Articles | Volume 16, issue 11
https://doi.org/10.5194/tc-16-4637-2022
https://doi.org/10.5194/tc-16-4637-2022
Research article
 | Highlight paper
 | 
04 Nov 2022
Research article | Highlight paper |  | 04 Nov 2022

Improving interpretation of sea-level projections through a machine-learning-based local explanation approach

Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand

Related authors

Extending the range and reach of physically-based Greenland ice sheet sea-level projections
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098,https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Investigating metamodeling capability to predict sea levels and marine flooding maps for early-warning systems: application on the Arcachon Lagoon (France)
Sophie Lecacheux, Jeremy Rohmer, Eva Membrado, Rodrigo Pedreros, Andrea Filippini, Déborah Idier, Servane Gueben-Vénière, Denis Paradis, Alice Dalphinet, and David Ayache
EGUsphere, https://doi.org/10.5194/egusphere-2024-3615,https://doi.org/10.5194/egusphere-2024-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Assessing atoll island future habitability in the context of climate change using Bayesian networks
Mirna Badillo-Interiano, Jérémy Rohmer, Gonéri Le Cozannet, and Virginie Duvat
EGUsphere, https://doi.org/10.5194/egusphere-2024-3884,https://doi.org/10.5194/egusphere-2024-3884, 2025
Short summary
Drawing lessons for multi-model ensemble design from emulator experiments: application to future sea level contribution of the Greenland ice sheet
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52,https://doi.org/10.5194/egusphere-2025-52, 2025
Short summary
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
SOIL, 10, 679–697, https://doi.org/10.5194/soil-10-679-2024,https://doi.org/10.5194/soil-10-679-2024, 2024
Short summary

Cited articles

Aas, K., Jullum, M., and Løland, A.: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values, Artif. Intell., 298, 103502, https://doi.org/10.1016/j.artint.2021.103502, 2021. 
Achen, C. H.: Intepreting and Using Regression, Sage Publications, Thousand Oaks, https://doi.org/10.4135/9781412984560, 1982. 
Aschwanden, A., Bartholomaus, T. C., Brinkerhoff, D. J., and Truffer, M.: Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level, The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, 2021. 
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013. 
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. 
Download
Co-editor-in-chief
This manuscript addresses an urgent problem: the proper quantification and attribution of uncertainties relating to sea-level rise. The authors show how a machine-learning approach may show the way towards a more rigorous treatment of these uncertainties, and how this might be used for policy making.
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based SHapley Additive exPlanations approach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Share