Articles | Volume 18, issue 6
https://doi.org/10.5194/tc-18-2831-2024
https://doi.org/10.5194/tc-18-2831-2024
Research article
 | 
20 Jun 2024
Research article |  | 20 Jun 2024

Microstructure-based simulations of the viscous densification of snow and firn

Kévin Fourteau, Johannes Freitag, Mika Malinen, and Henning Löwe

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (review by editor) (03 Apr 2024) by Guillaume Chambon
AR by Kevin Fourteau on behalf of the Authors (03 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (22 Apr 2024) by Guillaume Chambon
AR by Kevin Fourteau on behalf of the Authors (22 Apr 2024)
Download
Short summary
Understanding the settling of snow under its own weight has applications from avalanche forecasts to ice core interpretations. We study how this settling can be modeled using 3D images of the internal structure of snow and ice deformation mechanics. We found that classical ice mechanics, as used, for instance, in glacier flow, explain the compaction of dense polar snow but not that of lighter seasonal snow. How, exactly, the ice deforms during light snow compaction thus remains an open question.