Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-407-2023
https://doi.org/10.5194/tc-17-407-2023
Research article
 | 
31 Jan 2023
Research article |  | 31 Jan 2023

Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere

Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig

Related authors

Deglacial climate changes as forced by different ice sheet reconstructions
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023,https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Investigating the spatial representativeness of Antarctic ice cores: A comparison of ice core and radar-derived surface mass balance
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-65,https://doi.org/10.5194/tc-2023-65, 2023
Preprint under review for TC
Short summary
Quantifying the contribution of forcing and three prominent modes of variability to historical climate
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023,https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Atmospheric drivers of Antarctic sea ice extent summer minima
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-45,https://doi.org/10.5194/tc-2023-45, 2023
Preprint under review for TC
Short summary
Ice core chemistry database: an Antarctic compilation of sodium and sulphate records spanning the past 2000 years
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara Khodzher, Ludmila Golobokova, and Alexey Ekaykin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-368,https://doi.org/10.5194/essd-2022-368, 2022
Revised manuscript accepted for ESSD
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations
Xiaoqiao Wang, Zhaoru Zhang, Michael S. Dinniman, Petteri Uotila, Xichen Li, and Meng Zhou
The Cryosphere, 17, 1107–1126, https://doi.org/10.5194/tc-17-1107-2023,https://doi.org/10.5194/tc-17-1107-2023, 2023
Short summary
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023,https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023,https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023,https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform-fitting
Steven Fons, Nathan Kurtz, and Marco Bagnardi
EGUsphere, https://doi.org/10.5194/egusphere-2022-1287,https://doi.org/10.5194/egusphere-2022-1287, 2022
Short summary

Cited articles

Alberello, A., Bennetts, L., Heil, P., Eayrs, C., Vichi, M., MacHutchon, K., Onorato, M., and Toffoli, A.: Drift of pancake ice floes in the winter antarctic marginal ice zone during polar cyclones, J. Geophys. Res.-Oceans, 125, e2019JC015418, https://doi.org/10.1029/2019JC015418, 2020. 
Barthélemy, A., Fichefet, T., Goosse, H., and Madec, G.: Modelling the interplay between sea ice formation and the oceanic mixed layer: limitations of simple brine rejection parameterizations, Ocean Model., 86, 141–152, 2015. 
Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res.-Oceans, 104, 15669–15677, https://doi.org/10.1029/1999JC900100, 1999. 
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. 
Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic– viscous–plastic method revisited, Ocean Model., 71, 2–12, https://doi.org/10.1016/j.ocemod.2013.05.013, 2013. 
Download
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.