Articles | Volume 16, issue 2
https://doi.org/10.5194/tc-16-625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-625-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sebastian Buchelt
CORRESPONDING AUTHOR
Department Physical Geography, Institute of Geography and Geology, University of Würzburg, 97074 Würzburg, Germany
Kirstine Skov
Department of Bioscience, Arctic Research Center, Aarhus University, 4000 Roskilde, Denmark
Kerstin Krøier Rasmussen
Asiaq, Nuuk, Greenland
Tobias Ullmann
Department Physical Geography, Institute of Geography and Geology, University of Würzburg, 97074 Würzburg, Germany
Related authors
Julius Kunz, Sebastian Buchelt, Tim Wiegand, Tobias Ullmann, and Christof Kneisel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1671, https://doi.org/10.5194/egusphere-2025-1671, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Glacier-permafrost interactions in Alpine environments influence geomorphological processes, making it essential to understand the relationship between subsurface structures and surface morphodynamics for predicting landscape evolution under climate change. This study uses applied geophysics and remote sensing methods to investigate this relationship and to reveal the distribution of different ground ice types, as well as the related surface morphodynamics in two alpine glacier forefields.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Dilara Kim, Enrico Mattea, Mattia Callegari, Tomas Saks, Ruslan Kenzhebayev, Erlan Azisov, Tobias Ullmann, Martin Hoelzle, and Martina Barandun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3978, https://doi.org/10.5194/egusphere-2025-3978, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigated how the snowline changed on four glaciers in the Pamir and Tien Shan mountain ranges in Central Asia. For this we developed a new method of combining different types of satellite images. This detailed record of snowlines shows for the first time how glaciers are responding to climate change during the dry season on almost daily scale. Our results help to understand better when and how much meltwater stored in glaciers can be used for drinking water by people living downstream.
Julian Fäth, John Friesen, Andrea Sofia Garcia de León, Julia Rieder, Christian Schäfer, Tobias Leichtle, Tobias Ullmann, and Hannes Taubenböck
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 267–273, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-267-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-267-2025, 2025
Julius Kunz, Sebastian Buchelt, Tim Wiegand, Tobias Ullmann, and Christof Kneisel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1671, https://doi.org/10.5194/egusphere-2025-1671, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Glacier-permafrost interactions in Alpine environments influence geomorphological processes, making it essential to understand the relationship between subsurface structures and surface morphodynamics for predicting landscape evolution under climate change. This study uses applied geophysics and remote sensing methods to investigate this relationship and to reveal the distribution of different ground ice types, as well as the related surface morphodynamics in two alpine glacier forefields.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Tobias Ullmann, Eric Möller, Roland Baumhauer, Eva Lange-Athinodorou, and Julia Meister
E&G Quaternary Sci. J., 71, 243–247, https://doi.org/10.5194/egqsj-71-243-2022, https://doi.org/10.5194/egqsj-71-243-2022, 2022
Short summary
Short summary
In this contribution we highlight as an example the application of a freely available tool for the Google Earth Engine. The software allows cloud-free satellite images to be processed. We show processing examples for the Nile Delta (Egypt) and how the remote sensing images are used to find hints of buried landforms, such as former river branches of the Nile.
Julia Meister, Eva Lange-Athinodorou, and Tobias Ullmann
E&G Quaternary Sci. J., 70, 187–190, https://doi.org/10.5194/egqsj-70-187-2021, https://doi.org/10.5194/egqsj-70-187-2021, 2021
Short summary
Short summary
This is the preface to the special issue "Geoarchaeology of the Nile Delta: Current Research and Future Prospects", which brings together geoarchaeological case studies from different regions of the Nile Delta.
Tobias Ullmann, Leon Nill, Robert Schiestl, Julian Trappe, Eva Lange-Athinodorou, Roland Baumhauer, and Julia Meister
E&G Quaternary Sci. J., 69, 225–245, https://doi.org/10.5194/egqsj-69-225-2020, https://doi.org/10.5194/egqsj-69-225-2020, 2020
Short summary
Short summary
The contribution highlights the use of Landsat archive data (1985–2019) for the detection of surface anomalies potentially related to buried near-surface paleogeomorphological deposits in the Nile Delta (Egypt). The analyses of selected spectral-temporal metrics showed several anomalies in the immediate surroundings of Pleistocene sand hills (geziras) and settlement mounds (tells) of the eastern Delta, which allowed mapping of the potential near-surface continuation.
Cited articles
Abermann, J., Eckerstorfer, M., Malnes, E., and Hansen, B. U.: A large wet snow
avalanche cycle in West Greenland quantified using remote sensing and in situ
observations, Nat. Hazards, 97, 517–534, 2019. a
Abermann, J., Langley, K., Myreng, S. M., Rasmussen, K., and Petersen, D.: Heterogeneous timing of freshwater input into Kobbefjord, a low-arctic fjord in Greenland, Hydrol. Process., 35, e14413, https://doi.org/10.1002/hyp.14413, 2021. a, b
Arslan, A., Tanis, C., Metsämäki, S., Aurela, M., Böttcher, K., Linkosalmi,
M., and Peltoniemi, M.: Automated webcam monitoring of fractional snow cover
in northern boreal conditions, Geosciences, 7, 55, https://doi.org/10.3390/geosciences7030055, 2017. a
Assmann, J. J., Myers-Smith, I. H., Phillimore, A. B., Bjorkman, A. D., Ennos,
R. E., Prevéy, J. S., Henry, G. H., Schmidt, N. M., and Hollister, R. D.:
Local snow melt and temperature – but not regional sea ice–explain
variation in spring phenology in coastal Arctic tundra, Glob. Change
Biol., 25, 2258–2274, https://doi.org/10.1111/gcb.14639, 2019. a, b
Bair, E. H., Rittger, K., Davis, R. E., Painter, T. H., and Dozier, J.:
Validating reconstruction of snow water equivalent in California's Sierra
Nevada using measurements from the NASA Airborne Snow Observatory, Water
Resour. Res., 52, 8437–8460,
https://doi.org/10.1002/2016WR018704, 2016. a
Bay, C., Aastrup, P., and Nymand, J.: The NERO line, A vegetation transect in
Kobbefjord, West Greenland, technical report, National Enviromental Research Institute, Aarhus University, Denmark, 40 pp., ISBN 978-87-7073-070-9, available at: https://www.dmu.dk/Pub/FR693.pdf (last access: 25 July 2021), 2008. a
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M.,
Parmentier, F.-J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky,
V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N.,
Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen,
M. S.: Key indicators of Arctic climate change: 1971–2017, Environ.
Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019. a, b
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011. a
Buchelt, S.: georef_webcam V.1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.3899960, 2020. a
Candela, S. G., Howat, I., Noh, M.-J., Porter, C. C., and Morin, P. J.:
ArcticDEM Validation and Accuracy Assessment, in: AGU Fall
Meeting Abstracts, New Orleans, Louisiana, US, 11–15 December 2017, available at: https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/240260 (last access: 12 August 2021), 2017. a
Corripio, J. G.: Snow surface albedo estimation using terrestrial photography,
International J. Remote Sens., 25, 5705–5729,
https://doi.org/10.1080/01431160410001709002, 2004. a
Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S.: Remote sensing of snow
– a review of available methods, Int. J. Remote Sens.,
33, 4094–4134, https://doi.org/10.1080/01431161.2011.640964, 2012. a, b, c
Dong, C.: Remote sensing, hydrological modeling and in situ observations in
snow cover research: A review, J. Hydrol., 561, 573–583,
https://doi.org/10.1016/j.jhydrol.2018.04.027, 2018. a
Elberling, B., Tamstorf, M. P., Michelsen, A., Arndal, M. F., Sigsgaard, C.,
Illeris, L., Bay, C., Hansen, B. U., Christensen, T. R., Hansen, E. S.,
Jakobsen, B. H., and Beyens, L.: Soil and Plant
Community – Characteristics and Dynamics at Zackenberg, in:
High-Arctic Ecosystem Dynamics in a Changing Climate,
Adv. Ecol. Res., 40, pp. 223–248, https://doi.org/10.1016/S0065-2504(07)00010-4, 2008. a, b, c, d
ESA: Sentinel-1: Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services, Tech. Rep., edited by: Fletcher, K., ESA Communications,
ESA SP-1322/1, ISBN 978-92-9221-418-0, available at: https://earth.esa.int/eogateway/documents/20142/0/Sentinel-1-ESA's-Radar-Observatory-Mission-for-GMES-Operational-Services.pdf (last access: 6 June 2021), 2012. a
ESA: Observation Scenario Archive, European Space Agency, available at:
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario/archive, last access: 8 February 2020. a
Farinotti, D., Magnusson, J., Huss, M., and Bauder, A.: Snow accumulation
distribution inferred from time-lapse photography and simple modelling,
Hydrol. Process., 24, 2087–2097, https://doi.org/10.1002/hyp.7629, 2010. a, b
Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data, Earth Syst. Sci. Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, 2019. a
GCOS-WMO: Essential Climate Variables, Global Climate Observing System – World Meteorological
Organization, available at:
https://gcos.wmo.int/en/essential-climate-variables, last access: 9 March 2020. a
Girona-Mata, M., Miles, E. S., Ragettli, S., and Pellicciotti, F.:
High-resolution snowline delineation from Landsat imagery to infer snow
cover controls in a Himalayan catchment, Water Resour. Res., 55,
6754–6772, 2019. a
Hansen, B. U., Sigsgaard, C., Rasmussen, L., Cappelen, J., Hinkler, J.,
Mernild, S. H., Petersen, D., Tamstorf, M. P., Rasch, M., and Hasholt, B.:
Present-Day Climate at Zackenberg, in: High-Arctic Ecosystem
Dynamics in a Changing Climate, Adv.
Ecol. Res., 40, 111–149, https://doi.org/10.1016/S0065-2504(07)00006-2, 2008. a, b
Hinkler, J., Hansen, B. U., Tamstorf, M. P., Sigsgaard, C., and Petersen, D.:
Snow and Snow-Cover in Central Northeast Greenland, in:
High-Arctic Ecosystem Dynamics in a Changing Climate, Adv. Ecol. Res., 40, 175–195, https://doi.org/10.1016/S0065-2504(07)00008-6, 2008. a
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y.,
Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U., Morin,
S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., The
Intergovernmental Panel on Climate Change (IPCC), Switzerland, 131–202, available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/06_SROCC_Ch02_FINAL.pdf (last access: 12 August 2021),
2019. a, b
Härer, S., Bernhardt, M., and Schulz, K.: PRACTISE – Photo Rectification And ClassificaTIon SoftwarE (V.2.1), Geosci. Model Dev., 9, 307–321, https://doi.org/10.5194/gmd-9-307-2016, 2016. a
Ide, R. and Oguma, H.: A cost-effective monitoring method using digital
time-lapse cameras for detecting temporal and spatial variations of snowmelt
and vegetation phenology in alpine ecosystems, Ecol. Inform., 16, 25–34, https://doi.org/10.1016/j.ecoinf.2013.04.003, 2013. a, b, c
Kankaanpää, T., Skov, K., Abrego, N., Lund, M., Schmidt, N. M., and Roslin,
T.: Spatiotemporal snowmelt patterns within a high Arctic landscape, with
implications for flora and fauna, Arct. Antarct. Alp. Res., 50,
e1415624, https://doi.org/10.1080/15230430.2017.1415624, 2018. a, b
Kepski, D., Luks, B., Migała, K., Wawrzyniak, T., Westermann, S., and Wojtuń,
B.: Terrestrial Remote Sensing of Snowmelt in a Diverse
High-Arctic Tundra Environment Using Time-Lapse Imagery,
Remote Sensing, 9, 733, https://doi.org/10.3390/rs9070733, 2017. a, b, c
Kerr, T., Clark, M., Hendrikx, J., and Anderson, B.: Snow distribution in a
steep mid-latitude alpine catchment, Adv. Water Resour., 55, 17–24, https://doi.org/10.1016/j.advwatres.2012.12.010, 2013. a
Koskinen, J. T., Pulliainen, J. T., Luojus, K. P., and Takala, M.: Monitoring
of snow-cover properties during the spring melting period in forested areas, IEEE T. Geosci. Remote, 48, 50–58, 2009. a
Lehning, M., Löwe, H., Ryser, M., and Raderschall, N.: Inhomogeneous
precipitation distribution and snow transport in steep terrain, Water
Resour. Res., 44, W07404, https://doi.org/10.1029/2007WR006545, 2008. a
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., and
others: Snow depth variability in the Northern Hemisphere mountains
observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019. a, b, c, d
Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, G.: Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022. a
Luojus, K. P., Pulliainen, J. T., Metsamaki, S., and Hallikainen, M. T.:
Accuracy assessment of SAR data-based snow-covered area estimation method,
IEEE T. Geosci. Remote, 44, 277–287, 2006. a
López-Blanco, E., Jackowicz-Korczynski, M., Mastepanov, M., Skov, K.,
Westergaard-Nielsen, A., Williams, M., and Christensen, T. R.: Multi-year
data-model evaluation reveals the importance of nutrient availability over
climate in arctic ecosystem C dynamics, Environ. Res. Lett., 15,
094007, https://doi.org/10.1088/1748-9326/ab865b, 2020. a, b, c
Marin, C., Bertoldi, G., Premier, V., Callegari, M., Brida, C., Hürkamp, K., Tschiersch, J., Zebisch, M., and Notarnicola, C.: Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions, The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v
Meddens, A. J., Vierling, L. A., Eitel, J. U., Boelman, N. T., Jennewein, J.,
and Maguire, A.: Characterizing and evaluating the Arctic Digital
Elevation Model product with LiDAR data for spatial modeling, in: 2017
ABoVE Science Team Meeting, Colorado, US, 17–20 January 2017, available at: https://above.nasa.gov/meeting_jan2017/docs/posters/Meddens_eitel_boelman_astm3_poster.pdf (last access: 12 August 2021),
2017. a
Meltofte, H. and Rasch, M.: The Study Area at Zackenberg, in:
High-Arctic Ecosystem Dynamics in a Changing Climate, Adv. Ecol. Res., 40, 101–110, https://doi.org/10.1016/S0065-2504(07)00005-0, 2008. a
Meredith, M., Sommerkorn, M., Cassota, S., Derksen, C., Ekaykin, A., Hollowed,
A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C.,
Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Intergovernmental Panel on Climate Change (IPCC), Switzerland, 203–320, available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf (last access: 12 August 2021),
2019. a, b
Mernild, S. H., Liston, G. E., and Hasholt, B.: Snow-distribution and melt
modelling for glaciers in Zackenberg river drainage basin, north-eastern
Greenland, Hydrol. Process., 21,
3249–3263, 2007. a
Molotch, N. P. and Margulis, S. A.: Estimating the distribution of snow water
equivalent using remotely sensed snow cover data and a spatially distributed
snowmelt model: A multi-resolution, multi-sensor comparison, Adv.
Water Resour., 31, 1503–1514,
https://doi.org/10.1016/j.advwatres.2008.07.017, 2008. a
Mott, R., Egli, L., Grünewald, T., Dawes, N., Manes, C., Bavay, M., and Lehning, M.: Micrometeorological processes driving snow ablation in an Alpine catchment, The Cryosphere, 5, 1083–1098, https://doi.org/10.5194/tc-5-1083-2011, 2011. a
Mott, R., Gromke, C., Grünewald, T., and Lehning, M.: Relative importance of
advective heat transport and boundary layer decoupling in the melt dynamics
of a patchy snow cover, Adv. Water Resour., 55, 88–97,
https://doi.org/10.1016/j.advwatres.2012.03.001, 2013. a
Mott, R., Vionnet, V., and Grünewald, T.: The seasonal snow cover dynamics:
review on wind-driven coupling processes, Front. Earth Sci., 6, 197, https://doi.org/10.3389/feart.2018.00197, 2018. a, b
Myreng, S. M., Rasmussen, K. K., and Hass, A. E.: NuukBasic Snow Survey 2020, Data
collection, post processing and results, technical report, Asiaq-Greenland Survey, Nuuk, Greenland, 31 pp.,
2020. a
Nagler, T., Rott, H., Ossowska, J., Schwaizer, G., Small, D., Malnes, E., Luojus, K., Metsämäki, S., and Pinnock, S.: Snow Cover Monitoring by Synergistic Use of Sentinel-
3 Slstr and Sentinel-L Sar Data, in: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–17 July 2018, Int. Geosci. Remote Se., 8727–8730, https://doi.org/10.1109/IGARSS.2018.8518203, 2018. a, b
Niittynen, P., Heikkinen, R. K., and Luoto, M.: Snow cover is a neglected
driver of Arctic biodiversity loss, Nat. Clim. Change, 8, 997–1001, 2018. a
Noh, M.-J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation
at high latitudes: Surface Extraction with TIN-based Search-space
Minimization (SETSM) validation and demonstration over glaciated regions,
GISci. Remote Sens., 52, 198–217,
https://doi.org/10.1080/15481603.2015.1008621, 2015. a
Pedersen, S. H., Tamstorf, M. P., Abermann, J., Westergaard-Nielsen, A., Lund,
M., Skov, K., Sigsgaard, C., Mylius, M. R., Hansen, B. U., Liston, G. E., and
Schmidt, N. M.: Spatiotemporal Characteristics of Seasonal Snow Cover
in Northeast Greenland from in Situ Observations, Arct. Antarct.
Alp. Res., 48, 653–671, https://doi.org/10.1657/AAAR0016-028,
2016. a, b, c, d
Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Abermann, J., Lund, M., and
Schmidt, N. M.: Quantifying snow controls on vegetation greenness, Ecosphere,
9, e02309, https://doi.org/10.1002/ecs2.2309, 2018. a, b, c, d
Piazzi, G., Tanis, C. M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A.,
Takala, M., Akyürek, Z., Gabellani, S., and Arslan, A. N.: Cross-Country
Assessment of H-SAF Snow Products by Sentinel-2 Imagery
Validated against In-Situ Observations and Webcam Photography,
Geosciences, 9, 129, https://doi.org/10.3390/geosciences9030129, 2019. a
Planet Team: Planet Application Program Interface: In Space for
Life on Earth, Planet [data set], available at: http://www.planet.com,
last access: 12 June 2021. a
Polar Geospatial Center: Public HTTP Data Repository, Polar Geospatial Center [data set], available at:
http://data.pgc.umn.edu/elev/dem/setsm/ArcticDEM/, last
access: 8 June 2021. a
Portenier, C., Hüsler, F., Härer, S., and Wunderle, S.: Towards a webcam-based snow cover monitoring network: methodology and evaluation, The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, 2020. a, b
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey,
S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier,
M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, Michael, J.,
Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, V1, Havard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a, b, c, d
Rasmussen, K. K., Christensen, L. H., Iversen, K. M., Hill, K., Rasch, M., Rudd, D., Burup, M., Westh, S. M., Pedersen, S. H., Christensen, T. R., Lund, M.,
Mastepanov, M., Tamstorf, M. P., Westergaard-Nielsen, A., Madsen, M.,
Sigsgaard, C., Pedersen, M. R., Ström, L., Parmentier, F.-J., Elberling, B., and Hansen, B. U.: GeoBasis – Guidelines and sampling procedures for the
geographical monitoring programme of Nuuk Basic in Kobbefjord, in: Nuuk Ecological Research Operations, edited by: Rasmussen, K. K., Asiaq-Greenland Survey, Nuuk, Greenland, 61 pp., available at: https://g-e-m.dk/fileadmin/g-e-m/GEM/GeoBasis_Manual_Web_2020_Nuuk_v2.pdf (last access: 15 July 2021), 2020. a, b
Richards, J. A.: Remote sensing with imaging radar, in: Signals and Communication Technology, edn. number 1, vol. 1, Springer, 361 pp., ISBN 978-3-642-02020-9, https://doi.org/10.1007/978-3-642-02020-9, 2009. a
Rittger, K., Bair, E. H., Kahl, A., and Dozier, J.: Spatial estimates of snow
water equivalent from reconstruction, Adv. Water Resour., 94,
345–363, https://doi.org/10.1016/j.advwatres.2016.05.015, 2016. a
Salvatori, R., Plini, P., Giusto, M., Valt, M., Salzano, R., Montagnoli, M.,
Cagnati, A., Crepaz, G., and Sigismondi, D.: Snow cover monitoring with
images from digital camera systems, Ital. J. Remote Sens., 43, 137–145,
https://doi.org/10.5721/ItJRS201143211, 2011. a
Skov, K., Sigsgaard, C., Mylius, M. R., and Lund, M.: GeoBasis – Guidelines
and sampling procedures for the geographical monitoring programme of
Zackenberg Basic, in: Zackenberg Ecological Research
Operations, edited by: Skov, K., Department of Bioscience, Aarhus University and Department of Geosciences and Natural Resource
Management, University of Copenhagen, 186 pp., available at: https://g-e-m.dk/fileadmin/g-e-m/Zackenberg/GeoBasis_Manual_Comp2019.pdf (last access: 15 July 2021), 2019. a, b, c, d, e
Small, D.: Flattening gamma: Radiometric terrain correction for SAR
imagery, IEEE T. Geosci. Remote, 49, 3081–3093, 2011. a
Small, D., Rohner, C., Miranda, N., Rüetschi, M., and Schaepman, M. E.:
Wide-Area Analysis-Ready Radar Backscatter Composites, IEEE T.
Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3055562,
2021. a
Snapir, B., Momblanch, A., Jain, S. K., Waine, T. W., and Holman, I. P.: A
method for monthly mapping of wet and dry snow using Sentinel-1 and
MODIS: Application to a Himalayan river basin, Int. J.
Appl. Earth Obs., 74, 222–230,
https://doi.org/10.1016/j.jag.2018.09.011, 2019. a, b, c
Solberg, R., Koren, H., Amlien, J., Malnes, E., Schuler, D. V., and Orthe,
N. K.: The development of new algorithms for remote sensing of snow
conditions based on data from the catchment of Øvre Heimdalsvatn and the
vicinity, in: The subalpine lake ecosystem, Øvre Heimdalsvatn, and its
catchment: local and global changes over the last 50 years, edited by: Brittain, J. E. and Borgstrøm, R., Springer, 35–46, ISBN 978-90-481-9388-2, https://doi.org/10.1007/978-90-481-9388-2_4, 2010. a
Storvold, R. and Malnes, E.: Snow covered area retrieval using Envisat ASAR wideswath in mountainous areas, IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, 3, 1845–1848, https://doi.org/10.1109/IGARSS.2004.1370697, 2004. a, b
Thakur, P. K., Garg, V., Nikam, B. R., Singh, S., Jasmine, Chouksey, A., Dhote, P. R., Aggarwal, S. P., Chauhan, P., and Kumar, A. S.: Snow Cover and Glacier
Dynamics Study Using C- and L-Banc SAR Datasets in Parts of
North West Himalaya, International Archives of the Photogrammetry,
Remote Sensing & Spatial Information Sciences, XLII-5, 375–382, https://doi.org/10.5194/isprs-archives-XLII-5-375-2018, 2018. a, b
Thakur, P. K., Aggarwal, S., Arun, G., Sood, S., Kumar, A. S., Mani, S., and
Dobhal, D.: Estimation of snow cover area, snow physical properties and
glacier classification in parts of Western Himalayas using C-Band
SAR Data, J. Indian Soc. Remote, 45, 525–539, 2017. a
Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: A Combination of
PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for
Detecting Wet and Dry Snow Cover in Mountainous Areas, Remote
Sensing, 11, 1904, https://doi.org/10.3390/rs11161904, 2019a. a, b
Tsai, Y.-L. S., Dietz, A., Oppelt, N., and Kuenzer, C.: Wet and Dry Snow
Detection Using Sentinel-1 SAR Data for Mountainous Areas with
a Machine Learning Technique, Remote Sensing, 11, 895, https://doi.org/10.3390/rs11080895,
2019c. a, b, c, d
Tsai, Y.-L. S., Klein, I., Dietz, A., and Oppelt, N.: Monitoring
Large-Scale Inland Water Dynamics by Fusing Sentinel-1 SAR
and Sentinel-3 Altimetry Data and by Analyzing Causal Effects of
Snowmelt, Remote Sensing, 12, 3896, https://doi.org/10.3390/rs12233896, 2020. a, b, c
Týč, M. and Gohlke, C.: imreg_dft, available at:
https://imreg-dft.readthedocs.io/en/latest/ (last access: 15 June 2021), 2014. a
Westergaard-Nielsen, A., Lund, M., Pedersen, S. H., Schmidt, N. M., Klosterman,
S., Abermann, J., and Hansen, B. U.: Transitions in high-Arctic vegetation
growth patterns and ecosystem productivity tracked with automated cameras
from 2000 to 2013, Ambio, 46, 39–52, https://doi.org/10.1007/s13280-016-0864-8, 2017. a, b, c, d, e, f, g
Young, K. L., Brown, L., and Labine, C.: Snow cover variability at Polar
Bear Pass, Nunavut, Arctic Science, 4, 669–690, 2018. a
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic...