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Abstract. Snow cover (SC) and timing of snowmelt are
key regulators of a wide range of Arctic ecosystem func-
tions. Both are strongly influenced by the amplified Arc-
tic warming and essential variables to understand environ-
mental changes and their dynamics. This study evaluates the
potential of Sentinel-1 (S-1) synthetic aperture radar (SAR)
time series for monitoring SC depletion and snowmelt with
high spatiotemporal resolution to capture their understud-
ied small-scale heterogeneity. We use 97 dual-polarized S-
1 SAR images acquired over northeastern Greenland and
94 over southwestern Greenland in the interferometric wide
swath mode from the years 2017 and 2018. Comparison
of S-1 intensity against SC fraction maps derived from or-
thorectified terrestrial time-lapse imagery indicates that SAR
backscatter can increase before a decrease in SC fraction
is observed. Hence, the increase in backscatter is related to
changing snowpack properties during the runoff phase as
well as decreasing SC fraction. We here present a novel em-
pirical approach based on the temporal evolution of the SAR
signal to identify start of runoff (SOR), end of snow cover
(EOS) and SC extent for each S-1 observation date during
melt using backscatter thresholds as well as the derivative.
Comparison of SC with orthorectified time-lapse imagery in-
dicates that HV polarization outperforms HH when using a
global threshold. The derivative avoids manual selection of
thresholds and adapts to different environmental settings and
seasonal conditions. With a global configuration (threshold:
4 dB; polarization: HV) as well as with the derivative, the
overall accuracy of SC maps was in all cases above 75 % and

in more than half of cases above 90 %. Based on the physical
principle of SAR backscatter during snowmelt, our approach
is expected to work well in other low-vegetation areas and,
hence, could support large-scale SC monitoring at high spa-
tiotemporal resolution (20 m, 6 d) with high accuracy.

1 Introduction

1.1 Snow in Arctic environments

Snow cover (SC) has been identified as an essential climate
variable (GCOS-WMO, 2020) covering about 40 % to 50 %
of the Northern Hemisphere during winter (Dietz et al., 2012;
Rees, 2005; Tsai et al., 2019b). It plays an important role for
various components of the Earth system like hydrology, ecol-
ogy, and climatology as well as global energy, water and car-
bon cycles due to the large seasonal variability in snow extent
on the Northern Hemisphere (between 4 to 46 million square
kilometers in summer and winter, respectively Rees, 2005)
and the specific physical properties (Arslan et al., 2017; Box
et al., 2019; Dietz et al., 2012; Pedersen et al., 2018). Its high
albedo (0.8 to 0.9) compared to snow-free coverages strongly
influences the energy balance. Moreover, its insulating prop-
erties limit heat exchange between soil and atmosphere and,
thereby, regulate the seasonal active layer thickness (Rees,
2005; Tsai et al., 2019b). The snowpack plays an important
role for water storage and supply (Dietz et al., 2012; Marin
et al., 2020), and it is a key factor for Arctic phenology, ecol-
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ogy and the distribution of flora (Assmann et al., 2019; Ide
and Oguma, 2013; Kepski et al., 2017). On the one hand, the
thermal insulation protects plants from frost damages, and
the snowpack provides water and, with it, nutrients for the
plants. Moreover, SC blocks the sunlight needed for photo-
synthetic activity. Further, the metabolic activity of plants is
directly linked to the timing of snowmelt (Assmann et al.,
2019; Ide and Oguma, 2013; Kankaanpää et al., 2018; Kep-
ski et al., 2017; Pedersen et al., 2018). However, the tim-
ing of snowmelt is highly variable in space and time and in-
fluenced by snow accumulation, redistribution and ablation.
The former two depend on the climatic conditions, e.g., lati-
tudinal and altitudinal position and continentality, as well as
on the local topography that affects transport of snow due
to wind and gravitational redistribution. Thereby, snow is
shifted from windward slopes, ridges, and steep and high ter-
rain to wind-sheltered leeward slopes, sinks and low-lying
terrain (Elberling et al., 2008; Farinotti et al., 2010; Lehning
et al., 2008; Mott et al., 2018; Pedersen et al., 2016). There-
fore, the redistribution effects generate a similar pattern of
snow accumulation at the end of the winter primarily driven
by the local topography, while the overall amount of snow
depends on the amount of solid winter precipitation (Buus-
Hinkler et al., 2006; Farinotti et al., 2010; Ide and Oguma,
2013; Kepski et al., 2017; Pedersen et al., 2018). Ablation
is driven by temperature, turbulent fluxes and solar radiation
(Mott et al., 2011, 2013), which, in combination with redis-
tribution, leads to a high small-scale heterogeneity of SC dur-
ing the melt season (Mott et al., 2018). Knowledge about
SC is important because it is decreasing with rising tem-
peratures, resulting in a negative self-strengthening feedback
between temperature and SC, which might partially drive
the Arctic amplification (Hock et al., 2019; Meredith et al.,
2019; Rees, 2005). The decrease in SC duration and extent
has been documented for the Northern Hemisphere over the
last 40 years (Box et al., 2019; Brown and Robinson, 2011;
Meredith et al., 2019) and could have a negative impact on
species richness (Niittynen et al., 2018), but changes on a lo-
cal scale do not indicate clear trends (e.g., Pedersen et al.,
2016; Young et al., 2018). Moreover, Hock et al. (2019) state
that knowledge about SC distribution is still limited, espe-
cially at small spatiotemporal scales.

1.2 SAR remote sensing of snow

As such, SC monitoring requires remote sensing products
at very high spatial and temporal resolution. Until recently,
freely available synthetic aperture radar (SAR) data could not
fulfill these requirements; however, as the Sentinel-1 (S-1)
mission with its twin satellites provides freely available C-
band SAR imagery at a spatial resolution of 10–20 m and
with a 6 d repeat cycle, SAR data have become an attractive
alternative (ESA, 2012; Marin et al., 2020). While ground-
based methods lack in spatial coverage, established SC map-
ping methods based on optical spaceborne earth observation

suffer from reduced temporal resolution due to cloud cov-
erage and sun illumination, e.g., during polar night (Dong,
2018; Portenier et al., 2020; Tsai et al., 2019b). SAR re-
mote sensing can overcome these limitations, as it operates
independent of sun illumination and atmospheric conditions
(Marin et al., 2020; Tsai et al., 2019b; Ulaby et al., 2014).
Previous studies applying SAR data have indicated their abil-
ity to detect wet snow, as liquid water in the snowpack de-
creases the dielectric constant, leading to a higher absorp-
tion coefficient (Marin et al., 2020; Nagler and Rott, 2000;
Ulaby et al., 2014). Hereby, the penetration depth decreases
to a few centimeters, and most of the signal is absorbed or
reflected by the uppermost parts of the snowpack, resulting
in a strong decrease in the backscatter (Marin et al., 2020;
Ulaby et al., 2014). This effect is the basis for the bi-temporal
approach referred to as Nagler’s method (Nagler and Rott,
2000), which compares backscatter during snowmelt with
reference satellite imagery acquired during snow-free or dry-
snow conditions (Nagler et al., 2016, 2018; Nagler and Rott,
2000; Snapir et al., 2019). However, this approach is only
able to detect wet snow. More advanced methods addition-
ally use digital elevation models (DEMs) (Nagler and Rott,
2000; Storvold and Malnes, 2004; Thakur et al., 2017) or op-
tical remote sensing data (Nagler et al., 2018; Snapir et al.,
2019; Thakur et al., 2018) to monitor dry snow. Nevertheless,
these approaches cannot cover the small-scale heterogeneity
of SC, because DEM-assisted approaches overestimate dry
snow in steep terrain, while the inclusion of optical remote
sensing data decreases the spatiotemporal resolution of the
product (Solberg et al., 2010; Storvold and Malnes, 2004;
Tsai et al., 2019b).

According to Tsai et al. (2019b), SAR time series have
rarely been investigated for SC mapping as most studies ap-
ply their method only on a few scenes and mostly for one
single year, hence not taking advantage of the abundant data
available. Only Tsai et al. (2019a, c) developed a SC mon-
itoring approach using the entire temporal information of a
S-1 SAR time series by incorporating interferometric, polari-
metric, and backscatter features as well as elevation and land
cover information into a supervised classification approach.
On the contrary, recent studies developed methods for snow
depth estimation (Lievens et al., 2019) and snowmelt phase
detection (Marin et al., 2020) based only on the distinct
seasonal SAR backscatter signal of snow described in the
following (Fig. 1): during winter, the liquid water content
is close to 0 %, and the snowpack is nearly transparent to
C-Band SAR, except for larger snowpacks (> 1 m), where
a sensitivity of C-band cross polarization is indicated by
Lievens et al. (2019, 2022). The returned signal is, therefore,
predominantly scattered from ground surface underneath the
snowpack with backscatter similar to snow-free conditions
(Marin et al., 2020; Nagler et al., 2016). With increasing
temperatures snow is wetting, leading to a strong decrease in
backscatter during the moistening and ripening phase (Marin
et al., 2020; Nagler et al., 2016; Rees, 2005). In the last phase
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Figure 1. Schematic illustration of the pixel-wise seasonal evolution of synthetic aperture radar (SAR) backscatter intensity above snow with
its phases of melt and relevant snow properties, i.e., liquid water content, runoff and snow cover fraction. This illustration (modified from
Tsai et al., 2020) is based on the findings of Marin et al. (2020) and Tsai et al. (2020) and shows the parameters used in this study: SOR –
start of runoff; SOD – start of snow cover fraction decrease which varies in time (indicated by the range of SOD and the different snow cover
fraction curves) depending on snow pack properties and melt rates; EOScam/S-1 – end of snow cover detected by camera/Sentinel-1; EOD –
end of snow cover fraction decrease. The understudied interaction between Sentinel-1 SAR backscatter and snow cover fraction during the
runoff phase and the potential of SAR time series to detect snow cover depletion during melt are investigated by this study.

of snowmelt, which is called runoff, backscattering increases
again until an intensity level comparable to snow-free ground
conditions is reached (Marin et al., 2020). This steady in-
crease is not fully understood yet, but three possible expla-
nation are described by Marin et al. (2020): (i) the increasing
surface roughness of the snowpack; (ii) an increased number
and size of intrusions like ice lenses or snow grains; (iii) sub-
pixel parts turning into a snow-free state, leading to patchy
SC towards the end of the melting period causing a mixed
pixel signal response (Marin et al., 2020).

We here propose a novel approach, which adapts Nagler’s
method (Nagler and Rott, 2000) to the seasonal evolution
of the SAR signal using thresholds based on the seasonal
minima of the SAR time series as well as the backscatter
derivative for fast, simple, but effective SC mapping during
snowmelt. With this new methodology, we can derive start
of runoff (SOR) (based on the method from Marin et al.,
2020), end of snow cover (EOS), the extent of end-of-season
SC and SC extent maps for each S-1 observation date dur-
ing melt. We validate EOS and SC derived from S-1 time
series (2017 and 2018) with a reference dataset, generated
from time-lapse photography available for Zackenberg Val-
ley (northeast Greenland) as well as Kobbefjord (also known
as Kangerluarsunnguaq Fjord, southwest Greenland), and as-
sess the interaction between SC fraction and backscatter in-
tensity in detail.

2 Study site and datasets

2.1 Study area

The Zackenberg (ZRA) and Kobbefjord (KRA) research ar-
eas are part of the Greenland Ecosystem Monitoring program
(GEM; https://www.g-e-m.dk, last access: 4 July 2021),
which has performed long-term monitoring of ecosystem
components since 1995 (ZRA) and 2007 (KRA). The ZRA is
located in high-Arctic northeast Greenland (Fig. 2a) approx.
40 km west of the outer coast and 70 km east of the inland
ice sheet (Meltofte and Rasch, 2008). ZRA covers most parts
of the Zackenberg Valley floor and the surrounding slopes
of Zackenberg Mountain (west) and Aucellabjerg (north and
east) (Fig. 2c). The mean annual temperature in the valley
is about −9 ◦C, and mean daily temperatures are usually
above 0 ◦C from early June until mid-September (Hansen
et al., 2008; Pedersen et al., 2018). The mean annual precip-
itation, with 80 % to 85 % falling as snow, is about 260 mm
but varies largely from year to year (150–400 mm) (Hansen
et al., 2008). Maximum snow depths vary also considerably
from year to year (0.4–1.4 m) (López-Blanco et al., 2020).
Glacial ice occurs mostly at higher altitudes (> 1000 m) due
to low precipitation (Mernild et al., 2007). The radiation bud-
get is dominated by polar night and day, which have a length
of 89 and 106 d, respectively (Pedersen et al., 2016). The
climate is rather continental with high temperature fluctua-
tions and low humidity due to the build-up of sea ice dur-
ing winter in the Young Sound (Westergaard-Nielsen et al.,
2017). The topographic setting and predominant northern
winds during winter cause similar patterns of snow accumu-
lation every year (Elberling et al., 2008; Hinkler et al., 2008;
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Kankaanpää et al., 2018; Pedersen et al., 2016). Vegetation
formations below 200 m a.s.l. are dominated by small shrubs
and grasses (Fig. 2e) (Elberling et al., 2008; Westergaard-
Nielsen et al., 2017). With increasing altitude, the percentage
of bare ground and rock increases, while above 600 m a.s.l.
only scarce vegetation is found (Buus-Hinkler et al., 2006;
Elberling et al., 2008). The transition from SC to snow-free
ground in ZRA begins in late May in years with low snow
accumulation but can be prolonged until early July in years
with high snow accumulation and even until late July in the
very extreme year of 2018 (López-Blanco et al., 2020).

The KRA is located in low-Arctic southwest Greenland
at the bottom of the 16 km long fjord Kangerluarsunnguaq
Fjord/Kobbefjord, approx. 20 km southeast of Greenland’s
capital, Nuuk (Fig. 2b). The KRA drainage area, which cov-
ers 32 km2, is characterized by three valleys surrounded by
steep mountains up to 1375 m (Fig. 2d). Three major lakes
(5 % of total area) dominate the valley system (Abermann
et al., 2021). The GEM ClimateBasis main weather station
(KOB) is located at the eastern end of the largest lake and
provides high-quality meteorological data. The mean annual
air temperature in KRA at KOB is −0.1 ◦C (2008–2020),
with the highest monthly temperatures in July (10.6 ◦C) and
the lowest in February (−8.6 ◦C). The mean annual precipita-
tion is around 830 mm and about one-third of it falls as snow
(Abermann et al., 2021). Both total annual precipitation and
maximum snow depths vary considerably from year to year
(470–1170 mm and 0.3–1.3 m, respectively), and the winters
are often characterized by shorter warmer periods causing
episodic snowmelt (Pedersen et al., 2015). The predominant
winter wind directions (eastern sector) and the topography
cause similar, yet highly heterogeneous, patterns of snow ac-
cumulation every year (Myreng et al., 2020). The transition
from snow-covered to snow-free ground in KRA normally
begins in late April or early May, and the lower elevated parts
of the valley system will usually be snow-free around the
beginning of June. The rapid snowmelt often concurs with
strong discharge peaks in the monitored rivers (Abermann
et al., 2019). The KRA valleys are dominated by dwarf shrub
heath, dry south-facing slopes and smaller fen areas (Bay
et al., 2008), whereas the steep mountain slopes and higher-
elevated areas are dominated by bare ground, snow patches,
rockslides and small hanging glaciers (Pedersen et al., 2015).

Physical snow properties (e.g., SC fraction using time-
lapse cameras) are measured regularly within the GeoBa-
sis program at both ZRA and KRA (Skov et al., 2019;
Westergaard-Nielsen et al., 2017; Rasmussen et al., 2020)
following generally the same protocols but being adapted to
local conditions and logistics.

2.2 Datasets

For this study, we investigated all S-1 single look complex
(SLC) data interferometric wide swath mode (IW) acquisi-
tions from the ascending orbit (relative orbit 74) over ZRA

and one descending orbit (relative orbit 54) over KRA be-
tween the 1 January 2017 and 31 December 2018 from the
European Space Agency (ESA) Copernicus Open Access
Hub (ESA, 2021) and the Alaska Satellite Facility (Alaska
Satellite Facility, 2021) at a repeat cycle of 6 d. As dual-
polarimetric mode (HH+HV) started being operational for
Zackenberg (orbit 74) only from 21 May 2017 onwards, all
previous acquisitions were neglected, leading to a limited
time series in 2017 (ESA, 2020). In total, 38 scenes in the
year 2017 and 59 scenes in the year 2018 were downloaded
for ZRA as well as 41 (2017) and 53 (2018) scenes for KRA.
The local acquisition time is 18:30 UTC in the afternoon in
ZRA and 6:45 in the morning (09:45 UTC) in KRA.

In ZRA, daily time-lapse imagery of the central part of the
Zackenberg Valley has been taken from the east-facing slope
of the Zackenberg Mountain at solar noon since 1997 (Skov
et al., 2019; Buus-Hinkler et al., 2006). The selected camera
field of view excludes distant ranges and close foreslopes. It
covers about 45 km2 of the valley floor and the west-facing
slopes of Aucellabjerg (see Fig. 2c, e). The time-lapse im-
agery from 2017 and 2018 was taken with a 10-megapixel
Canon EOS 1000D camera system and stored in a 24 bit JPG
format (Skov et al., 2019; Westergaard-Nielsen et al., 2017).
In KRA, daily images cover two lakes, the valley floor and
the surrounding slopes. The selected field of view excludes
hidden slopes in far range as well as the lake surface and
covers about 7 km2. Images are acquired by a 6-megapixel
HP Photosmart E427 camera system in JPG format (Ras-
mussen et al., 2020). We manually excluded images of bad
quality due to cloud cover, fog or rain prior to the process-
ing. In ZRA, 89 out of 137 images in 2017 and 91 out of
127 in 2018 were found useful (Fig. 3). In KRA, images be-
fore 1 May and after 30 September were also excluded due
to mountain shadow, but start-of-season SC extent was visu-
ally cross-checked to ensure the correct SC area is covered.
A total of 93 out of these 151 images in 2017 and 84 out of
153 images in 2018 were found useful (Fig. 3). The Green-
land Ecosystem Monitoring program GeoBasis (Greenland
Ecosystem Monitoring Secretariat, 2021) provides measures
on SC fraction in ZRA derived from the above-mentioned
camera (Skov et al., 2019; Westergaard-Nielsen et al., 2017),
which is used as additional validation of the reference SC
maps generated for this study.

Further, we used the ArcticDEM with a spatial resolu-
tion of 2 m (Porter et al., 2018; Noh and Howat, 2015; Polar
Geospatial Center, 2021) for the processing of the S-1 scenes
and the camera images, as it provides sufficiently high spa-
tial resolution and accuracy needed for the calibration and or-
thorectification (Candela et al., 2017; Meddens et al., 2017).
High-resolution optical data from PlanetScope (Planet Team,
2021) satellites with a spatial resolution of 3 m are addition-
ally used for the orthorectification process of the time-lapse
imagery. We selected for both sites a single cloud-free Plan-
etScope acquisition during the snowmelt season of 2018 with
many distinguishable snow patches and patterns for which a
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corresponding time-lapse camera image of good quality was
available. The used scene in ZRA (satellite IDs: 1008 and
1014) was acquired on 12 August 2018 at about 11:00 local
time. The scene for KRA (satellite ID: 0f2d) was acquired on
15 June 2018 13:00 UTC (10:00 local time).

3 Methodology

3.1 Sentinel-1 snowmelt and snow cover products

The processing of S-1 products followed the workflow devel-
oped in Ullmann et al. (2019): the scenes were processed in
IDL (version 8) and ENVI (version 5) using the functionali-
ties of the ESA SNAP software (version 7). The processing
included the application of the most recent orbit file, split
(ZRA: IW2, bursts 3 to 5; KRA: IW3, bursts 6 to 7), calibra-
tion to backscatter coefficient β0 and debursting. Thereafter,
multi-looking (three looks in range, one look in azimuth),
speckle filtering using a boxcar filter with a window size of
3 by 3 pixels and calibration to backscatter coefficient γ0 us-
ing the terrain-flattening approach similar to Small (2011)
(Small et al., 2021) with the ArcticDEM (Porter et al., 2018)
was applied. The data were terrain corrected using the range-
Doppler approach (Richards, 2009; Ulaby et al., 2014) and
the ArcticDEM (Porter et al., 2018). Areas of shadow and
layover were masked out. Datasets were processed to a spa-
tial resolution of 20 by 20 m, and all scenes were stacked
and resampled to a common grid using bi-linear interpola-
tion. The final product of S-1 preprocessing is the temporal
stack of γ0 backscatter intensities in decibel (dB) for both
HV and HH polarizations (Ullmann et al., 2019).

Our approach uses the γ0 backscatter intensity time se-
ries and a simple set of thresholds as input to (i) identify
day of year (DOY) of start of runoff (SOR) and end of
snow cover (EOS), (ii) detect start-of-season snow-free ar-
eas and end-of-season snow-covered patches, and (iii) derive
a SC extent map for each S-1 observation date during melt
(Fig. 4). The threshold setting is based on the characteris-
tic seasonal backscatter behavior above snow, which is de-
scribed by Marin et al. (2020) and Lievens et al. (2019) as a
strong decrease in intensity in early spring followed by an in-
crease in intensity during melt in late spring and summer. To
detect the seasonal development of intensities, we compute
the seasonal pixel-wise backscatter minimum min(γ0) during
the melt period (1 March–31 August) as an adaptive refer-
ence. Thereafter, SORS-1 is determined (Eq. 1) as the day of
year (DOY), where the backscatter intensity (γ0) reaches the
seasonal minimum min(γ0) (i.e., in accordance with runoff
phase detection of Marin et al., 2020):

SORS-1(x,y)=

{
DOY , if γ0(x,y,DOY)=min(γ0)

−1 , otherwise.
(1)

Following SORS-1, EOSS-1 is identified using two dif-
ferent approaches: the threshold-based approach or the

derivative-based approach. First, we describe the former:
EOSS-1 is determined as the DOY, where the backscatter ex-
ceeds the seasonal minimum min(γ0) by more than a user-
defined threshold t (Eq. 2). Two further conditions are ap-
plied to filter events of melting followed by a freeze-up of
the snowpack, as these events cause a similar temporal evo-
lution of the backscatter signal and, therefore, could lead to
false detection. (i) In order to filter short-term snowpack re-
freeze events during the melt, the exceeding of t must apply
for three consecutive acquisitions (Eq. 2). (ii) If backscatter
values with less than 2 dB difference to the seasonal mini-
mum are observed after a detected EOS and during early melt
season (before 1 July), the pixel is considered as wet snow
and a new EOS will be searched. Thereby, we filter early-
season short-term melt events followed by a refreeze of the
snowpack. A pixel is classified as start-of-season snow-free if
no distinct temporal signal is found and the backscatter does
not exceed the threshold t for three consecutive acquisitions
(Eq. 2).

EOSS-1(x,y)=
first DOY , where γ0(x,y,DOY)

>min(γ0)+ t

(three consecutive times)
start-of-season snow-free , otherwise

(2)

Besides this threshold-based approach, we also implement
an approach using the derivative of the backscatter time se-
ries to detect EOS. The derivative (1γ0_DOY(x,y)) is de-
fined as the difference of backscatter in dB between two ac-
quisitions (Eq. 3). We believe that the derivative will adapt
automatically to different environmental and seasonal condi-
tions and, hence, does not require an manual parametrization
of the threshold. As the derivative is more prone to speckle-
induced variations, we additionally filter the time series in
the temporal domain with a window of four acquisitions (one
before, two after). By using an equal number of images, we
reduce effects of systematic backscatter variations between
S-1A and B. We do not apply a spatial filter to keep the same
high spatial resolution as in the threshold approach.

1γ0(x,y,DOY)= γ0_filtered(x,y,DOY+1t)

− γ0_filtered(x,y,DOY) (3)

Using the filtered time series, we first exclude areas that
show less than 3 dB variation during the melt period (March–
August) and classify them as start-of-season snow-free as we
assume that such areas do not show a distinct backscatter be-
havior related to snowmelt. Then, EOSS-1 is determined as
the DOY, where the derivative is below 1 dB after the deriva-
tive has shown an increase larger than 1 dB (Eq. 4). If, there-
after, 1γ0_DOY(x,y) exceeds 1 dB at a higher backscatter
level than the previously detected EOS, EOSS-1 is reassigned
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Figure 2. (a, b) Overview of the Zackenberg/Kobbefjord study area and Sentinel-1 scene located in northeastern/southwestern Greenland
(see red dots in inlet of panel b). (c, d) Study sites of Zackenberg (c) and Kobbefjord (d) with camera field of view and location of time-lapse
camera (green dot) and Zackenberg research station (yellow dot) in panel (c). (e) Master image of time-lapse camera with used field of view
and location of Zackenberg research station (yellow dot). Background image from GeoBasis Zackenberg (Greenland Ecosystem Monitor-
ing Secretariat, 2021). (f) Master image of Kobbefjord study area. Background image from GeoBasis Kobbefjord (Greenland Ecosystem
Monitoring Secretariat, 2021).

Figure 3. Acquisition dates of available data: blue – Sentinel-1 (S-1); grey – camera time-lapse imagery excluded due to bad quality; orange
– used camera images; green – coinciding S-1 and camera dates, which were used for comparison and assessment of the products. The
developed approach also uses S-1 acquisitions before May and after October, but the acquisitions are not shown here for better visualization
of the relevant observation period.
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as DOY, where the derivative falls again below 1 dB.

EOSS-1(x,y)=
start-of-season snow-free , variation below 3 dB
first DOY , where 1γ0(x,y,DOY) < 1 dB

(after 1γ0(x,y,DOY) > 1dB)
start-of-season snow-free , otherwise

(4)

Due to the high-Arctic environment, end-of-season snow-
covered patches can occur. However, the algorithms pre-
sented in Eqs. (2) and (4) to find EOS can only detect the end
of the wet-snow status but cannot distinguish whether the sta-
tus changes to a snow-free or back to a dry-snow state. There-
fore, we implement an additional condition to identify end-
of-season snow-covered patches based on the following as-
sumption: end-of-season snow cover has undergone several
melt and refreeze cycles and has strong structural similarity
to firn which contains large snow grains and ice lenses that
act as targets causing strong backscattering, especially vol-
ume scattering (Marin et al., 2020; Nagler and Rott, 2000).
Therefore, the HV backscatter in autumn and early winter,
once the snowpack is completely refrozen, should be much
higher than in areas with snow completely melted and now
covered by new snow with small grains. Visual assessment
of the HV backscatter confirms that this effect is occurring.
Accordingly, pixels are classified as end-of-season snow-
covered if their maximum HV backscattering max(γ0_HV) in
autumn (1 October–31 December) exceeds min(γ0) by 9 dB
and the detected EOS is after 15 August (i.e., DOY 227)
(Eq. 5). The threshold of 9 dB is set in accordance with our
observations that HV snow-free summer intensity does not
exceed the seasonal minimum by more than this value but
might not apply for other sites.

EOS_finalS-1(x,y)=end-of-season snow-covered , if
(

max(γ0_HV) > (min(γ0)+ 9) and
EOS(S-1)(x,y) > 227

)
EOS(S-1)(x,y) , otherwise

(5)

As a final step, the following Eq. (6) is used to derive SC
maps from the EOS, the start-of-season snow-free and the
end-of-season snow-covered products:

SC_DOYS-1(x,y)=
0 (no snow) , if DOY≥ EOS_finalS-1(x,y)

or start-of-season snow-free
1 (snow-covered) , if DOY< EOS_finalS-1(x,y)

or end-of-season snow-covered

. (6)

The resulting binary SC map at a specific DOY is 1 (snow-
covered) or 0 (no snow) if the DOY is before or after EOS,
respectively. Optionally, further information on the snow sta-
tus could be derived from SOR/EOS and delineate where SC
is contributing to runoff or not. For the further assessment
of the S-1 SC products, this separation is neglected, as the
terrestrial camera is not able to detect SOR.

3.2 Time-lapse imagery snow cover products

Orthorectified SC maps are generated from time-lapse cam-
era images to validate the S-1 EOS and SC products (Fig. 5).
(i) All time-lapse camera images are aligned to the mas-
ter image (12 August 2018 – ZRA; 15 June 2018 – KRA)
using discrete Fourier transformation (implemented in the
Python package imreg_dft (Týč and Gohlke, 2014)). (ii) The
stacked images are classified using the histogram minimum
thresholding approach of Salvatori et al. (2011) in the fol-
lowing way: all pixels above and below the minimum of a
bimodal histogram distribution are assigned as snow-covered
and no snow, respectively. However, we use the brightness
histogram instead of the blue band to avoid misclassifica-
tion of lakes and ponds reflecting the sky (e.g., Westergaard-
Nielsen et al., 2017). (iii) The master image is then orthorec-
tified using the Python package georef_webcam (Buchelt,
2020) based on the approaches of Corripio (2004), Härer
et al. (2016) and Portenier et al. (2020). The ArcticDEM
(Porter et al., 2018) is used for the projection and ground
control points (GCPs) of remarkable landscape features are
derived from same-day high-resolution PlanetScope imagery
to optimize the orthorectification procedure resulting in a
projection with high geospatial accuracy. (iv) Thereafter, the
projected master is coregistered to the PlanetScope image
with additional GCPs. (v) Based on the georeferenced mas-
ter, all aligned and classified images are projected to SC maps
in the coordinate system of S-1 with a spatial resolution of
2.5 m and then aggregated to 20 m resolution by calculating
the SC fraction (SC_FractionDOY).

For comparison with the S-1 products, start-of-season
snow-free areas, end-of-season snow-covered patches and
EOS are derived from the SC fraction map using Eq. (7) (see
also Fig. 5):
EOScamera(x,y)=

start-of-season snow-free , if SC_FractionDOY_1 < 0.5
DOY , where SC_FractionDOY < 0.5

(three consecutive times)
end-of-season snow-covered , if SC_Fraction> 0.5

(for all acquisitions)

. (7)

(i) Pixels which are less than 50 % snow-covered in the first
observation in spring (SC_FractionDOY_1) are classified as
start-of-season snow-free, whereas (ii) end-of-season snow-
covered pixels are at least 50 % snow-covered in all orthorec-
tified SC fraction maps. (iii) EOS is determined for the re-
maining area as the first of three consecutive dates, where
SC fraction falls below 50 %. Besides, (iv) binary SC maps
(SC_DOYcamera) for validating S-1 SC maps are generated
using the boundary condition that pixels have to be more than
50 % snow-covered in order to be classified as snow. (v) Fur-
ther, DOY of start and end of SC decrease (SOD/EOD) is
defined for each pixel as the last observation with 100 % SC
fraction and the first observation with 0 % SC fraction, re-
spectively. SOD and EOD are only used for the backscatter–
SC-fraction interaction analysis.
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Figure 4. Workflow chart of proposed approach to detect (i) snow cover (SC) and timing of snowmelt as (ii) start of runoff (SOR) and
(iii) end of snow cover (EOS) from Sentinel-1. EOS (iv) start-of-season snow-free and (v) end-of-season snow-covered areas are visualized
together as the so-called melt layer (Figs. 11 and 12), whereas analysis is conducted separately.

We tested the accuracy of the orthorectification proce-
dure using 25 (26) GCPs to assure the correct location of
the projected maps (Fig. 6b). The root mean square error
(RMSE) of the orthorectification was 9.4 m (5.3 m) in Za-
ckenberg (Kobbefjord), hence less than 1 S-1 pixel (20 m).
Besides, SC fraction maps from the time-lapse imagery in
Zackenberg are validated with not-orthorectified in situ data
which used the same time-lapse images as source (Greenland
Ecosystem Monitoring Secretariat, 2021; Skov et al., 2019;
Westergaard-Nielsen et al., 2017) to assure that the align-
ment, classification and orthorectification of the time-lapse
imagery do not induce errors in the seasonal development of
SC (Fig. 6a). The correlation of in situ SC fraction and mean
SC fraction of the orthorectified SC fraction maps is tested by
calculating the coefficient of determination (R2

= 0.98) and
the RMSE (= 3.7 % SC fraction). With such high geoloca-
tion accuracy and high agreement in reproducing in situ SC
fraction, we can assure minimized systematic errors in the
generated SC fraction maps (SC_FractionDOY). The advan-
tage compared to state-of-the-art validation procedures based
on other satellite data is the high spatiotemporal resolution of
the generated reference product (2.5 m with a temporal reso-
lution of 1–10 d dependent on weather conditions). Thereby,
we can evaluate the response of the SAR signal directly to
changes in small-scale SC and the SC fraction.

3.3 Evaluation and assessment of the products

3.3.1 Backscatter–snow-cover-fraction interaction
analysis

The development of S-1 backscatter intensity is compared
to the SC fraction data derived from the time-lapse imagery
(SC_FractionDOY). We use the SC fraction derived from the
time-lapse imagery as an indicator to examine the timing of
backscatter increase. We select all S-1 pixels with sufficient
spatial data coverage by the time-lapse imagery and include
only areas which cover the entire snowmelt development dur-
ing time-lapse imagery observation. Thus, areas with EOD
after 15 August and start-of-season snow-free areas are ex-
cluded from analysis. Original S-1 γ0 intensity data (in dB)
as well as intensities, which were rescaled from 0 (melt sea-
son minimum min(γ0) intensity) to 1 (mean snow-free sum-
mer intensity), are compared to same-day SC fraction data of
the time-lapse imagery. Furthermore, we identified the tem-
poral distance to SOD and EOD for areas with 100 % and 0 %
SC fraction, respectively, in order to capture the development
of backscatter intensities before SOD and after EOD. Nega-
tive days indicate the number of days before the first observ-
able decrease in SC fraction (SOD). Positive days indicate
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Figure 5. Workflow chart of proposed approach to detect (i) snow cover (SC) and timing of snowmelt as (ii) end of snow cover (EOS) from
time-lapse images. EOS (iii) start-of-season snow-free and (iv) end-of-season snow-covered areas are visualized together as so-called melt
layer (Figs. 11 and 12), whereas analysis is conducted separately. SOD/EOD: start/end of snow cover decrease, i.e., last DOY, where SC
fraction is at 100 %, and first DOY, where SC fraction reaches 0 %, respectively. SOD and EOD are used for the backscatter–SC-fraction
interaction analysis.

Figure 6. (a) Seasonal development of snow cover (SC) deducted from the orthorectified time-lapse imagery compared with Zackenberg in
situ snow cover fraction data. Their level of correlation is represented by R2 and RMSE. (b) Orthorectified master image and PlanetScope
scene in the background with their respective ground control points (GCPs). The center of the yellow dot indicates the projected location of
the GCP, while the red dot shows the true location of the GCP. The distance between both is the orthorectification error (RMSE= 9.4 m).
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the number of days after the observed snow cover fraction
has reached 0 % (EOD).

3.3.2 Assessment of product accuracy dependent on
selected threshold and polarization

According to our observations, the selection of polarization
and threshold t (Eq. 2) is crucial for the accuracy of the
S-1 snow products of the threshold-based approach. Using
the standard threshold (2 to 3 dB) in Nagler’s method (Na-
gler and Rott, 2000; Nagler et al., 2016; Snapir et al., 2019)
might not be suited due to the different threshold basis (snow-
free/dry-snow backscatter vs. seasonal minimum) and the use
of different levels of preprocessed SAR data (σ 0 vs. terrain-
corrected γ 0). Therefore, we investigated a threshold range
from 2 to 8 dB for HV and from 2 to 10 dB for HH polar-
ization. In addition, we carried out the same assessment for
the derivative approach to compare the results with the best
threshold approach. For each threshold configuration as well
as the derivative, the accuracy of the SC maps (SC_DOYS-1;
SC_DOYcamera) was assessed in the following way: the as-
sessment is based only on same-day S-1 acquisitions and or-
thorectified time-lapse imagery to avoid errors due to tempo-
ral offsets (see used dates marked in green in Fig. 3). Acquisi-
tions after 1 September are excluded from all analyses as our
approach using the EOS to derive SC is not capable of de-
tecting new snowfall events in autumn. The datasets of start-
of-season snow-free areas and end-of-season snow-covered
patches are included in the SC accuracy analysis as follows:
the class start-of-season snow-free is converted to SC at the
start of the season with start-of-season snow-free pixels as-
signed as no snow and not start-of-season snow-free pixels
as snow-covered. The end-of-season snow-covered class is
handled likewise as SC at the end of the season. We calcu-
late confusion matrix metrics (true positive (TP), true neg-
ative (TN), false positive (FP) and false negative (FN) rates
as well as overall accuracy) for these SC maps for the se-
lected view field of the camera (Fig. 2c, d) and derive the
receiving operator characteristic (ROC) from the overall TP
and FP rate. Further analysis is carried out for the deriva-
tive approach as well as for the global polarization–threshold
configuration with the best ROC (highest TP rate+ lowest
FP rate). The threshold-based product assessment is consid-
ered weaker as it was conducted with the same reference used
for identifying this configuration, whereas no a priori knowl-
edge is required for the derivative-based products. (i) The
seasonal development of the confusion matrix metrics is as-
sessed. (ii) We compare the EOS layers based on the areas,
where the S-1 product (EOS_finalS-1) and the georeferenced
time-lapse imagery (EOScamera) detect an EOS, by calculat-
ing R2, RMSE and mean absolute error (MAE). (iii) We cal-
culate the difference in EOS DOY between the S-1 product
and the orthorectified time-lapse imagery for 2017 and 2018
together and examine the percentage of pixels covered at the
same date as well as within different time ranges of less than

3 (±2), 6 (±5) and 12 (±11) d. The former gives the percent-
age of pixels, which were assigned to the temporally closest
S-1 acquisition, and the latter two correspond to one or two
S-1 revisit cycles, respectively. (iv) Additionally, mean and
median of the difference dataset are calculated.

4 Results

4.1 Interaction between backscatter increase and snow
cover fraction

We assess the distinct seasonal backscatter behavior of S-
1 over snow in ZRA and KRA in comparison to the SC
fraction maps based on the orthorectified time-lapse imagery
(SC_FractionDOY). For ZRA, the backscatter intensity shows
similar trends in both years and both polarizations. Before the
SOD, we observe a longer period of very low backscatter val-
ues (20–30 d) in 2018, whereas this period is shorter (5–10 d)
in 2017 (Fig. 7a). The seasonal minimum is reached in ZRA
about 10 to 30 d before the SOD (Fig. 7a). A sharp increase
in intensity within the last 10–15 d before SOD (Fig. 7a, b)
is observed for both years. Neglecting the logarithmic scal-
ing of intensity in the rescaled backscatter intensity, we ob-
serve an increment from about+0.2 above the seasonal min-
imum to +0.5 to +0.6 above the seasonal minimum before
SOD (Fig. 7b). The remaining increase to 1 (mean snow-free
summer backscatter intensity) occurs mostly during the de-
crease in SC fraction (Fig. 7b, c). The comparison of the ab-
solute HH and HV intensities shows differences (Fig. 7a).
With HH polarization, a higher overall intensity and a larger
difference between seasonal minimum and mean snow-free
intensity is observed compared to HV. This difference is
lower in 2017 than in 2018 due to higher backscatter min-
ima (Fig. 7a). The rescaled intensities are stable for both
years and polarizations, and we observe a linear increase in
rescaled backscatter with increasing SC fraction (Fig. 7c). In
KRA, the period of very low backscatter values is very short
and distinct (10 d) in 2017 with a sharp decrease beforehand
but shows a prolonged period of reduced backscatter inten-
sity for 2018 (Fig. 7e). The seasonal minimum is reached
in KRA in less than 10 d before SOD (Fig. 7d). Almost no
increase in intensity is observed within the last 10–15 d be-
fore SOD (Fig. 7d, e) for both years unlike in ZRA. The
increase in the rescaled backscatter intensity shows again
a linear behavior and occurs almost entirely during the de-
crease in SC fraction in 2017 and 2018 only that in 2018
the averaged backscatter value is not reaching values lower
than 0.4 (Fig. 7e, f). The absolute backscatter values indicate
generally a lower seasonal variability in KRA than in ZRA,
especially for 2018 due to higher backscatter minima. The
snow-free HV backscatter intensity in Kobbefjord is gener-
ally higher than in Zackenberg, whereas no such difference
is visible in HH (Fig. 7d).
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Figure 7. Development of Sentinel-1 backscatter intensity over the melting season compared to same-day snow cover (SC) fraction from
orthorectified time-lapse imagery (SC_FractionDOY) for ZRA (a–c) and KRA (d–f). Negative days indicate the number of days before the
first observable decrease in SC fraction (SOD – start of decrease). Positive days indicate the number of days after the observed snow cover
fraction has reached 0 % (EOD – end of decrease). The x-axis range (grey area) between SOD and EOD in panels (a, d) and (b, e) is
modified to the observed average period between these dates (10 d) and does not represent the actual time range. (a, d) Seasonal development
of absolute backscatter intensities (γ0) with standard deviation and (b, e) of rescaled intensities (0: seasonal backscatter minimum min(γ0); 1:
mean snow-free summer backscatter intensity). (c, f) Close view of the development of rescaled backscatter between SOD and EOD during
the decrease in SC fraction.

4.2 Selection of threshold, derivative and polarization
for Sentinel-1 snow products

We assessed the seasonal SC development for each threshold
t in combination with each polarization to identify the pa-
rameter configuration that best fits the seasonal SC develop-
ment in the orthorectified time-lapse imagery (Figs. 8, 9 and
10). We further compared these results with the derivative-
based approach. For the determination of t , two opposite de-
velopments influence the accuracy of the resulting datasets
in ZRA: the higher t is, the more areas are mistakenly classi-
fied as start-of-season snow-free (Fig. 10a), as intensities of
these locations do not exceed the defined threshold. In con-
trast, EOS is detected better using higher t , whereas low t

values cause a negative offset and EOS is detected earlier
than observed (Fig. 10b). The constant increase in the in-
tensity during the melt period causes this earlier detection
of EOS with lower t values. Thereby, higher values of t re-
sult in an underestimation of SC in the early melt period,
whereas lower values of t lead to an underestimation of SC
during the later melt period (Fig. 8). In KRA a similar devel-
opment for overestimation of start-of-season snow-free ar-
eas is detected (Fig. 10c), but the melt offset is generally
moved towards positive values shifting the optimum towards
lower t (Fig. 10d). Thereby, the highest SC accuracies are
reached with lower thresholds independently of the used po-
larization. Comparing the two polarizations, we observe a
higher negative offset in EOS detection for HH (Fig. 10b) but
slightly lower overestimation of start-of-season snow-free ar-

eas (Fig. 10a) in Zackenberg, and we observe the opposite
trend for Kobbefjord (Fig. 10c, d). The derivative approach
adapts to differences in optimal thresholds (especially for
ZRA in HH), resulting in a reduced overestimation of start-
of-season snow-free areas for ZRA and KRA, while offset
in EOS detection remains low (±3 d) for ZRA (Fig. 10b) and
stable around+5 to+7 d for KRA (Fig. 10d). New SC due to
snowfall events in autumn is not detectable by the proposed
approaches (Figs. 8 and 9).

As the ROC analysis in Fig. 8c and f and Fig. 9c and f indi-
cates, the t values for the best results depend on the used po-
larization and the observed year and site. Higher TP rates in
2018 compared to 2017 are observed for both sites (Fig. 8c,
f and Fig. 9c, f). In ZRA, the optimal value for t differs be-
tween the years with higher values found in 2018 (e.g., for
HV from 3 to 4 dB in 2017 to 4 to 5 dB in 2018; Fig. 8c, f).
The increase in the optimal threshold is higher in HH than
in HV (Fig. 8c, f). Hence in Zackenberg, the performance of
a global threshold is more robust for HV. In Kobbefjord, the
ROC shows no large differences between the years. The best
accuracies are reached for both polarizations with a thresh-
old of 2 to 3 dB. HV tends to produce higher TP rates than
HH in Kobbefjord (Fig. 9c, f). In Zackenberg, the derivative
approach works equally well for both polarizations, and the
difference to the optimum threshold configuration is low. In
Kobbefjord, the derivative approach using the HV polariza-
tion outperforms HH. The derivative generates lower accu-
racies in 2018, whereas in 2017 the reached accuracies are
equal to the optimum threshold. We use the global threshold

https://doi.org/10.5194/tc-16-625-2022 The Cryosphere, 16, 625–646, 2022



636 S. Buchelt et al.: Sentinel-1 time series for mapping snow cover depletion

Figure 8. (a, b, d, e) Seasonal development of overall snow cover (SC) in Zackenberg of the Sentinel-1 products (SC_DOYS-1) for the
threshold–polarization configurations as well as the derivative (der) compared to orthorectified time-lapse imagery (SC_DOYcamera). Autumn
SC is not detected by the proposed approach as only the seasonal decrease in SC is observable. (c, f) Receiver operator characteristic (ROC)
derived from the overall true positive (TP) rates and false positive (FP) rates of the SC maps of (c) 2017 and (f) 2018 based on same-day S-1
acquisitions and orthorectified time-lapse imagery. The used threshold is depicted as a label next to each point.

Figure 9. (a, b, d, e) Seasonal development of overall snow cover and (c, f) receiver operator characteristic (ROC) of Kobbefjord.

configuration that shows the best ROC response for both sites
and years (HV – 4 dB) as well as the derivative based on HV
for further analysis. The analysis using the threshold-based
products is considered weaker than the derivative method, as
a priori knowledge is required to identify the optimal global
threshold. The resulting layer composites of EOS, start-of-
season snow-free and end-of-season snow-covered, for this
configuration are shown in Fig. 11 for ZRA and in Fig. 12
for KRA.

The seasonal development of confusion matrix parame-
ters (Fig. 13, two left columns) shows that overall accuracy
is always above 75 % and in more than half of the cases
above 90 %. The lowest overall accuracy occurs during the
melt period, when melt is the strongest and the decrease in
SC is the highest. In ZRA, FP and FN occur during early
melt season in 2017, whereas in 2018 mostly FN during
late melt is observed. The comparably high proportion of
FP responses (14.6 %) in 2017 on DOY 177 (Fig. 13a, e)
is caused by a late snowfall event in about the beginning of
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Figure 10. The key snow cover (SC) mapping accuracy parameters influenced by the threshold and polarization setting are (a, c) overestima-
tion of start-of-season snow-free areas for higher thresholds leading to an underestimation of SC in early melt season and (b, d) a negative
offset in mean EOS for low thresholds leading to underestimation of SC in late melt season.

Figure 11. Melt layers (composites of day of year (DOY) for end of snow cover (EOS), start-of-season snow-free areas and end-of-season
snow-covered patches) of Zackenberg: (a–b) reference product by the time-lapse imagery with 2.5 m resolution for (a) 2017 and (b) 2018;
subset of the generated S-1 product with 20 m resolution bounded by the camera field of view with global parameter configuration (polariza-
tion: HV; threshold t : 4 dB) for (c) 2017 and (d) 2018; (e–f) the same area of the S-1 product with the derivative approach for (e) 2017 and
(f) 2018.
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Figure 12. Melt layers of Kobbefjord: (a–b) reference product by the time-lapse imagery reference; subset of the S-1 product (c–d) with
global parameter configuration and (e–f) with the derivative approach.

July undetected in the S-1 dataset. As we observe predomi-
nantly FN almost throughout all observations, SC is gener-
ally rather underestimated by the S-1 product in ZRA. An
underestimation of early-season SC induced by an overesti-
mation of start-of-season snow-free areas (Fig. 10a, e) is ob-
served in 2017, whereas in 2018 the observed underestima-
tion of late-season SC (Fig. 10b, f) as well as end-of-season
snow-covered is caused by the temporal offset in EOS de-
tection (Fig. 10b). This indicates that a global threshold of
4 dB might be slightly too high for 2017 and slightly too low
for 2018 in ZRA, which is consistent with the ROC analysis
(Fig. 8c, f). In KRA, predominantly FP is observed during
the melting period, resulting in a slight overestimation of SC
by the S-1 product (Fig. 13).

For the EOS product, a R2 score of 0.41 (p < 0.001), a
RMSE of 13.5 d and a MAE of 9.4 d is observed in ZRA
with the global threshold. Using the derivative increases the
accuracy to an R2 score of 0.63 (p < 0.001), a RMSE of
11.6 d and a MAE of 8.1 d. The observed accuracy mea-
sures in KRA are low (R2 < 0) due to the limited variation
of EOS in the camera field of view (Fig. 12). The regres-
sion density plots in Fig. 13 show the correlation, and the
histogram plots in Fig. 13 show the range of temporal differ-

ence in days between the two datasets. Within ±2, ±5 and
±11 d, 15 % to 26 %, 46 % to 49 % and 72 % to 80 % of all
pixel-wise EOS dates are detected for both sites and both
approaches. Using the threshold, the mean (−3.1 d) and the
median value (−4 d) of the histogram are slightly negative
in ZRA, whereas with the derivative in ZRA, mean (0.0 d)
and median (+1 d) are close to zero. In KRA, the threshold-
based values of mean (+3.1 d) and median (−1 d) are slightly
higher than in ZRA. Using the derivative approach shows,
like in ZRA, a trend towards higher values (mean: +6.8 d;
median: +3 d). This is consistent with the observed offsets
in EOS detection (Fig. 10b, d) and the distribution of EOS
shown in Figs. 11 and 12.

5 Discussion

5.1 Influence of SC fraction and snow properties on
SAR backscatter intensity

We observe a distinct seasonal behavior in S-1 C-band
backscatter with a clear decrease during early melt, reach-
ing a minimum just prior to the onset of melting, followed
by a constant linear increase towards the EOS. This is con-
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Figure 13. (a, b) Seasonal development of true positive, false positive, true negative, and false negative as well as overall accuracy of the
snow cover maps of the year (a) 2017 and (b) 2018. Overall accuracy is always above 75 % and in more than half of the cases above 90 %.
Generally, false negative responses or underestimation of snow cover is dominant. False positive responses or overestimation occurs mostly
in 2017 around DOY 177. (c) Correlation between EOS detection from S-1 time series approach and time-lapse imagery. (d) Distribution of
temporal offsets in EOS. Highlighted are used time ranges corresponding to 0.5, 1 and 2 Sentinel-1 revisits. (a–d) ZRA 4 dB threshold. (e–h)
ZRA derivative. (i–l) KRA 4 dB threshold. (m–p) KRA derivative.

sistent with findings in Marin et al. (2020). According to our
observations, this development, which is found in both po-
larizations (Fig. 7a), is probably driven by changes in the
snowpack, e.g., increased surface roughness, larger size and
number of snow grains like suggested by Marin et al. (2020),
as well as by decreasing fractional SC. The prolonged period
of low backscatter values and the higher variance in absolute
backscatter intensity in ZRA compared to KRA is probably
caused by overall extended melting periods in ZRA and pos-
sibly also influenced by the different acquisition times in the
afternoon and morning, respectively. The afternoon acquisi-
tion usually detects wet snow earlier in the melt season due
to the diurnal melt and refreeze cycle of the snowpack. In
ZRA, about half of the increase in intensity occurs within
10–15 d before the decrease in SC fraction starts (Fig. 7a, b),
whereas no such development is observed in KRA (Fig. 7d,
e). The increase before SOD in HH is probably caused by
the higher surface roughness, while increased depolarization
at this rougher snow surface increases the backscatter inten-

sity in HV. The absence of a pre-SOD increase in KRA could
be either due to the different acquisition time in the morning
but is more likely caused by systematic differences in SC
distribution between ZRA and KRA: (i) snow depletion is
occurring faster in KRA than in ZRA, leaving less time for
alteration of the snowpack before depletion. (ii) Snow dis-
tribution shows higher heterogeneity on small scales result-
ing in smaller snow patches in KRA in comparison to ZRA.
Hence, subpixel parts are turning snow-free almost directly
after start of melt is observed. Another sign for this system-
atic difference indicating more homogeneous snow distribu-
tion on a pixel scale in ZRA compared to KRA is the tem-
poral difference between SOD and EOD, which is about 10 d
in ZRA but more than 20 d in KRA. The remaining intensity
increase in ZRA and almost all the increase in KRA occur
along with the decreasing SC fraction and are almost linear.
It is potentially driven by the increasingly higher proportion
of the signal coming from snow-free parts of the pixel and
possibly a further alteration of the snowpack (Fig. 7c). This

https://doi.org/10.5194/tc-16-625-2022 The Cryosphere, 16, 625–646, 2022



640 S. Buchelt et al.: Sentinel-1 time series for mapping snow cover depletion

linear increase seems suited to derive SC fraction from SAR
backscatter intensity (e.g., Luojus et al., 2006 and Koskinen
et al., 2009); however, such an approach would need to ad-
dress the varying strength of pre-SOD increase in intensity
and effects from changing surface properties underneath the
snow, speckle and the viewing geometry, which result in vari-
ability of the SAR signal and make the discrimination be-
tween snow-free areas and areas with patchy wet snow in
threshold-based SAR approaches like Nagler’s method (Na-
gler et al., 2016; Nagler and Rott, 2000), as well as in our
approach, challenging. These results are of comparably high
validity, as the observations have been compared to a high-
resolution reference dataset of same-day SC fraction maps
derived from orthorectified time-lapse imagery.

5.2 Influence of threshold and polarization on the
products

For the selection of thresholds, we observe two main drivers
for SC mapping inaccuracies: (i) increased underestimation
of SC during early melt linked to an increased overestimation
of start-of-season snow-free areas with higher t (Figs. 8, 9
and 10a, c); (ii) increased underestimation of SC during late
melt linked to an increased offset of earlier EOS detection
with lower t in ZRA (Figs. 8 and 10b). For an accurate re-
sult, these contrary effects need to be balanced. While using
a season-independent global threshold leads to a better per-
formance in HV compared to HH due to the lower absolute
seasonal changes in backscatter intensities in HV (Fig. 7a),
season-dependent thresholds can produce accurate results in
both polarizations but require in situ reference data. The bet-
ter global performance of cross polarization for SC detection
is in accordance with other studies applying Nagler’s method
(Nagler et al., 2016; Thakur et al., 2018), which also indi-
cated better performance of the cross polarization compared
to the co-polarization channel. The lower ROC performance
in 2017 compared to 2018 (Fig. 8c, f) could be caused by the
limited length of the time series in ZRA and gaps in the time
series in KRA. The increase towards higher values of the best
fitting t for ZRA in 2018, which is in accordance with the
observed higher seasonal backscatter difference (Fig. 7a), is
possibly caused by higher overall snow depths observed in
2018 by López-Blanco et al. (2020). The slightly lower op-
timal thresholds (2 to 3 dB) in KRA might be caused by the
lower variance in backscatter intensity due to the different ac-
quisition time. The seasonal defined threshold can vary about
±1 dB around the optimum while still giving good results
(Fig. 8c, f), which indicates that the used global threshold
in HV for 4 dB is applicable. The derivative-based approach
generates results similar to the optimal seasonal threshold.
However, no optimization or further in situ reference data
are required. The systematic positive offset in EOS detection
for KRA shows a later detection of EOS by S-1 than com-
pared to the camera (Fig. 10d). Hence, the derivative-based
EOS might be sensitive to lower SC fraction than defined

by EOScamera (SC fraction< 50 %) and possibly also detects
low fractional SC. This could also be the cause for the in-
creased FP rates of the derivative approach compared to the
optimal seasonal threshold (Fig. 8c, f and Fig. 9c, f). The
lower TP rates of KRA in 2018 (Fig. 9f) might be caused
by an increased overestimation of start-of-season snow-free
areas.

The analysis using the threshold-based products is consid-
ered weaker than the derivative method, as a priori knowl-
edge is required to identify the optimal global threshold.
However, the degree of optimization for the threshold set-
ting is reduced to a minimum with a global threshold instead
of training a season- and site-dependent threshold. The ap-
proach using the derivative is less susceptible to this issue.
Using HV and t = 4 dB, EOS is detected with a reasonable
accuracy within two S-1 observations (Fig. 13). Potentially
a denser time series incorporating different S-1 orbits could
improve the accuracy in snowmelt detection; however, differ-
ent orbits need to be analyzed separately, due to differences
in local incidence angle and, more importantly, different ac-
quisition times, which need to be considered. However, our
case study shows that our approach works well with both set-
tings as different orbits (ascending in ZRA and descending
in KRA) and, hence, different acquisition times (afternoon
and morning, respectively) were used. The SC maps repro-
duce the overall SC development with 9 out of 10 SC maps
above 80 % overall accuracy and more than half above 90 %
(Fig. 13), while most of the error is due to underestimation of
SC in ZRA and due to overestimation in KRA. Thereby, ac-
curacies comparable to other latest SC mapping approaches
using optical remote sensing with similar spatial resolution
(e.g., Gascoin et al., 2019; Girona-Mata et al., 2019; Piazzi
et al., 2019) are generated but with the advantage of being
independent from cloud cover. However, it has to be pointed
out that autumn and episodic SC due to snowfall events are
not detectable by the proposed approach as only the seasonal
depletion of SC during melt is observable. Further, dense
vegetation in other study areas might cause increased inac-
curacies due to the insensitivity of C-band SAR for snow in
such areas (Nagler et al., 2016; Tsai et al., 2019c). The differ-
ences between the threshold- and derivative-based approach
are rather low, which indicates that both might be applicable
on other sites. However, the derivative has the advantage of
automatically adapting to different seasonal and environmen-
tal conditions. A systematic difference is observed in the de-
tection of EOS, indicating a higher sensitivity of the deriva-
tive for low fractional SC.

5.3 Major advantages of the proposed approach
compared to other recent SAR-based snow cover
studies

With this new approach multiple advances are made com-
pared to other recent studies on SAR-based SC detection
and the current standard, Nagler’s method: (i) we use the en-
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tire time series instead of only a few images per year unlike
most previous studies (according to Tsai et al., 2019b); (ii)
we avoid the manual selection of reference images for Na-
gler’s method (Nagler and Rott, 2000) and omit challenges
like finding a completely snow-free or dry-snow scene as
well as a potential deterioration of the reference caused by
altered backscatter signals due to end-of-season SC and firn.
Due to the simple backscatter threshold and derivative ap-
proaches, we keep the analysis fast and reduce processing ca-
pacity compared to the supervised classification approach by
Tsai et al. (2019a, c), who additionally calculated interfero-
metric and polarimetric features. Even though the spatial res-
olution is lower in their approach (100 m), resulting overall
accuracies for similar low-vegetation areas are comparable
to the ones observed here (Tsai et al., 2019c). The threshold
setting must be assessed in more detail to confirm whether
a global threshold is applicable also in other sites and years
and to analyze which effects different snow properties, vege-
tation, substrate and local incidence angle might have on the
seasonal backscatter behavior of S-1 above snow, e.g., sea-
sonal minimum and variation, as well as the resulting prod-
uct accuracy. The derivative adapts well to different environ-
mental settings (high and low Arctic) and different seasonal
conditions (high and low snow depths). Hence, the derivative
approach could be applied to another site without requiring
prior optimization of the threshold. Further, both approaches
are based on the physical principle of SAR backscatter dur-
ing snowmelt. Hence, they are expected to work well in other
low-vegetation areas as the characteristic seasonal pattern
has been observed in the Alps (Marin et al., 2020) as well as
around the globe (Lievens et al., 2019). Parametrization, e.g.,
of the threshold or the melt season, however, must be adapted
and adjusted to local conditions. Moreover, further research
needs to address the transferability to areas with denser vege-
tation or human-induced activities which could influence the
SAR backscatter signal.

With this new approach, many relevant parameters for SC
monitoring are detected on a weekly basis by the here pro-
posed approach: state and extent of SC during melt, end-of-
season SC and start-of-season snow-free areas. Further, im-
portant hydrological measures like start of runoff (SOR) and
end of snow cover (EOS) are derived, whereas the former is
not detectable with optical remote sensing data. Potentially,
the snow phase detection algorithm by Marin et al. (2020)
could be incorporated to further separate melt phases in more
detail, and Nagler’s method (Nagler and Rott, 2000) could
be used to identify the start of wet-snow phase. Provided at
a spatial resolution of 20 m, hydrological models could fur-
ther use this information to derive additional parameters like
snow water equivalent (based on reconstruction approaches
presented, e.g., by Molotch and Margulis, 2008; Kerr et al.,
2013; Bair et al., 2016; Rittger et al., 2016) or assess the de-
lay of snowmelt runoff due to meltwater storage in the snow-
pack and the soil (Marin et al., 2020; Tsai et al., 2020). If
available, different S-1 orbits could be used to increase the

temporal resolution of the product but need to be analyzed
separately due to differences in local incidence angle and ac-
quisition times. Further, extra wide swath mode (EW) data
could be used with our approach for snowmelt detection and
snow cover depletion mapping on larger scales with coarser
resolution. Thereby, our approach enhances monitoring of
hydrological cascading effects and could support in combina-
tion with other methods and datasets a holistic hydrological
monitoring of SC from the scale of a single catchment up to
pan-Arctic observations.

6 Conclusions

In this study, we present a fast and simple approach for
mapping snow cover (SC) and timing of snowmelt based
on Sentinel-1 (S-1) synthetic aperture radar (SAR) time se-
ries. Using the distinct seasonal signal of backscatter inten-
sity above snow, the approach employs user-defined thresh-
olds based on the seasonal backscatter minimum as well as
the derivative of the time series to (i) identify start of runoff
(SOR) and end of snow cover (EOS) as day of year (DOY),
(ii) detect start-of-season snow-free areas and end-of-season
snow-covered patches, and (iii) derive a SC extent map for
each S-1 observation date during SC depletion. EOS and SC
are compared to maps derived from aligned and orthorec-
tified terrestrial time-lapse imagery providing much higher
spatial (2.5 m) and higher temporal (1 to 10 d) resolution than
the S-1 product.

We compared the seasonal evolution of the SAR backscat-
ter intensity to orthorectified SC fraction maps based on
same-day time-lapse imagery. We observe that in ZRA about
half of the HH and HV backscatter intensity increase dur-
ing snowmelt occurs within 10–15 d before the decrease in
SC fraction starts, whereas no such increase was observed
in KRA due to faster melt and, hence, less time available
for snowpack alteration. From then onwards, backscatter in-
creases linearly with decreasing SC fraction. Hence, changes
in the snowpack (e.g., grain size and number, surface rough-
ness) as well as the decrease in fractional SC are drivers for
the observed backscatter increase.

The new approach to map SC and snowmelt was tested
with HH and HV polarizations and different backscatter in-
tensity thresholds (2 to 8 dB), indicating the following major
error sources: (i) underestimation of SC during early melt
due to an overestimation of start-of-season snow-free areas
caused by parts which do not exceed the selected backscatter
threshold (increasing with higher thresholds); (ii) underesti-
mation of SC during late melt as well as end-of-season SC
due to a systematically earlier detection of EOS (increasing
with lower thresholds) in ZRA; (iii) neglection of episodic
and autumn SC due to snowfall events as only the depletion
of SC is detectable. The variation in the optimum threshold
is higher in HH, which causes HV to produce better results
with a global threshold. Using a global threshold of 4 dB with
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the HV polarization, EOS is correctly assigned to the closest
S-1 acquisition for 15 % to 27 % of the area, while 45 % to
49 % and 72 % to 80 % are correctly detected within a period
of one and two S-1 repeat cycles (6 and 12 d). The resulting
SC maps are generated with an overall accuracy of always
more than 75 % and in more than half of the cases above
90 %. Using the derivative instead produced similar results
and adapts well to different environmental settings and sea-
sonal conditions. Hence, the derivative approach could be ap-
plied to another site without requiring prior optimization of
the threshold. Both approaches work well with different or-
bits and acquisition times. Being based on the physical prin-
ciple of SAR backscatter during snowmelt and its character-
istic seasonal pattern, the approach is expected to work well
in other low-vegetation areas around the globe, but further
research is required to confirm the transferability of the ap-
proach to other settings and especially also areas with denser
vegetation or human-induced activities which could influ-
ence the SAR backscatter signal. Finally, a SC product with
this spatiotemporal resolution (20 m – 6 d) is, to the best of
our knowledge, not presented with any other open-data re-
mote sensing approach.

Further improvement could take advantage of the com-
bined use of different S-1 orbits to increase the temporal
resolution of the product or incorporate the snow phase de-
tection algorithm by Marin et al. (2020) and use Nagler’s
method (Nagler and Rott, 2000) to detect the start of the wet-
snow phase. Thereby, continuous S-1 snow monitoring could
not only improve hydrological and climatological models but
also lead to an enhanced understanding of the complex inter-
actions between climate change, SC and the Arctic ecosys-
tem.
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