comparison of the macroscopic mechanical behavior
of different microstructures, it is helpful to utilize viscosity
ratios. For two snow/firn samples under the same mechanical
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load 6 at the same temperature, the ratio of their respective
macroscopic strain rates ĖA and ĖB is given by

ĖA

ĖB
=
ηB

ηA
=
η0B

η0A
. (8)

The ratio is independent of any scalar prefactor in the micro-
scopic deformation law. Indeed, halving the fluidity a results
in a doubling of both η0A and η0B , and, thus, their ratio re-
mains unchanged. Viscosity ratios are an interesting metric
to test the applicability of different ice rheologies to snow/-
firn modeling, as they remove the influence of a potentially
poorly constrained scalar prefactor in the microscopic defor-
mation law, leaving only the nonlinearity exponent n and the
space dependence of the rheology as relevant parameters.

3 Data and methods

3.1 Benchmark densification rates and µCT images

In order to compare our simulations with independent esti-
mates, we selected different Alpine and Antarctic field cam-
paigns with available µCT data and complementary mea-
surements that can be used to constrain observed densifica-
tion rates.

3.1.1 Alpine snow

For Alpine snow, we rely on the RHOSSA campaign
(Calonne et al., 2020a). This extensive data set provides daily
density profiles of a snowpack over the 2015–2016 snow sea-
son at the Weissfluhjoch observation site in the Swiss Alps.
Four snow layers have been carefully tracked and measured
with several instruments over the entire season, including a
rounded grains (RG) snow layer and a depth hoar (DH) snow
layer (following the classification of Fierz et al., 2009). From
these data, the observed macroscopic strain rate of a given
layer can be estimated from

Ė =
ρ̇

ρ
, (9)

where ρ and ρ̇ are the density of a layer and its time deriva-
tive, respectively. By convention, the strain rate is positive
in the case of compaction. The relevant overburden stress 6
imposed on a given layer can be obtained by integrating the
density profile above that layer to the snow surface as

6 =

surface∫
layer

dzgρ(z), (10)

where ρ(z) is the density at height z in the snowpack, and g
is the acceleration due to gravity.

The density time series of the layers were obtained on
a daily basis using a snow penetrometer (SnowMicroPen;

Calonne et al., 2020a). The resulting data include an appar-
ent day-to-day variability that stems from spatial variability,
resulting in a strongly fluctuating strain rate estimate when
using Eq. (9) directly. This variability can cause an apparent
decrease in density from one day to the other, which would be
interpreted as a negative strain rate. To avoid such issues, the
time evolution of the tracked snow layers was smoothed by
visually selecting tie points in the profiles in order to recon-
struct a piecewise linear and strictly increasing density time
series. In order to estimate the uncertainty in this method, 25
time series were manually created for both the DH and RG
layers. Their median values were taken as the observed strain
rate of the layer and used to deduce the compactive viscosity.
The upper and lower bounds of this procedure were used to
characterize the spread of this method.

The density time series of the tracked layers in the
RHOSSA campaign were regularly validated by µCT mea-
surements, however at a much lower temporal resolution.
Therefore, the snow was regularly sampled, and the mi-
crostructure was obtained with µCT at a resolution of 18 µm
(Calonne et al., 2020a). For our study, we selected µCT
scans from the DH and RG layers on 13 January 2016 and
16 February 2016. This selection was motivated by the fact
that on 13 January 2016, the RG and DH samples have
a similar density but different compaction rates, while on
16 February 2016, the two snow layers have a similar com-
paction rate but different densities. Moreover, the DH and
RG layer in the RHOSSA snowpack were almost adjacent
and, therefore, subject to a similar overburden stress and
a similar temperature of about −3 °C. Differences between
these two layers thus cannot be explained by a difference in
stress or temperature but should rather reflect a difference in
their intrinsic mechanical properties.

These RHOSSA layers provide an ideal benchmark for
simulations, which should be able to predict that DH snow
tends to be much more resistant to compaction than RG snow
(Kojima, 1967, 1975), which is an important feature of snow
mechanics that models need to account for (Vionnet et al.,
2012).

3.1.2 Antarctic firn

For the estimation of firn compaction rates with simultane-
ous microstructure measurements, we rely on an Antarctic
field campaign. Our data originate from the B34 and B54 ice
cores, both drilled on the East Antarctic Plateau. The B34
core was drilled at Kohnen Station, which is a site character-
ized by a 10 m borehole temperature of −44.5 °C (Weinhart
et al., 2020). The B54 core was drilled near the OIR (Oldest
Ice Reconnaissance) camp (displayed in Fig. 1 of Weinhart et
al., 2020), a site with a measured 10 m borehole temperature
of −53 °C.

For each firn core, a bulk density versus depth and an ice-
age versus depth profile were produced based on firn core
weighting and temporal synchronization with other cores.
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Assuming that the firn density profile represents a steady
state, the compaction rate of the firn column at a given depth
can be estimated by

Ė =
1
ρ

dρ
dτ
. (11)

Here, dρ
dτ is the derivative of the density with respect to the

age τ . In order to obtain the density versus age profile, we
combine the density–depth and the age–depth profiles. As in
the case of the Alpine snowpack, the overburden stress 6 for
a layer at a given depth is calculated from the integration of
the density of the overlying firn column.

As the density profiles were obtained by weighing 1 m
long cores, they do not resolve the layer-to-layer variability,
and the derived strain rate can already be regarded as an aver-
aged (smoothed) bulk value. The strain rate of an individual
layer in a 1 m core might still differ from this bulk value if
its mechanical and microstructural properties differ from the
average ones in the core.

While the firn density profiles are therefore sufficiently
smooth and do not include any decrease in density with depth
(which would be interpreted as expansion in Eq. 11), the de-
duced strain rate profiles still fluctuate, resulting in large and
nonphysical variations in the compactive viscosity at the me-
ter scale. As with the Alpine case, we therefore smoothed
the profiles by manually selecting tie points to create a piece-
wise linear profile from which the compactive viscosity is de-
duced. In order to characterize the uncertainty in the method,
profiles corresponding to the outer envelopes of the strain
rate profile were also created and used to derive upper and
lower bonds for the strain rate profiles.

Finally, these firn core data are complemented by 36 µCT
scans (4 from B34 with a 40 µm resolution and 32 from B54
with a 30 µm resolution) with ice volume fractions rang-
ing from 0.428 to 0.933 (that is to say, densities ranging
from about 390 to 860 kgm−3, assuming a density of ice of
917 kgm−3).

3.2 Finite element modeling

The experimental observations of snow and firn compaction
were complemented with simulations using the finite element
method (FEM). The goal of these simulations was to estimate
the compaction rate of a sample based on its microstructure
and a given microscopic ice rheology. Our simulation work-
flow, from µCT scanning to the estimation of the compactive
viscosity, is schematically summarized in Fig. 1 and detailed
below.

3.2.1 Image segmentation and mesh generation

The first step of our simulation workflow is to produce tetra-
hedral meshes representing the snow/firn microstructures.
As detailed below, we performed simulations using both
isotropic and anisotropic constitutive laws for the ice. De-

pending on whether a simulation was performed with an
isotropic or an anisotropic material, the mesh generation pro-
cess was slightly different.

For the isotropic ice simulations, each µCT image was
first segmented into a binary voxel image of ice and air (as
detailed in Calonne et al., 2020a), which was used as in-
put for the CGAL1 meshing library (Fabri et al., 2000) in
order to produce a tetrahedral mesh of the ice matrix. Dis-
connected parts of the mesh were removed by component
labeling in order to obtain a simply connected region for
the ice microstructure. The last step is necessary as discon-
nected regions cannot carry mechanical loads and lead to an
ill-defined mathematical problem in the finite element for-
mulation.

As the goal of using an anisotropic ice material was to
model snow microstructure as an ensemble of monocrys-
tals with a crystallographic texture, the µCT images were
also segmented into individual ice crystals as in Theile and
Schneebeli (2011), Hagenmuller et al. (2014), or Willibald
et al. (2020). As µCT does not carry any information about
the crystallographic orientation of the ice, this segmentation
was done on a purely geometrical basis using a watershed
algorithm, following Willibald et al. (2020). The resulting
segmented images for two RHOSSA samples are shown in
the left column of Fig. 2. The segmentation appears to be
realistic when compared to c-axis orientation measurements
in snow from thin sections (Riche et al., 2013, Fig. 3). We
note that while such a technique was not available for our
study, the crystallographic orientation in snow could also be
experimentally determined through X-ray diffraction tomog-
raphy (Rolland du Roscoat et al., 2011; Reischig et al., 2013;
Granger et al., 2021). The crystal-segmented µCT images
were then meshed using the CGAL software, and the dis-
connected parts were removed, following the same procedure
as for the standard binarized µCT images. Visualizations of
segmented 3D FEM meshes, composed of various individual
ice crystals, are displayed in the right column of Fig. 2.

In each case, we used the full size of the µCT images
in order to have volumes that are as representative as pos-
sible. Specifically, the size of the RHOSSA snow samples
corresponds to 1.44cm× 1.44cm× 1.44cm cubes for both
the DH samples and the RG sample of 16 February 2016
and a 1.08cm× 1.08cm× 1.08cm cube for the RG sam-
ple of 13 January 2016. The B34 samples correspond to
1.2cm× 1.2cm× 1.2cm cubes, and the B54 samples corre-
spond to 1.8cm× 1.8cm× 1.8cm cubes. The samples used
for FEM modeling and their characteristics are summarized
in Table 1.

3.2.2 Finite element solution

Once a tetrahedral mesh is obtained, the Stokes equations as
given in Eq. (1) are solved using the finite element method

1https://www.cgal.org/ (last access: 3 June 2024).
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Figure 1. Simulation workflow used in this study in order to estimate the compactive viscosity of a snow/firn sample. The first steps shows the
production of a tetrahedral mesh from the µCT images using CGAL. The second step shows a simulation of strain-rate-imposed compaction
using Elmer FEM (the color scale stands for the vertical velocity). Step three shows the computation of the resulting macroscopic stress
exerted at the top and bottom of the sample. Step four shows the computation of the compactive viscosity of the microstructure.

Table 1. Description of the Alpine snow and Antarctic firn µ-CT images used for finite element simulations.

Sample(s) Voxel size Sample(s) size Ice volume fraction Temperature
(µm) (cm× cm× cm) (°C)

RHOSSA RG 13/01/2016 18 1.08× 1.08× 1.08 0.27 −3
RHOSSA DH 13/01/2016 18 1.44× 1.44× 1.44 0.28 −3
RHOSSA RG 16/02/2016 18 1.44× 1.44× 1.08 0.46 −3
RHOSSA DH 16/02/2016 18 1.44× 1.44× 1.44 0.30 −3
B34 40 1.2× 1.2× 1.2 0.43 to 0.93 −44.5
B54 30 1.8× 1.8× 1.8 0.60 to 0.80 −53

to estimate the compactive viscosity of a given microstruc-
ture for a given microscopic rheology, as outlined in Sect. 2.
As we consider a purely viscous material without elasticity,
we do not need to isolate the viscous response from an elas-
tic part (as, for instance, done in Wautier et al., 2017). The
simulations were carried out with the Elmer FEM2 software,
which is regularly used in ice sheet modeling. In this way, we
can build on existing work in the context of ice flow that is
typically done on larger scales (Gagliardini et al., 2013; Law
et al., 2023).

As our meshes typically contain tens of millions of ele-
ments, we used the ParStokes equation solver that was specif-
ically developed for solving the Stokes equations for a large
number of elements on a parallel computer (used, for in-
stance, in Schannwell et al., 2020). However, the ParStokes
solver was originally developed for isotropic materials only.
For the purpose of our study, we extended the ParStokes
solver to also cope with a linear anisotropic material in or-
der to emulate the behavior of ice monocrystals (Gagliardini
and Meyssonnier, 1999; Burr et al., 2017). For this imple-
mentation in Elmer FEM (or any other FEM framework) of
an anisotropic visco-plastic material, one needs to define the
constitutive law that relates the deviatoric stress tensor s to
the strain rate tensor ε̇. In the case of a linear and anisotropic
rheology, this constitutive law can be applied thanks to a

2https://research.csc.fi/web/elmer/elmer (last access:
3 June 2024).

fourth-order viscosity tensor M, i.e., s=M : ε̇. While we do
not consider this case in our study, one could also use a non-
linear rheology. In this case, this constitutive law would need
to be linearized around the current estimate of the solution,
and this linearized law would need to be expressed through
a fourth-order tensor. The solution would then be iteratively
approached (typically through Picard or Newton iterations).

In order to represent the deformation of a monocrystal,
we used the constitutive law of Gagliardini and Meyssonnier
(1999), which is given in Voigt notation in Eq. (7) of their
article. This constitutive law represents a transverse isotropic
ice material with its c axis oriented towards the vertical. The
viscosity while shearing in the plane perpendicular to this c
axis is assumed to only be a fraction of the viscosity while
shearing in the planes containing the c axis. In our case, we
set this fraction to be 0.01 (following Burr et al., 2017). Note
that in Gagliardini and Meyssonnier (1999), the constitutive
law is expressed as the relation yielding ε̇ as a function of
s, i.e., ε̇ = a : s, with a being a fluidity tensor. For the im-
plementation in Elmer FEM, such a law needs to be inverted
in order to have s=M : ε̇. Due to the incompressibility of
ice, the computation of M from a is not unique (Loredo and
Klöcker, 1997). However, as the Voigt representation of the
a tensor in Gagliardini and Meyssonnier (1999) is invertible,
we can simply take the inverse as the tensor M. The tensor
M, obtained by following the expression of Gagliardini and
Meyssonnier (1999), is only valid for an ice crystal having its
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Figure 2. Geometrical segmentation of µCT images into individual
grains (a, c) and the corresponding 3D meshes (b, d). Each grain
is represented by a given color. Samples correspond to the DH and
RG snow sampled, as part of the RHOSSA campaign, on 13 January
2016.

c axis oriented vertically. In order to be applied in a 3D FEM
simulation, this constitutive law needs to be rotated accord-
ing to the actual orientation of the crystal. This is achieved
through rotation matrices and using the colatitude and lon-
gitude angles of the c axes (Meyssonnier and Philip, 1996;
Gagliardini and Meyssonnier, 1999).

One of the particularities of the ParStokes solver used in
this work is its use of block preconditioning. Ideally, this
block preconditioner would be based on a Schur complement
(similarly to Worthen et al., 2014). However, as the computa-
tion of a Schur complement can be costly, the isotropic ver-
sion of the ParStokes solver approximates it as a FEM mass
matrix divided by the element-wise scalar viscosity. How-
ever, in the case of anisotropy, the viscosity is not scalar any-
more. For the approximation of the Schur complement in the
anisotropic version of ParStokes, we instead used the first
invariant of the viscosity tensor (Betten, 1982), normalized
such that it equals the scalar viscosity in the limiting case of
an isotropic rheology.

Finally, for solving the linearized FEM equations, we re-
lied on the BiCGSTAB or the GMRES iterative methods, and
convergence was assumed when the relative residual of the
system reached at least 5× 10−5 (some simulations reached

a lower convergence criterion, but others showed quite slow
convergence rates after passing 1× 10−4, which prevented
them from reaching smaller criteria). For nonlinear prob-
lems, the nonlinear iterations were considered to have con-
verged when the relative difference between two consecutive
iterations was smaller than 1× 10−4.

3.2.3 Boundary conditions

For the simulations, boundary conditions need to be pre-
scribed on the sides of the snow/firn sample. For the com-
pression of snow and firn samples, we used the so-called
periodicity-compatible mixed uniform boundary conditions
(PMUBC; Pahr and Zysset, 2008). The vertical strain rate
is imposed by prescribing the top and bottom vertical ve-
locities, while a vanishing normal velocity is imposed on
the sides. The advantage of such boundary conditions is
twofold. First, these conditions mimic the natural, later-
ally constrained situation during compaction in snowpacks
and firn columns. Second, these boundary conditions re-
quire the smallest volumes to achieve a representative be-
havior (Pahr and Zysset, 2008). Finally, we note that in the
anisotropic simulations, the condition at the interface be-
tween monocrystals is simply characterized by the continuity
of displacement rates.

Once the simulation has completed, the total reaction
forces acting on the top and bottom faces are calculated. The
macroscopic overburden stress is computed as the resulting
average force divided by the sample surface area. Finally, the
compactive viscosity η of the sample is obtained as the ratio
between the macroscopic stress, with the appropriate nonlin-
earity exponent, and the prescribed macroscopic strain rate,
as given by Eq. (5).

3.3 Testing the finite element setup

To provide some confidence in the correctness of the finite
element setup, we conducted two numerical test experiments.

First, we verified that the macroscopic response of a mi-
crostructure with the microscopic constitutive law in Eq. (3)
follows the same power law with the same stress exponent
n. To this end, we used the microstructure obtained from one
of the B34 firn samples. The deformation law chosen for the
constituting material is an isotropic power law with n= 3
and a fluidity prefactor a = 1 Pa−3 s−1. Using our finite ele-
ment framework, the microstructure was deformed with dif-
ferent imposed macroscopic strain rates, and the macroscopic
stress was obtained from the output of the simulations. The
results are shown in Fig. 3 and confirm that the macroscopic
strain rate versus stress curve indeed follows a power law
with n= 3, as predicted by Eq. (5). The corresponding com-
pactive viscosity of this microstructure can be evaluated as
η = 28.1 Pa3 s (this value, of course, depends on the specific
choice of the nonlinear exponent n and of the fluidity prefac-
tor a).
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Figure 3. Stress versus strain rate curve characterizing the response
of a firn microstructure composed of isotropic ice under compres-
sion (and assuming a fluidity prefactor a = 1 Pa−3 s−1). The macro-
scopic response follows a power law with the same exponent as the
ice material, here with n= 3.

Second, we tested the anisotropic behavior of the imple-
mented transverse isotropic constitutive law, which is sup-
posed to represent the rheology of an ice monocrystal. To
this end, we performed simulations of the compression of a
cylinder composed of a single monocrystal with a flattened
top and bottom, which is referred to as the flattened Brazilian
test (Wu et al., 2018). For the boundary conditions, the bot-
tom boundary of the sample is fixed, while a constant vertical
velocity is imposed at the top. The results of the simulations
are displayed in Fig. 4 and show the appearance of the well-
known shear band when the crystallographic orientation is
tilted compared to the direction of compression. While the
precise position and orientation of this shear band are non-
trivial and depend on the geometry of the sample (notably
through stress concentrations developing near corners, as vis-
ible in, for example, Fig. 8 of Patel and Martin, 2018), such
a shear band is characteristic for an anisotropic material and
does not appear in the isotropic case. Moreover, the result-
ing macroscopic stress required to obtain the same imposed
macroscopic strain rate is about 23 times smaller in the case
of a tilted c axis, showing the softening of the material de-
pending on the respective orientation between the compres-
sion and the crystal.

4 Results and discussion

We start with the simplest rheology for the ice matrix com-
monly used in the literature, namely Glen’s law for isotropic,
polycrystalline ice.

Figure 4. Compressive response of a flattened cylinder composed
of a transverse isotropic material, depending on the orientation of
the crystal axis (0 and 30° compared to the vertical). The small gray
arrows indicate the velocity of the ice material, and the color scale
indicates the vertical component of the velocity field.

4.1 Firn is a foam of polycrystalline ice; snow is not

Several works in the literature have proposed that the defor-
mation of the ice matrix in snow and firn is similar to the
deformation of isotropic polycrystalline ice, i.e., glacier ice.
This idea dates back to Mellor and Smith (1966), where the
deformation of snow was experimentally studied alongside
polycrystalline ice in order to unravel the similarities be-
tween the two. This approach has been supported by subse-
quent work by Kirchner et al. (2001), who concluded that the
viscous compaction of snow has the same nonlinear proper-
ties as polycrystalline ice. In this respect, snow is viewed as
a “foam of ice” (Kirchner et al., 2001) or, more precisely, a
foam of polycrystalline ice. The viscoplastic deformation of
polycrystalline ice is, nowadays, reasonably well understood
and usually described by Glen’s law, an isotropic power-law
rheology with n= 3 and known fluidity values depending on
the temperature of the ice (Schulson and Duval, 2009; Cuffey
and Paterson, 2010). As the benchmark densification rates
for snow and firn were obtained with temperatures around
−3, −44.5, and −53 °C, the corresponding ice fluidities are
1.7× 10−24, 5.2× 10−27, and 1.4× 10−27 Pa−3 s−1, respec-
tively.

Our first attempt was, thus, to simulate the deformation
of snow and firn assuming Glen’s law as the rheology for
the ice matrix. Figure 5 shows the comparison between the
compactive viscosities obtained with FEM simulations and
those derived from the experimental data.

Concerning firn (ice volume fraction above 0.6), the fig-
ure shows a general agreement, despite a cluster of simulated
B54 samples that appear not viscous enough. Our interpreta-
tion is that since all these samples were taken at a similar
location in the firn, this very location in the firn column may
not be representative of the bulk and steady-state firn col-
umn due to the vertical variability existing in firn (Hörhold
et al., 2011; Fourteau et al., 2019). Concerning snow (ice vol-
ume fraction below 0.6), Fig. 5 reveals a large overestimation
of the compactive viscosities for all samples. This overesti-
mation of the compactive viscosity when using Glen’s law

The Cryosphere, 18, 2831–2846, 2024 https://doi.org/10.5194/tc-18-2831-2024



K. Fourteau et al.: Viscous densification of firn and snow 2839

Figure 5. Comparison between simulated and observed compactive viscosities of snow and firn samples, assuming Glen’s law for the ice
rheology. The samples and data from the depth hoar and rounded grains are taken from the RHOSSA campaign, and the B34 and B54
samples and data are taken from the firn cores. The ice volume fractions of the simulated points are computed based on the CT scans. The
shaded areas correspond to the uncertainties in deriving the compactive viscosity values, as described in Sect. 3.1.

is consistent with the results of Theile et al. (2011), who
reached a similar conclusion. The overestimation also ex-
ceeds the uncertainties in the observations that were com-
puted as explained in Sect. 3 and shown as shaded areas in
Fig. 5.

Moreover, Fig. 6 shows that while the RHOSSA observa-
tions indicate that on 13 January 2016 and 16 February 2016
the DH sample is, respectively, about 5 times and 1 times as
viscous as the RG sample, our simulations using Glen’s law
predict a DH sample that is, respectively, 0.83 and 0.0093
times as viscous as the RG sample. Thus, not only is Glen’s
rheology largely overestimating the viscosity of snow, but it
also fails in explaining relative differences (viscosity ratios)
and as to why DH is such a viscous snow type compared to
RG at the same density, temperature, and overburden stress.

Our results confirm that Glen’s law is appropriate to model
firn compaction, but clearly another microscopic ice rheol-
ogy is required to explain the viscous compaction of snow.

4.2 Sensitivity study of isotropic rheologies

The disagreement of Glen’s (isotropic polycrystalline) law
could be resolved in a pragmatic but physically unjustified
way by artificially increasing the fluidity a in Glen’s law.
Such a rheology could still be an interesting trade-off be-
tween physical rigor and practical considerations, as long
as the obtained simulated compactive viscosities reasonably
reproduce experimental observations. For instance, using an
ice rheology with adjusted parameters, different from Glen’s
law, Wautier et al. (2017) were able to simulate compaction
rates that are much more in line with experimental observa-
tions. However, such a fudge factor would still be in contra-
diction with our results: as explained in Sect. 2, the viscosity
ratio between samples is independent of any potential (un-

Figure 6. Comparison of simulated compactive viscosity ratios (DH
over RG, represented by the green and yellow markers) with obser-
vations (dashed lines) from 13 January 2016 and 16 February 2016
for different versions of the microscale constitutive law (x axis).

justified) modification of the ice fluidity a. In other words,
while modifying the fluidity of the ice can be used to attenu-
ate the general overestimation of the simulated snow viscos-
ity, it would still fail in explaining why the simulated com-
pactive viscosity of rounded grains is (relatively) too high
when compared to DH snow, as seen in Fig. 5. Since this rela-
tive difference between RG and DH is a prominent feature in
the densification of snow, we conclude that isotropic power-
law rheologies with n= 3 are not suited for snow modeling.

Detailed snow models rather employ a Newtonian rheol-
ogy (n= 1) instead (Bartelt and Lehning, 2002; Vionnet et
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al., 2012). Macroscopic Newtonian rheologies are also used
in low-density firn studies (Schultz et al., 2022). Therefore,
exploring rheologies besides Glen’s law, with related numeri-
cal experiments, would benefit our understanding of homog-
enization in snow compaction. Accordingly, we conducted
a sensitivity analysis on microscopic, isotropic constitutive
laws using different exponents (n= 1, n= 2, and n= 4 in
our case) following Wautier et al. (2017). We note that, while
some of these rheologies could be justified based on mecha-
nisms of ice deformation (such as the Nabarro–Herring creep
resulting in n= 1; Herring, 1950; Arthern et al., 2010), our
analysis of n 6= 3 was not conducted with specific physi-
cal mechanisms in mind. Rather, our motivation is to de-
termine if an isotropic deformation law could explain snow
compaction, independently of a specific underlying physi-
cal mechanism. For these simulations, physically constrained
values for the scalar fluidity a of the ice rheologies are not
available. Hence, comparing simulated and observed abso-
lute values of compactive viscosities is not meaningful. We
therefore focus here on viscosity ratios of DH and RG dur-
ing the RHOSSA campaign, as this ratio is independent of
the ice fluidity.

The results of our sensitivity study are shown in Fig. 6
and summarized in Table 2. Similar to Glen’s law for both
investigated days, and independent of the microscopic rhe-
ology, the simulations predict a viscosity ratio that is not in
agreement with the observations. One may either consider
this as RG snow being too viscous or DH snow being not
viscous enough. Moreover, increasing the nonlinearity ex-
ponent n leads to a decrease in the viscosity ratio moving
farther away from the observations. We interpret this result
through the differences in geometry between RG and DH.
DH is characterized by smaller necks than RG. This leads to
higher local stress concentrations in DH than in RG, which
can be confirmed from the simulated stress distribution in
the DH and RG samples. These higher stress concentrations
result in higher local strain rates, which are exacerbated by
the nonlinear nature of the power-law rheology (for n > 1).
This effect is particularly marked on the DH and RG sam-
ples from 16 February 2016, as shown by the sharp decrease
in the DH viscosity compared to that of RG as n increases.
Thus, further increasing the value of n beyond n= 4 appears
unlikely to explain the compactive behavior of DH and RG
snow. The insight from this sensitivity study consolidates our
conclusion that the viscous compaction of snow cannot be
explained by assuming that the ice matrix deforms according
to a simple isotropic power law, whether linear or nonlinear.

4.3 Snow as an ensemble of monocrystals

The inability of Glen’s (isotropic polycrystalline) law to ex-
plain snow viscous compaction is consistent with the fact
that microstructural geometrical grains in snow are, in fact,
monocrystalline units (Riche et al., 2013). The mechanical
behavior of polycrystalline ice arises from the collective be-

havior of neighboring monocrystals blocking each other, as
their preferential directions of deformation are not compati-
ble with one another. In contrast, the monocrystalline grains
in snow have many free surfaces at the ice–pore interfaces,
where the crystals are free to deform (Scapozza and Bartelt,
2003). Thus, the ice matrix composing snow can be expected
to deform much easier than polycrystalline ice. Note that this
reasoning is also compatible with the applicability of Glen’s
law in firn. Here, due to the lower porosity, there are not so
many interfaces with the pores, and individual ice-crystals
tend to block one another, resulting in an ice rheology close
to that of polycrystalline ice. Thus, there would be a tran-
sition in the ice matrix rheology from snow, characterized
by freely deforming monocrystals, to firn, characterized by
the interaction of incompatibly oriented crystals (i.e., poly-
crystalline ice), as the microstructure becomes denser and the
crystals start blocking one another. This vision is consistent
with experimental observations of the nonlinear exponent n
of snow and firn that show a transition from n∼ 2 to n∼ 3.5
(Scapozza and Bartelt, 2003). Such a transition in behavior,
which is assumed to be driven by a transition in density, is
widely adopted (Alley, 1987; Arnaud et al., 2000; Salamatin
et al., 2009; Morris et al., 2022).

Therefore, as a natural generalization of our work on
snow compaction, we extended our study to an anisotropic
rheology in order to advance in the direction of represent-
ing the grains in snow as monocrystals. To this end, we
conducted simulations using a transverse isotropic rheology
(Meyssonnier and Philip, 1996; Gagliardini and Meysson-
nier, 1999). In contrast to the isotropic rheologies used
above, this anisotropic rheology introduces a novel feature
at the microscale, namely anisotropic deformations of grains
that shear much easier in their basal plane than in other di-
rections (Montagnat et al., 2014b). This idea of modeling
snow as an ensemble of monocrystals has been previously
proposed by Theile et al. (2011). They found that this rhe-
ology yielded smaller compactive viscosities more in line
with observed values. However, Theile et al. (2011) con-
sidered only RG microstructures on geometrically simplified
meshes. Therefore, the relative comparison between DH and
RG, in terms of viscosity ratios using the full microstructure,
constitutes an important cross-validation of this finding re-
lated to the aim of the present work.

For the simulation, the ice crystals were randomly binned
into 100 different crystallographic orientation classes, each
with a randomly given c-axis orientation. The distribution
of the orientations of the c axes correspond to an isotropic
texture (i.e., with no preferential orientation for the c axes).
In order to simplify the comparison between the DH and
RG snow simulations, the same distributions of the c axes
were used for snow samples taken from the same day. For
the present purpose, we limited ourselves to the linear trans-
verse isotropic rheology that has been proposed for ice (as in
Gagliardini and Meyssonnier, 1999).
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Results of the simulations for the anisotropic rheology are
shown in Fig. 6 and Table 2. They confirm the same disagree-
ment that was found with the simulations for the isotropic
rheology: the viscosity ratio between DH and RG is too low.
Comparing the viscosity ratios from the anisotropic model,
with their isotropic counterpart having the same exponent
(n= 1), shows that the performance is even reduced, with a
slight decrease in the viscosity of DH relative to RG. The use
of a linear transverse isotropic rheology, meant to represent
monocrystal behavior, cannot be considered more realistic.
While we have only considered the linear anisotropic case
here, it can be expected that a nonlinear anisotropic mate-
rial law (when using exactly the same grain segmentation)
would further increase the difference to the observations for
the same reasons as detailed in the isotropic case.

In order to illustrate the main differences between the
anisotropic and the isotropic constitutive law, we computed
the deviatoric stress field in the RHOSSA 13 January 2016
RG microstructure for both material laws. The distribution
of the s33 component (i.e., vertical component) of the devia-
toric tensor is displayed in Fig. 7a. It reveals that, overall, the
two deviatoric stress distributions are relatively similar, once
normalized by the macroscopic stress. Only the tails of the
distribution differ. Thus, while stress concentrations could be
expected due to deformation incompatibilities of neighbor-
ing crystals, they appear to be relatively limited. This is con-
firmed by Fig. 7b, which displays the spatial field of the nor-
malized s33 component within a slice of the RG microstruc-
ture. The anisotropic and isotropic cases show similar spatial
patterns of stress concentrations, which appear to be dictated
by ice matrix geometry rather than crystallographic effects.
In our simulations, the stress pattern driving the deformation
is only affected a little by the use of an anisotropic material
with crystallographic orientations. In the case of an isotropic
crystallographic texture, where crystal orientations are not
correlated with zones of stress concentration, the RG and DH
can be expected to be impacted in a similar fashion by their
random crystal orientation in zones of stress concentrations.
Thus, the use of an anisotropic material with planes of pref-
erential deformation modifies the compactive viscosity of a
given sample compared to the isotropic case. However, the
viscosity ratio between two samples remains relatively con-
stant (see Fig. 6).

4.4 Perspectives for the viscous compaction of snow
and firn

By considering the viscous compaction of snow and firn
in the same computational, microstructure-based framework,
we were able to support and contradict underlying mecha-
nisms that were previously hypothesized in the snow and firn
literature.

The overall agreement of the isotropic simulations with
observed firn densification rates using a published fluidity
for the actual firn temperature supports the notion of firn

as a foam of (isotropic, polycrystalline) ice (Kirchner et al.,
2001), where the deformation stems from (intracrystalline)
dislocation creep (Schulson and Duval, 2009). We note that
in our study, the rheology for polycrystalline ice was taken
from Cuffey and Paterson (2010), who report a nonlinear ex-
ponent n= 3. The nonlinear exponent of firn has recently
been experimentally studied by Li and Baker (2022), who,
rather, report a nonlinear exponent of n∼ 4. This value is
consistent with the laboratory experiments of Sundu et al.
(2024), who report n∼ 4.4 for large-grained snow. As noted
by Li and Baker (2022), a nonlinear exponent closer to 4 is
also compatible with observations of polycrystalline ice (e.g.,
Goldsby and Kohlstedt, 2001; Bons et al., 2018). While the
question of the best choice for n remains open, these incon-
sistencies in the specific n value do not contradict our result
that firn compaction can be adequately simulated using an
ice rheology based on polycrystalline ice observations. Re-
maining differences between simulations and firn core ob-
servations could be further explored if microstructure profiles
were continuously available at a high vertical resolution, sim-
ilar to Montagnat et al. (2020). In this way, the difference in
scales between observations (strain rates averaged over 1 m)
and simulations (centimeter-sized samples), and the associ-
ated uncertainty, could be further narrowed down.

In contrast, the notion of snow as a foam of ice follow-
ing the same creep mechanism as high density firn is clearly
ruled out by our study. While this result seems trivial in view
of the number of studies highlighting the difference between
snow and firn (e.g., Herron and Langway, 1980; Arnaud et
al., 2000; Morris et al., 2022), we stress that these differ-
ences were hitherto never explored by microstructure-based
simulations.

Our results for snow reinitiate the question about the dom-
inant deformation mechanisms. Using viscosity ratios (see
Fig. 6), we were able to show that DH and RG snow can-
not be consistently modeled using the same microscale con-
stitutive law (isotropic or anisotropic), strongly suggesting a
fundamental difference in the underlying physics. Viscosity
ratios provide a complementary benchmark, since biases re-
sulting from the numerics or the prefactor in the microscale
constitutive law should cancel out.

On one hand, this raises the question of whether the agree-
ment for the anisotropic rheology found in Theile et al.
(2011) would still hold when including different snow types
at the same temperature and relaxing the mesh simplifica-
tion step in representing the microstructure. Likewise, ex-
ploring anisotropic rheologies should be extended further,
for instance, by including nonlinearity effects (Schulson and
Duval, 2009; Montagnat et al., 2014b) or a preferential ori-
entation of the c axes (Riche et al., 2013). Our extension
of the ParStokes solver in Elmer FEM could provide an ef-
ficient modeling starting point in the direction of viscous
and transverse-isotropic rheologies with a texture. Concur-
rent measurements of the texture are then unavoidable, ei-
ther through thin sections of snow (Riche et al., 2013; Mon-
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Table 2. Ratio between the DH and RG compactive viscosities from various ice rheologies.

Day Isotropic n= 1 Isotropic n= 2 Isotropic n= 3 Isotropic n= 4 Anisotropic Observations

13 January 2016 1.13 1.0 0.87 0.75 0.67 ∼ 5
16 February 2016 0.18 0.041 0.0093 0.0021 0.11 ∼ 1

Figure 7. (a) Distribution of the s33 component of the deviatoric tensor normalized by the macroscopic stress 6 in an RG microstructure,
using either an isotropic or anisotropic constitutive law for the ice matrix. (b) Field of the normalized s33 component of the deviatoric tensor
in a RG microstructure, using either an isotropic or anisotropic constitutive law for the ice matrix. Red colors stand for compressive zones
and blue colors stand for tensile zones.

tagnat et al., 2020) or through X-ray diffraction tomogra-
phy (Rolland du Roscoat et al., 2011; Reischig et al., 2013;
Granger et al., 2021). Alternatively, microscale constitutive
laws may be directly adopted from crystal plasticity and sim-
ulated using dedicated numerical techniques based on fast
Fourier transformation (Knezevic et al., 2009; Hure, 2019).
A deeper understanding of the influence of the snow texture
on its mechanical properties would enable the study of the
interaction between structural (i.e., due to the microstruc-
ture) and textural (i.e., due to the crystallographic orienta-
tions) anisotropies.

On the other hand, our viscosity ratios also raise the ques-
tion of whether the density (of snow or firn) is actually the
relevant property that discerns between different deforma-
tion mechanisms (Alley, 1987; Morris et al., 2022). Our snow
samples were selected to include cases (Fig. 5) with virtually
the same density but clear differences in the observed den-
sification rates. Consistent with this idea, the recent experi-
mental study of Sundu et al. (2024) suggests that the transi-
tion in the ice matrix rheology (characterized in their work
by a transition from n∼ 1.9 to n∼ 4.4) is better captured by
grain size than by density. While the comparison to observa-
tions (for snow and firn) is subject to the same uncertainty

(separation of scales between centimeter-sized simulations
and layer-averaged densification rates in the observations),
care needs to be taken in assuming a density-driven transition
to a different deformation mechanism, e.g., grain boundary
sliding (GBS) (Raj and Ashby, 1971; Langdon, 2006). Such
a GBS mechanism provides an alternative to the intracrys-
talline deformation discussed so far (Theile et al., 2011). In-
deed, it is often assumed that at low density the deformation
of snow occurs through localized stress relaxation at the junc-
tions between grains (Alley, 1987; Salamatin et al., 2009;
Schultz et al., 2022). However, the implementation of such
a deformation mechanism in FEM, and an extension of the
sensitivity analysis Fig. 6 to fundamentally different forms of
the microscale constitutive law in Eq. (3), is not straightfor-
ward. Standard FEM techniques are not suited for localized,
discontinuous deformations. Simulations of grain boundary
sliding at the microscale would require more complex nu-
merical methods, such as the extended finite element method
(Khoei, 2014). This method has been developed to account
for discontinuities and was successfully applied to model
grain boundary sliding in the past (Simone et al., 2006).

Finding the relevant drivers for transitions in the com-
pactive viscosity is even complicated by recent experimental
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studies such as the study by Wiese and Schneebeli (2017).
This work found an immediate increase in the compactive
viscosity during temperature gradient metamorphism (com-
pared to isothermal samples), despite the absence of strong
differences in structural parameters such as density, SSA
(specific surface area), or structural anisotropy. We believe
that these kinds of studies constitute a good experimental di-
rection to identify active, microscopic deformation mecha-
nism(s) and should be able to explain why very small mi-
crostructural differences can lead to large compactive vis-
cosity differences. Moreover, the acquisition of µCT images
during the controlled deformation of snow in the laboratory
could help to identify the microscopic mechanism(s) at play
during deformation and be a guide to select the appropriate
physics for microstructure-based simulations.

Besides snow compaction, the simulations using a trans-
verse isotropic rheology showcased that the ability of Elmer
FEM’s ParStokes solver to handle highly parallelized simu-
lations (as in Schannwell et al., 2020) can be extended to ac-
count for complex anisotropic rheologies. Such a possibility
could, for instance, be useful for large-scale ice sheet mod-
eling, where the ice material can present an anisotropic be-
havior due to texture development (e.g., Gillet-Chaulet et al.,
2006; Montagnat et al., 2014a). As mentioned in Sect. 3.2.2,
the ParStokes solver relies on an approximation of a Schur
complement for block preconditioning. A path of future de-
velopment for the ParStokes solver, and its ability to robustly
handle anisotropic materials, could be to derive a better ap-
proximation of the Schur complement, which could improve
the block preconditioning stage.

5 Conclusions

Modeling the viscous densification of snow and firn directly
from the microstructure of samples constitutes an important
step towards replacing empirical parametrizations in models
with physics-based laws. These computationally demanding,
microstructure-based simulations can now be conveniently
carried out with the required accuracy (mesh representation)
using parallel computing. A holistic snow and firn densifica-
tion picture is still hampered though by the limited insight
into the microscale rheology of the ice matrix. This study ex-
plored several rheologies in microstructures taken from field
campaigns and compared them to independent estimates.
Using firn cores drilled in East Antarctica, our simulations
largely confirmed that the ice matrix deforms according to
an isotropic polycrystalline rheology, as classically used to
model ice from glaciers or ice sheets. For snow, none of the
tested rheologies (isotropic vs. anisotropic, linear vs. nonlin-
ear) are able to quantitatively predict the large viscosity ratio
between depth hoar and rounded grains, which is a critical re-
quirement in snowpack modeling. Future (experimental and
numerical) work is urgently needed in order to further con-

strain the form and the parameters in the microscale consti-
tutive law of ice in snow.
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