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Abstract. Process-based projections of the sea-level contri-
bution from land ice components are often obtained from
simulations using a complex chain of numerical models. Be-
cause of their importance in supporting the decision-making
process for coastal risk assessment and adaptation, improv-
ing the interpretability of these projections is of great interest.
To this end, we adopt the local attribution approach devel-
oped in the machine learning community known as “SHAP”
(SHapley Additive exPlanations). We apply our methodology
to a subset of the multi-model ensemble study of the future
contribution of the Greenland ice sheet to sea level, taking
into account different modelling choices related to (1) nu-
merical implementation, (2) initial conditions, (3) modelling
of ice-sheet processes, and (4) environmental forcing. This
allows us to quantify the influence of particular modelling
decisions, which is directly expressed in terms of sea-level
change contribution. This type of diagnosis can be performed
on any member of the ensemble, and we show in the Green-
land case how the aggregation of the local attribution anal-
yses can help guide future model development as well as
scientific interpretation, particularly with regard to spatial
model resolution and to retreat parametrisation.

1 Introduction

Process-based projections of ice sheets’ contributions to sea-
level changes generally rely on numerical models that sim-
ulate the gravity-driven flow of ice under a given envi-
ronmental (atmospheric and oceanic) forcing derived from
atmosphere–ocean general circulation model (AOGCM) out-

put. To cover the large spectrum of uncertainties that im-
pact the outcomes of these numerical models, a popular ap-
proach is to perform common sets of numerical experiments
by considering a range of forcing conditions (e.g. Barthel
et al., 2020), various initial conditions, and/or model design
(i.e. different choices in the modelling assumptions includ-
ing different ice-sheet model (ISM) formulations, different
input parameters’ values, etc.) within a multi-model ensem-
ble (MME) approach. This results in an ensemble of real-
isations, named ensemble members. Recent MME studies
have analysed, within the Ice Sheet Model Intercomparison
Project for CMIP6 (ISMIP6), the future evolution of the ice
sheets of Greenland (Goelzer et al., 2018, 2020) and Antarc-
tica (Seroussi et al., 2020).

Providing such projections using numerical models is
challenging because the considered physical processes are
highly complex and may involve non-linear feedbacks oper-
ating on a wide variety of timescales. Due to the importance
of these projections in supporting coastal adaptation (Kopp et
al., 2019), improving their interpretability is of high interest.

When dealing with interpretability, the key is generally not
only to deliver modelling results but also to explain why the
numerical model delivered some particular results given the
set of chosen modelling assumptions (Molnar, 2022). Com-
monly used approaches to improve interpretability usually
focus on measuring the importance of modelling assump-
tions for prediction (e.g. Lundberg et al., 2020). Two main
approaches exist, either global or local. In the global ap-
proach, the objective is to explore the sensitivity over the
whole range of variation in the considered modelling as-
sumption, i.e. to assess the variable importance across the
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whole MME dataset. This can be done by quantifying the
MME spread and by identifying its origin (see, among others,
Murphy et al., 2004; Hawkins and Sutton, 2009; Northrop
and Chandler, 2014). For this objective, popular statistical
approaches generally rely on variance decomposition (analy-
sis of variance, ANOVA); see, for example, Yip et al. (2011)
for an introduction. To complement these global methods, we
adopt in this study a second approach named “local” because
it aims at measuring the importance of the input variables lo-
cally at the level of individual observations (and not globally
across all observations unlike the first approach). This means
that the local approach focuses on how particular modelling
assumptions (i.e. value of a given model parameter, a given
ISM formulation, etc.) influence the considered prediction.
This is the local attribution approach adopted by the machine
learning community (e.g. Murdoch et al., 2019) and named
“situational” in the statistical literature (Achen, 1982). As de-
scribed by Štrumbelj and Kononenko (2014), if the measure
of local importance is positive, then the considered modelling
assumption has a positive contribution (increases the predic-
tion for this particular instance); if it is negative, it has a neg-
ative contribution (decreases the prediction); and if it is 0, it
has no contribution.

A possible local attribution approach can follow a “one-
factor-at-a-time” procedure, which consists of analysing the
effect of varying one model input factor at a time while keep-
ing all others fixed (see an example performed by Edwards
et al., 2021). Though simple and efficient, this approach
presents several shortcomings (dependence on the chosen
base case, dependence on the magnitude of variations, fail-
ure when the model is non-linear, etc.; see an in-depth anal-
ysis by Štrumbelj and Kononenko, 2014). A more generic
approach has emerged in the domain of explainable machine
learning (Murdoch et al., 2019), named SHapley Additive ex-
Planations (SHAP; Lundberg and Lee, 2017). SHAP has suc-
cessfully been used in many domains of application, such as
finance (Bussmann et al., 2021), medicine (Jothi and Husain,
2021), land-use change modelling (Batunacun et al., 2021),
mapping of tropospheric ozone (Betancourt et al., 2022), or
digital soil mapping (Padarian et al., 2020).

SHAP builds on the Shapley values that were originally
developed in cooperative game theory for “fairly” distribut-
ing the total gains to the players, assuming that they all col-
laborate (Shapley, 1953). Making the analogy between a par-
ticular prediction and the total gains, SHAP allows breaking
down any prediction as an exact sum of the modelling as-
sumptions’ contribution with easily interpretable properties
(see a formal definition in Sect. 3); each contribution then re-
flects the influence of the considered modelling assumptions
for the particular prediction.

In this study, our objective is to compute measures of local
importance for each considered modelling assumption using
SHAP applied to an MME of sea-level projections. Applying
SHAP in this context faces however several difficulties. First,
it is not the prediction provided by the modelling chain (used

to generate the MME) that is decomposed by SHAP, but it
is a machine-learning-based proxy (named the ML model)
that relates the modelling assumptions (termed as “inputs” in
the following) to the equivalent sea-level changes (denoted
sl). Validating the use of this proxy is one key prerequisite
of the approach. Second, building the ML model relies on
the analysis of the available MME results, which are lim-
ited (typically up to 50–100 ensemble members) due to the
large computational time cost of the modelling chain. This
results in MMEs that are incomplete and unbalanced: i.e.
several combinations of modelling assumptions are missing
in the MME while some are more frequent than others. Sta-
tistically, this incompleteness and unbalanced design might
result in statistical dependence among the input variables
(related to the modelling assumptions). Overlooking this de-
pendence structure might mislead us in the interpretation of
the inputs’ individual influence; see an extensive discussion
by Do and Razavi (2020). To overcome the afore-described
difficulties, we propose a SHAP-based procedure combined
with a cross-validation procedure (Hastie et al., 2009) and
appropriate techniques for modelling the dependence (Aas
et al., 2021; Redelmeier et al., 2020). Through aggregation
of the SHAP-based local explanations, we further show how
they can be helpful for both improving the scientific interpre-
tation and guiding future model developments. The proposed
procedure is applied to sea-level projections for the Green-
land ice sheet (Goelzer et al., 2020) by considering the time
evolution of sea-level contributions.

The paper is organised as follows. We first describe the
sea-level projections used as an application case and the cor-
responding design of numerical experiments (Sect. 2). In
Sect. 3, we provide further details in the statistical methods
that are used to estimate the local explanations. In Sect. 4, we
apply the methods and provide some approaches to combine
the local explanations to obtain global understanding of the
MME results across time.

2 Multi-model ensemble case study

To test our approach, we define a case study based on the
MME study carried out by Goelzer et al. (2020) in the frame-
work of the ISMIP6 initiative. In the following, we only pro-
vide a brief summary of the GrIS MME dataset, and the in-
terested reader is invited to refer to Goelzer et al. (2020) and
references therein for further details.

To compute the annual time evolution of sea-level con-
tributions from the Greenland ice sheet (GrIS) up to 2100,
the modelling chain combines different models: (1) a num-
ber of AOGCMs that produce climate projections accord-
ing to given greenhouse gas forcing scenarios, (2) a regional
climate model (RCM) that locally downscales the AOGCM
forcing to the GrIS surface, and (3) a range of ISMs (ini-
tialised to reproduce the present-day state of the GrIS as best
as possible from a given initial year to the end of 2014) that
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Figure 1. (a) Time evolution of the sea-level contribution (with re-
spect to 2015) from the Greenland ice sheet (in cm sea-level equiv-
alent, SLE). The results are the MIROC5 RCP8.5-forced MME of
Goelzer et al. (2020). The straight red line is the temporal ensemble
mean.

produce projections of ice mass changes and sea-level contri-
butions. Given bed topography across the ice–ocean margin
around Greenland, the ISMs are forced by surface mass bal-
ance (denoted SMB) anomalies from the atmospheric RCM-
derived forcing and by an empirically derived parametrisa-
tion that relates changes in meltwater runoff from the RCM
and ocean temperature changes from the AOGCMs to the re-
treat of tidewater glaciers (Slater et al., 2020). The parameter
that controls retreat is denoted κ and is used to sample uncer-
tainty in the parametrisation (Slater et al., 2019).

As the primary objective of this work is to evaluate the rel-
evance of the “SHAP” approach, we focus on a subset of the
original GrIS MME study based on one AOGCM, namely
MIROC5 (Model for Interdisciplinary Research on Climate
– version 5) forced under the most impactful climate scenario
Representative Concentration Pathway 8.5 (RCP8.5) because
a sufficient number of MME results are available to validate
our approach. For this case, a total of 55 numerical exper-
iments were extracted to analyse the time evolution of sea-
level changes with respect to 2015 (Fig. 1); each of these
results is associated with different modelling choices repre-
sented by different ISMs that are described in Appendix A,
Table A1. In addition, for the selected AOGCM, we are
able to analyse the sensitivity to the parameter κ based on
the availability of the numerical experiments denoted exp05,
exp09, and exp10 in Table 1 of Goelzer et al. (2020).

The analysis is focused on nine main modelling assump-
tions related to different aspects of the modelling chain (Ta-
ble 1), namely numerical implementation, initial conditions,

modelling of ice-sheet processes, and environmental forcing.
Only the modelling assumptions that are commonly shared
by all models described by Goelzer et al. (2020) in their Ap-
pendix A were considered, i.e. without an empty entry in Ta-
ble A1 in this paper. Note that some preliminary groupings
of categories were carried out to ensure a minimum of vari-
ation across the experiments with at least two experiments
associated with a given category (specified in the last col-
umn of Table 1), which is needed to properly conduct the
performance analysis of the ML model (see further details in
Sect. 3.2).

In the following, we name the choices made for each of
these modelling assumptions inputs. One input setting de-
fines an experiment of the MME. Formally, the inputs are
treated either as continuous variables (for κ , minimum and
maximum resolution and initial year) or as categorical vari-
ables (for the five other ones). Figure 2 shows that the de-
sign of experiments is unbalanced: some categories (like RA
for instance, Fig. 2b) or some values (like minimum reso-
lution at 5 km, Fig. 2e) are more frequent than others. The
design is also incomplete with large gaps in the histograms.
This is for instance the case for κ between −0.9705 and
−0.3700 km (m3 s−1)−0.4 ◦C−1 (Fig. 2i) because this param-
eter was sampled for only three different values by most
models (the median, the 25th and the 75th percentile), and
the additional two values were only sampled by one ISM.

3 Methods

3.1 Overall procedure

Let us consider sl(t) the sea-level change (with respect to a
reference date) at a given time t that is numerically simulated
from the chain of models, denoted f , described in Sect. 2. We
assume that the different models (part of the MME) share
the same characteristics corresponding to p different mod-
elling assumptions (e.g. choice in initial SMB or ice flow
formulation, value of the grid size). In our case p = 9 (see
Sect. 2). To each of these modelling assumptions is assigned
a random variable x. The vector of p input variables (p mod-
elling assumptions) is denoted by x = {x1,x2, . . .,xp}. We
consider n different experiments, each of them associated
with a particular x(i). The MME results at a given time t are
{sl(i)(t), x(i)}i=1,...,n with sl(i)(t)= f (x(i)). This means that
our knowledge on the mathematical relationship f is only
partial and based on the n MME results. To overcome this
difficulty, we replace f by a machine-learning-based proxy
(named the ML model) built using the MME results, the ad-
vantage being to make some predictions for input configu-
rations that are not present in the original MME dataset at
a low computation time cost. The ML model is denoted f̃θ
where θ correspond to the ML model’s parameters (named
hyperparameters; see Appendix B).
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Table 1. Modelling assumptions considered in the MIROC5 RCP8.5-forced GrIS MME.

Type Modelling assumption Symbol Value range/categories Grouping of categories

Initial conditions Type of initialisation
method

init Data assimilation of velocity
(DAv); nudging to ice mask
(NDm); nudging to surface el-
evation (NDs); and a category
denoted DAs,i that groups data
assimilation of surface eleva-
tion, data assimilation of ice
thickness, spin-up, and tran-
sient glacial cycles

Initial conditions Initial surface mass bal-
ance (SMB)

SMB Different RCMs among
RACMO, either RACMO2.1
or RACMO2.3 (RA); MAR;
HIRHAM5 (HIR); and implied
SMB (ISMB; see further details
in Goelzer et al., 2020)

Experiments that use clima-
tology and historical spin-up
from BOX but historical exper-
iment from MAR (or RACMO)
anomalies were assigned to the
MAR (or RA) category

Initial conditions Initial year that is used
to compute the present
day until the end of
2014

Year0 From 1979 to 2008

Numerical implementa-
tion

Numerical method Num Finite difference (FD) or finite
element (FE)

Only one modelling team has
used a numerical scheme of fi-
nite volume type: this choice
was grouped with FE

Numerical implementa-
tion

Minimum value of the
grid size

res_min From 0.25 to 16 km

Numerical implementa-
tion

Maximum value of the
grid size

res_max From 0.90 to 30 km

Ice-sheet processes Type of ice flow iceFlow Shallow-ice approximation
(SIA), shallow-shelf approx-
imation (SSA), higher order
(HO), SIA and SSA combined
(HYB)

Ice-sheet processes Bed topography Bed Two datasets are considered:
BedMachine v3 by Morlighem
et al. (2017) (“M”); and the one
by Bamber et al. (2013) (“B”)

Environmental forcing Value of the retreat pa-
rameter

κ From −0.9705 to
+0.0079 km (m3 s−1)−0.4 ◦C−1

Given a specific setting x∗ (i.e. an instance of modelling
choices made by the modellers for each of the considered
assumptions), we follow the additive feature attribution ap-
proach that has been developed for ML models (e.g. Štrum-
belj and Kononenko, 2014; Lundberg and Lee, 2017). This
approach proposes improving the interpretability of a partic-
ular prediction f (x∗) for a given time horizon t by decom-
posing it as a sum of the inputs’ contributions µ∗i (t) (specific
to x∗) as follows:

sl∗ (t)= f
(
x∗
)
≈ f̃θ (x

∗)= µ0(t)+

p∑
j=1

µ∗j (t), (1)

where µ0(t) (named the base value) is a constant value (see
definition in Sect. 3.3).

It is important to note that Eq. (1) does not aim to lin-
earise f but to compute the contribution of each input to the
particular prediction value f (x∗). This means that the de-
composition provides insights into the influence of the par-
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Figure 2. Count number of the MIROC5 RCP8.5-forced GrIS MME members with respect to the different modelling assumptions described
in Table 1.

ticular instance of the inputs x∗ relative to f (x∗): (1) the
absolute value of µ∗(t) informs the magnitude of the influ-
ence at time t directly expressed in physical units (for in-
stance in centimetres for sea level), which eases the inter-
pretation; (2) the sign of µ∗(t) indicates the direction of the
contribution, i.e. whether the considered modelling assump-
tion pushes the prediction higher or lower than the base value
µ0(t).

In order to quantify µ∗(t) in Eq. (1), the different steps of
the proposed approach (schematically represented in Fig. 3)
are as follows.

– Step 1, build and train ML models. At a given time
horizon t , an ML model f̃θ is built using some super-
vised ML techniques (see Hastie et al., 2009, for an
overview). We rely here on three types of ML mod-
els, namely a linear regression (denoted LIN) model
(because of the simplicity of its implementation) and
two tree-based approaches, a random forest regression
method, denoted RF (Breiman, 2001), and extreme gra-
dient boosting for regression, denoted XGB (Chen and
Guestrin, 2016), which have shown high performance
in diverse benchmark exercises (e.g. Grinsztajn et al.,
2022, and references therein). See Appendix B for fur-
ther details on these techniques and their respective hy-
perparameters θ .

– Step 2, evaluate the predictive capability and select
the best-performing ML model. The decomposition de-
scribed in Eq. (1) is only meaningful provided that the
assumption of replacing f with f̃θ is valid. From this
perspective, we propose assessing this assumption’s va-
lidity by measuring the predictive capability of f̃θ using
a leave-one-out cross-validation procedure (Hastie et
al., 2009). This validation is performed by considering
the different parametrisations of the ML methods; i.e.
the validation is performed by considering different val-
ues of the hyperparameters θ for each of the considered
ML models. Two indicators are computed, namely a lo-
cal one related to the considered ith MME result, which
measures the relative absolute error (denoted RAE(i)),
and a global one (denoted MRAE) defined as the av-
erage value of the RAE(i) values computed across all
n MME results. Then, for the ith MME result, the ML
model that performs the best with respect to the mini-
mum value of MRAE+RAE(i) (i.e. both globally and
locally for the considered ith MME result) is retained
for the next step. The results of Step 2 are also useful to
characterise the ML prediction error. Further details are
provided in Sect. 3.2.

– Step 3, local importance analysis. This step aims to per-
form the additive decomposition (Eq. 1) using the se-
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lected ML model. Among the different available meth-
ods (Molnar et al., 2020), we rely on the SHAP ap-
proach proposed by Lundberg and Lee (2017) because
of its strong theoretical basis (see further details in
Sect. 3.3 as well as Aas et al., 2021, their Appendix A,
for a description from a modeller’s perspective) as well
as its multiple use in various application areas (see In-
troduction). Special care is given to the impact of the
inputs’ dependence by application of methods described
in Sect. 3.4.

– Step 4, summarise local explanations. The local expla-
nations are combined and aggregated to provide insights
into the model structure and to inform the sensitivity
of sl(t) to the modelling assumptions at each time hori-
zon t . Inspired by Lundberg et al. (2020), the sensitivity
analysis is conducted at different levels:

– Level 1, locally at a given prediction time. The
value and sign of µ∗i are analysed for a partic-
ular experiment. An application is provided in
Sect. 4.3.1;

– Level 2, model structure at a given prediction time.
How the influence measured by µ∗i (magnitude and
sign) evolves as a function of the ith input value is
analysed. An application is provided in Sect. 4.3.2.

– Level 3, globally over time. How the magnitude of
the influence measured by |µ∗i | evolves across time
is analysed by considering all experiments. To be
able to compare the influence between the different
predictions across time, we preferably analyse the
absolute value of a normalised version of µ∗; i.e.
µn(t)= µ

∗(t)/(sl∗ (t)−µ0 (t)). An application is
provided in Sect. 4.3.3.

3.2 Predictive capability of the ML models

The objective of this section is to assess the validity of replac-
ing f by an ML model f̃θ (with θ being the ML hyperparam-
eters). To do so, we aim to quantify the predictive capability
of f̃θ , i.e. whether f̃θ is capable of predicting sl with high ac-
curacy given yet-unseen instances of the modelling assump-
tions (inputs). If this predictive capability is high, replacing
f with f̃θ can be considered a valid assumption. The predic-
tive capability of the ML model is commonly assessed using
some global performance indicators calculated for a given
test set T . Ideally, the analysis can be performed by defin-
ing an independent test set T in addition to the MME results.
In the absence of such an independent dataset, we preferably
rely on a leave-one-out cross-validation procedure (Hastie et
al., 2009) that uses part of the available MME results to train
the ML model f̃θ and a different part to test it. At a given
time t , the procedure holds as follows.

– Step 1. Extract the ith MME result.

Figure 3. Schematic overview of the different steps of the proce-
dure.

– Step 2. Train f̃θ using the other n− 1 parts of the data,
and the prediction error measured by e(i)(t)= sl(i) (t)−
ŝl(i) (t) is calculated when predicting the ith part of the
data.

– Step 3. The procedure is re-conducted for i = 1,2, . . .,n,
and performance indicators are calculated by combining
the n estimates of the prediction error.

We use two performance indicators, namely a local one that
measures the local predictive capability related to the con-
sidered ith MME result and a global one that measures the
predictive capability computed across all n MME results.
The interest is twofold: the local indicator gives confidence
in the local importance analysis for the considered ith case,
and the global one gives confidence in the computation of the
Shapley values, which require making predictions for inputs’
configurations that are not necessarily present in the original
MME dataset (see Sect. 3.3 and 3.4).

On the one hand, the local performance indicator is cho-
sen to be the absolute error AE(i)(t)= |e(i) (t) |. To be able
to compare the results across time and across the exper-
iments, its normalised version will also be used, i.e. the
relative absolute error RAE(i)(t)=

∣∣∣ e(i)(t)
sl(i)(t)

∣∣∣. On the other
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hand, the global performance indicator is chosen to be
the mean absolute error MAE(t)= 1

n

∑
i=1,...,n

|e(i)(t) | (and

by its normalised version, the mean relative absolute error
MRAE(t)= 1

n

∑
i=1,...,n

RAE(i)(t)). For a given case i and at

a particular time t , the ML model that minimises MRAE+
RAE(i) is then retained for the local explanation analysis de-
scribed in Sect. 3.3. This means that only the ML model that
performs the best both globally (across the n MME results)
and locally (for the considered ith MME result) is selected
for the local explanation analysis.

Finally, it should be noted that no matter how much effort
is put in increasing the ML predictive capability, a perfect
match to the true model is rarely achievable, in particular due
to difficulties in approximating the mathematical relationship
between the inputs and sl or due to the absence of input vari-
ables that are important with respect to the sl prediction error.
Thus, a residual degree of prediction error may still remain.
This has implications for the interpretation of low |µ∗j (t)|
values. In theory, |µ∗j (t)| = 0 means that the j th input has no
impact on the prediction at time t ; i.e. it has negligible influ-
ence. In practice, the absence of influence can be concluded
only up to a given threshold that is related to the residual pre-
diction error. This means that low contribution values cannot
be distinguished from the predictive error. In the following,
we propose using different performance indicators given the
level of the sensitivity analysis (Step 4 described in Sect. 3.1)
to assess the significance of the inputs’ influence with re-
spect to the prediction error: for Level 1, we use AE(i)(t);
for Level 2, we use MAE(t); for Level 3, we analyse a vari-
ant of RAE(t), namely RAEn (t)=

∣∣∣ e(t)
sl(t)−µ0(t)

∣∣∣.
3.3 SHapley Additive exPlanations

We follow the approach developed by Lundberg and Lee
(2017), who proposed defining µ∗i (t) in Eq. (1) using the
Shapley value (Shapley, 1953). The Shapley value is used
in game theory to evaluate the “fair share” of a player in a
cooperative game; i.e. it is used to fairly distribute the total
gains to multiple players working cooperatively. It is a fair
distribution in the sense that it is the only distribution satis-
fying some desirable properties (efficiency, symmetry, linear-
ity, “dummy player”; see proofs by Shapley, 1953; see Aas
et al., 2021, their Appendix A for a comprehensive interpre-
tation of these properties from an ML model perspective).

Formally, consider a cooperative game with k players and
let S ⊆K = {1, . . .,k} be a subset of |S| players. Let us define
a real-valued function that maps a subset S to its correspond-
ing value val : 2S→ R and measures the total expected sum
of payoffs that the members of S can obtain by cooperation.
The gain that the ith player gets is defined by the Shapley
value with respect to val:

µi(t)=
1
k

∑
S⊆K\{i}

(
k− 1
|S|

)−1

(val(S ∪ {i})− val(S)). (2)

Eq. (2) can be interpreted as a weighted mean over contri-
bution function differences for all subsets S of players not
containing player i. This approach can be translated for the
ML-based sl prediction by viewing each model input (each
type of modelling assumption) as a player and by defining the
value function val as the expected output of the ML model
conditional on x∗S , i.e. when we only know the values of the
subset S of inputs (Lundberg and Lee, 2017); namely

val(S)= E
(
f̃θ (x) |xS = x

∗

S

)
= E

(
f̃θ
(
xS̄,xS

)
|xS = x

∗

S

)
=

∫
f̃θ
(
xS̄,x

∗

S

)
p(xS̄ |xS = x

∗

S)dxS̄ , (3)

where S̄ is the complement of S such that xS̄ is the part of x
not in xS and p(xS̄ |xS = x

∗

S) is the conditional probability
distribution of xS̄ given xS = x∗S .

In this setting, the Shapley values can then be interpreted
as the contribution of the considered input to the difference
between the prediction f̃θ (x∗) and the base value µ0. The
latter can be defined as the value that would be predicted
if we did not know any inputs (Lundberg and Lee, 2017)
and is chosen as the expected prediction for sl without con-
ditioning on any inputs, i.e. the unconditional expectation
µ0 = E(f (x)). In this way, µ∗i in Eq. (1) corresponds to the
change in the expected model prediction when conditioning
on that input and explains how to depart from E(f (x)). The
interest is that the sum of the Shapley values for the different
inputs is equal to the difference between the prediction and

the global average prediction
p∑
i=1
µ∗i = f̃θ (x

∗)−µ0, which

means that the part of the prediction value which is not ex-
plained by the global mean prediction is totally explained by
the inputs (Aas et al., 2021, their Appendix A). This has sev-
eral implications in the MME context: (1) any input will be
assigned a Shapley value (defined by Eq. 2); (2) if µ∗i = 0, it
indicates the absence of influence for the ith input (related to
the dummy player property of the method); (3) the sum of the
inputs’ contributions is guaranteed to be exactly f̃θ (x∗)−µ0
(related to the efficiency property of the method). This also
means that the selection of the input variables in the analy-
sis is an important step because the quantified contributions
are dependent on the choice of which input variables are in-
cluded in the analysis (see Discussion, Sect. 5).

In practice, the computation of the Shapley value may be
demanding because Eq. (2) implies covering all subsets S
(which grow exponentially with the number of factors de-
noted k, i.e. 2k) and Eq. (3) requires solving integrals, which
are of dimension 1 to k−1. For both reasons, the calculation
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is performed using a surrogate model (i.e. the ML model) in
place of the true function f because the design of comput-
ers is rarely complete (i.e. it rarely contains the results for
the different configurations of the inputs that are needed for
the calculation). To further alleviate the computational bur-
den in this study, we rely on the kernel SHAP method of
Lundberg and Lee (2017), which allows a computationally
tractable approximation, and a simple method for estimating
the value function in Eqs. (2)–(3). For this purpose, we use
the R package “shapr” (Sellereite and Jullum, 2020), which
accounts for inputs’ dependencies (see Sect. 3.4).

3.4 Accounting for inputs’ dependencies

In the case considered in this study, there exists some depen-
dence among the inputs. A commonly encountered example
is when the values for the minimum and maximum grid sizes
are correlated. Additional examples are provided in Sect. 4.1.
In this case, the interpretation of the SHAP decomposition
provided by the kernel SHAP method might give wrong an-
swers (Aas et al., 2021) because it relies on the indepen-
dence assumption for calculating the conditional probability
p(xS̄ |xS = x

∗

S) in Eq. (3). In our case, the dependence can-
not be neglected (see Sect. 4.1 for the application to the GrIS
MME), and we rely on the improved kernel SHAP method
proposed by Redelmeier et al. (2020) using conditional in-
ference trees, denoted CTREE (Hothorn et al., 2006), to ac-
count for the dependence structure of input variables that are
of mixed types (i.e. continuous, discrete, ordinal, and cate-
gorical) in the calculation of Eq. (3).

Conditional inference trees belong to the class of deci-
sion trees that use a two-stage recursive partitioning algo-
rithm, namely (1) partitioning of the observations by univari-
ate splits in a recursive way and (2) fitting a constant model
in each cell of the resulting partition (for the regression prob-
lem). Different splitting procedures exist, and here we use
the one proposed by Hothorn et al. (2006) that uses a sig-
nificance test to select input variables rather than selecting
the variable that maximises the information measure (such
as the Gini coefficient; Breiman, 1984). In this approach, the
stopping criterion is based on p values of the significance
test; for instance the p value must be smaller than a given
value (typically of 5 %) in order to split the considered node.
The advantage of CTREE is to avoid a selection bias towards
covariates with many possible splits or missing values (see
Hothorn et al., 2006, for further details).

To identify the dependence structure, we proceed as fol-
lows. We first consider the first input variable to be the re-
sponse and fit a CTREE model by viewing the remaining in-
put variables as the predictor variables. If the resulting tree
model includes one of the predictor variable, this means that
there is some dependence with the considered response (i.e.
the first variable in this example). Otherwise, the resulting
tree model is empty. This approach is re-conducted by con-
sidering each of the input variables as the response in turn. As

a result, the procedure identifies the non-empty tree model
or models that represent the dependence structure between
some input variables.

4 Application

In this section, we apply the procedure described in Sect. 2
(schematically depicted in Fig. 3) to the MIROC5 RCP8.5-
forced GrIS MME. We first analyse the dependence between
the different modelling assumptions (Sect. 4.1). Then, we
train and build ML models and select the best-performing
ones by following Steps 1–2 of the procedure (Sect. 4.2). On
this basis, we apply the local attribution approach to measure
the local importance and summarise the results to provide
different levels (detailed in Sect. 3.1) of information on sen-
sitivity (Steps 3–4, Sect. 4.3).

4.1 Inputs’ dependencies

We first analyse the statistical dependence among the mod-
elling assumptions (inputs) by applying the CTREE ap-
proach described in Sect. 3.4 (using a split criterion threshold
of 95 % and Bonferroni-adjusted p values). Figure 4 shows
the resulting tree models for the different modelling assump-
tions. We show here that all inputs are statistically dependent
with the exception of κ for which the tree model is empty,
which indicates the absence of (significant) dependence be-
tween this parameter and the other modelling assumptions.
The different tree models should be read by following the
example of the leftmost tree in the middle row of Fig. 4. This
tree provides the relation between the choice in the numeri-
cal method with the type of initialisation and the minimum
grid size. The bottom nodes (leaf nodes) provide the pro-
portion of experiments given the combination of modelling
choices defined along the branches of the tree model. The
blue (red) colour is related to the finite element FE (finite
difference FD) category. This tree model indicates for exam-
ple that all models with initialisation of type DAv have a nu-
merical method of type FE (rightmost branch) and all models
with initialisation different from DAv and a minimum reso-
lution of 0.9, 5, or 8 km have a numerical method of type FD
(leftmost branch).

4.2 Predictive capability of the ML models

Using the results of the MIROC5 RCP8.5-forced GrIS MME,
we train a series of ML models to predict sl across time. The
following ML models with corresponding hyperparameters
(see Appendix B for details) are considered:

– 9 RF regression models with hyperparameters ns= 5 or
10; mtry = 1, 3, 6, or 9; and ntree = 2000;

– 30 XGB models with hyperparameters maximum
depth= 2, 3, 6, or 9; learning rate= 0.025, 0.1, or 0.25;
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Figure 4. Tree models representing the dependence between the different modelling assumptions (indicated at the bottom of each tree). The
bottom nodes (leaf nodes) provide the proportion of experiments given the modelling choices defined along the branches of the tree model.
Each colour corresponds to a different category of the considered modelling assumption. For instance, the left tree in the middle row provides
the relation between the choice in the numerical method with the type of initialisation and the minimum grid size. The blue (red) colour is
related to the finite element FE (finite difference FD) category.

and maximum number of boosting iterations= 250 or
450;

– 1 LIN model.

To assess the predictive capability of the considered ML
models at each time instant, we apply a leave-one-out cross-
validation approach by following the procedure of Sect. 3.2.
Figure 5a depicts the time evolution of the performance in-
dicator MRAE for all considered ML models. Depending on
the type of ML model (and corresponding parametrisation),
the global performance can reach satisfactory levels below
10 %, in particular for some XGB models.

As explained in Sect. 3.2, satisfying the global perfor-
mance criterion does not necessarily ensure that the ML
model gives an accurate approximation of all sl predictions.
For some cases, the discrepancies can be too large to prop-
erly analyse the local explanations. This is illustrated with
Fig. 5b, which shows the comparison between the true sl
value and the corresponding ML-based prediction for 2100.
For instance, we note that the predictions for the largest sl
value largely depart from the 1 : 1 line except for the LIN
model (outlined in black in Fig. 5b). This is also the case
for the lowest sl values for which a given parametrisation
of the XGB model performs the best (outlined in red in

https://doi.org/10.5194/tc-16-4637-2022 The Cryosphere, 16, 4637–4657, 2022



4646 J. Rohmer et al.: Improving interpretation of sea-level projections

Fig. 5b). Thus, to further increase our confidence in replac-
ing the “true” numerical model by the ML model, we apply
the filtering approach (described in Sect. 3.2) based on the
joint minimisation of the global and of the local performance
indicators. The retained predictions are outlined in blue in
Fig. 5b.

In total, LIN, XGB, and RF models retained 3.4 %, 24.6 %,
and 72 % respectively of the total number of experiments (on
average over time). After applying this procedure, the MRAE
criterion (shown in blue in Fig. 5a) reaches values below
10 % on average over time (with a maximum value not larger
than 15 % for the year 2040). Note that the MRAE curve af-
ter this selection is not necessarily the lowest one because the
selection procedure implies minimising not only MRAE but
also the local performance RAE(i) (see Sect. 3.2).

4.3 From local to global explanations

In this section, we first compute the measures of local im-
portance for each experiment in the MIROC5 RCP8.5-forced
GrIS MME for a given prediction time (here 2100); such a
type of diagnostic (Level 1 of the procedure) helps to under-
stand and quantify the impact of particular assumptions made
by the modellers (Sect. 4.3.1). Then, we analyse in Sect. 4.3.2
how the influence of each modelling assumption evolves as
a function of the considered input value (Level 2 of the pro-
cedure). This analysis allows us to deepen our understanding
of the model structure for a given prediction time. Finally,
Sect. 4.3.3 summarises all results over time (Level 3 of the
procedure) to provide a global insight (i.e. across all MME
members) into the sensitivity of sl to the modelling assump-
tions.

4.3.1 Level 1: local explanations at a given prediction
time

We first illustrate the application of SHAP to a selected
set of ML-based sl predictions for 2100. Figure 6 provides
the SHAP-based decomposition of the ML-based prediction
(horizontal blue bar) into the positive (green bar) or negative
(red bar) contribution (µ value defined in Eqs. 2–3) of each
input using the 2100 ensemble mean of µ0 = 10.8 cm as a
base value. The inputs’ setting are indicated on the vertical
axis for each of the cases considered: Cases (a)–(f). The grey
colour indicates that the contribution cannot be distinguished
from the predictive error because its absolute value is below
the absolute error.

The analysis of Fig. 6 illustrates how the SHAP-based ap-
proach can be used to diagnose the MME results.

– Case (a) corresponds to the largest sl value (of
19.08 cm) that is predicted by the ML model at
17.79 cm (with a prediction error e ≈ 1.30 cm). Fig-
ure 6a confirms the physically expected result regard-
ing κ influence: the largest sl is mainly attributable
to the κ whose absolute value is the largest, i.e.

0.9705 km (m3 s−1)−0.4 ◦C−1. This choice pushes the sl
value higher than the base value by µ=+4.89 cm, i.e.
by ≈ 45 % of µ0. In this case, the two other largest con-
tributors to sl (with an influence of+2.75 and−1.54 cm
respectively) are related to using the M dataset for bed
topography and initial SMB of type RA. The other mod-
elling choices all have absolute contributions below |e|,
which indicates that their contributions are not signifi-
cant in comparison to the prediction error level (outlined
in grey in Fig. 6a).

– Case (b) (Fig. 6b) corresponds to the second-largest
sl value (of 15.32 cm) that is predicted by the ML
model at 15.36 cm (with a prediction error e ≈

0.04 cm). All modelling choices are similar to Case
(a) except κ , here set to a lower absolute value of
0.37 km (m3 s−1)−0.4 ◦C−1, and with the minimum grid
size set to a lower value of 8 km. Contrary to Case (a),
the influence of κ drops here to a low to moderate value
(+1.24 cm), and it is the choice of the minimum grid
size that contributes the most to sl (µ=+1.59 cm). We
note that all contributions can be considered with con-
fidence because their absolute values are all above the
absolute prediction error.

– Case (c) has the same setting as Case (b) except for a
larger minimum grid size (here of 16 km). This results
in a lower influence of the minimum grid size (µ drops
to +1.03 cm), but the contributions of all modelling as-
sumptions remain, to some extent, similar to Case (b).

– Case (d) corresponds to an sl value close to the one in
Case (c) and illustrates that, despite the differences with
Case (c) (i.e. initial SMB, initialisation type, and mini-
mum resolution), the contribution of the largest contrib-
utors to sl, i.e. ice flow type, initial year, and κ , remains
of the same order of magnitude between both cases.

The comparison between Cases (b) to (d) also points out
that, for relatively close predicted values, the modelling
choices contribute equivalently to the prediction despite
some minor differences in the setting of the modelling
assumptions.

– Cases (e) and (f) illustrate however that, when the dis-
similarity in the settings is larger, the modelling choices
contribute differently to the prediction although the pre-
dicted values are very close (here close to the ensemble
mean of 10.8 cm). In Case (f), all modelling assump-
tions contribute equivalently to sl, whereas it is mainly
ice flow type and the type of dataset for bed topography
in Case (f).

Such a type of diagnostic can be performed for any MME
results (they are all provided by Rohmer, 2022, for the year
2100) to inform the modellers about the most and least im-
pactful modelling choices for any sl prediction, such infor-
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Figure 5. (a) Time evolution of the performance criterion MRAE (expressed in %) computed using a leave-one-out cross-validation procedure
that assesses the predictive capability of all considered ML models with different parametrisations (RF models in green, XGB in red, and
LIN in black). The blue-coloured lines are related to the performance criterion after selecting the best-performing ML model with respect to
the joint minimisation of the global and of the local performance indicator described in Sect. 3.2; (b) comparison between the true and the
ML-based predicted sl value for 2100 by considering all ML models. The blue-coloured squares outline the retained results after selecting
the best-performing ML model.

mation being helpful to explain why a given instance of mod-
elling choice leads to a given sl value.

4.3.2 Level 2: model structure at a given prediction
time

We explore in Figs. 7 and 8 how the magnitude of the mod-
elling assumption’s contribution to sl, as well as the direc-
tion, changes depending on the value of the considered in-
put by applying the SHAP dependence plot proposed by
Lundberg et al. (2020). To judge the significance of the con-
tribution, we compare the results to the range defined by
±MAE= 0.18 cm (calculated from the leave-one-out cross-
validation procedure; see Sect. 4.2): contributions falling
within this range (outlined by the dashed horizontal red lines
in Fig. 7) indicate that they cannot be distinguished from the
predictive error.

We first analyse the continuous variables. Figure 7a con-
firms the large influence of κ (of several centimetres) for
large absolute values of κ . We also note that setting this
parameter to −0.17 km (m3 s−1)−0.4 ◦C−1 leads to a quasi-
negligible influence because µ falls within the range of
MAE. A clear trend can be noticed: κ influence decreases
with increasing value in a quasi-linear manner (with a slope
of ∼−8 cm per unit of retreat parameter). We also note
that setting κ above −0.17 km (m3 s−1)−0.4 ◦C−1 even im-
pacts negatively the sl prediction, which means that this
modelling assumption pushes the prediction lower than the
mean value for 2100. Finally, Fig. 7a provides indication of
where to perform additional numerical experiments to con-

firm the influence of κ , namely over the range −0.97 to
−0.37 km (m3 s−1)−0.4 ◦C−1 (where the results are scarce).

Though a trend in the (initial year – µ) mathematical re-
lationship is not straightforward to detect, Fig. 7b shows that
the influence can be considered significant with respect to the
predictive error MAE for some particular cases; |µ| reaches
low to moderate values not larger than 2 cm.

Figure 7c and d give insights into the influence of the spa-
tial resolution by showing a zone of low-to-moderate influ-
ence defined for a minimum and a maximum grid size < 5
and < 16 km respectively. In this zone, the average value
of |µ| across the cases is 0.55 and 0.27 cm for the mini-
mum and maximum resolution respectively (with a maxi-
mum value of up to ≈ 1.1 cm for both grid sizes). The in-
fluence can even be considered non-significant with 40 % of
the cases falling within the ±MAE range for the maximum
grid size. From a modelling perspective, this analysis sug-
gests that there is clear interest in running high-resolution
simulations. This means that if spatial grid resolution is too
coarse (i.e. if the minimum and maximum grid resolutions
are outside the identified zone), this choice may highly influ-
ence the results of sea-level projections; |µ| can be as high
as 1.60 and 2.50 cm for the minimum and maximum grid
size respectively. A comparison with the contributions of the
other modelling assumptions in Fig. 8 further suggests that
the influence of spatial resolution may dominate all other
modelling choices, since their contributions do not exceed
+1 cm; i.e. they are smaller than those of the identified zone.

Focusing on the categorical input variables, Fig. 8 further
indicates that the most impactful modelling assumption for
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Figure 6. Diagnostic of particular ML-based sl predictions using SHAP for the year 2100 considering six different settings of the modelling
choices (indicated on the vertical axis). The horizontal blue bar corresponds to the ML-based sl prediction (the difference with the true value
is indicated by the error term e expressed in cm SLE). Each row shows how the positive (green bar) or negative (red bar) contribution of
each input moves the prediction from µ0, i.e. the unconditional expectation of sl. The grey colour indicates that the contribution cannot be
distinguished from the predictive error because its absolute value is below the absolute error.
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Figure 7. Application of SHAP to all members of the MIROC5
RCP8.5-forced GrIS MME for the year 2100. Each panel provides
µ (y axis) as a function of the value of the minimum and maximum
grid resolution (c, d), of the initial year (b), and of the retreat pa-
rameter κ (a). The horizontal dashed red lines indicate the limits de-
fined by ±MAE calculated from the leave-one-out cross-validation
procedure: contributions falling within this range indicate that they
cannot be distinguished from the predictive error.

sl is the ice flow choice, either of SIA or of HYB type with
a positive or negative contribution, and the B dataset for bed
topography: the corresponding boxplots in Fig. 8b and e are
well outside the ±MAE range. Finally, Fig. 8 also highlights
some modelling choices with contributions that are hardly
distinguishable from the prediction error, namely any type of
numerical method, FD or FE (Fig. 8a), NDm, and NDs for
initialisation (Fig. 8c); HIR or RA for initial SMB (Fig. 8d);
and the M dataset for bed topography though some specific
cases present low-to-moderate values (see grey dots outside
the box in Fig. 8e).

4.3.3 Level 3: global explanations over time

The analysis of Sect. 4.3.2 is now performed for all members
of the MIROC5 RCP8.5-forced GrIS MME for any predic-
tion time. As indicated in Sect. 3.1, to be able to compare
the influence between the different predictions across time,
we analyse in Fig. 9 the statistics of the absolute value of
µn (t)= µ(t)/(sl(t)−µ0 (t)). To assess the negligible level
of the influence with respect to the ML prediction error, we
analyse the quartiles of RAEn (t)=

∣∣∣ e(t)
sl(t)−µ0(t)

∣∣∣ calculated at
each time instant for all members of the MIROC5 RCP8.5-
forced GrIS MME. If the boxplot depicted in Fig. 9 does not

Figure 8. Application of SHAP to all members of the MIROC5
RCP8.5-forced GrIS MME for the year 2100. Each panel provides
the boxplots of µ values given the modelling choice for the nu-
merical method (a), the ice flow (b), the initialisation (c), the ini-
tial SMB (d), and the type of bed topography dataset (e). Each
dot corresponds to a given MME member. The horizontal dashed
red lines indicate the limits defined by ±MAE calculated from the
cross-validation procedure.

overlap with the region defined by the interval between the
lower and the upper red cross, this means that the influence
measured by |µn| can be considered significant with respect
to the ML prediction error.

Considering initial conditions, Fig. 9a and c show that it
is the initialisation type that has the largest impact in the
medium term (before 2050/2060), and after this date, it is
the choice in the initial year that has the most impact. Con-
versely, in the long term (after 2050/2060), the influence of
the initialisation type reduces up to a negligible level (com-
pared to the prediction error). Figure 9b shows that the in-
fluence of the initial SMB is low (even negligible) regard-
less of the considered prediction time with the exception of
some particular cases outlined by black dots lying outside
the boundaries of the whiskers (these cases are illustrated in
Fig. 6a, e).

Considering numerical implementation, the choice of the
numerical method has here a small (even negligible) impact
on sl values (Fig. 9d) especially in the medium/long term
(after 2050). We note also that the moderate influence of
the minimum and maximum grid size remains quasi-constant
over time (Fig. 9e, f), hence suggesting that the grid size’s
influence is time-invariant; i.e. all modelled processes are af-
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fected by the spatial resolution in a similar way, indepen-
dently of the prediction time.

Finally, considering ice-sheet processes and environmen-
tal forcing, an important influence of κ is shown only after
2030/2040 (Fig. 6h) with a quasi-constant value after this
date. An increasing influence over time is also identified for
the ice flow type, though the temporal trend is only clear up to
the year 2070. We also show that the type of bed topography
dataset has only a low (even negligible) influence compared
to the prediction error, with the exception of some particular
cases (illustrated in Fig. 6a, e) outlined by black dots lying
outside the boundaries of the whiskers.

5 Discussion

Improving the interpretability of sea-level projections is a
matter of high interest given their importance to support
decision-making for coastal risk management and adapta-
tion. To this end, we adopt the local attribution approach de-
veloped in the machine learning community to provide re-
sults about the role of various modelling choices in gener-
ating inter-model differences in the MME. These results are
intended for different potential users.

First, the diagnostics illustrated in Fig. 6 (and all pro-
vided by Rohmer, 2022, for MIROC5 RCP8.5-forced GrIS
MME in 2100) help the individual modellers involved in the
modelling exercise to understand and quantify the impact of
their particular assumptions. Figure 6b–d illustrate situations
where the SHAP approach allows such critical analysis, in-
cluding checking that the same modelling assumptions have
a similar impact on close sl values.

Second, aggregating all diagnostic results (Level 2 and 3 of
the proposed approach) provides guidance to the modelling
group involved in the definition of experimental protocols for
MMEs (such as ISMIP6; Nowicki et al., 2016, 2020). Some
key aspects are identified and deserve to be taken into ac-
count in future model developments and modelling exercises.

– Our results confirm the need for simulations that are suf-
ficiently spatially resolved: sl results are largely affected
by too coarse grids (here with a minimum and maxi-
mum grid size larger than 5 and 16 km respectively) re-
gardless of the prediction time.

– The influence of the modelling assumptions depends
on the considered prediction time: in the short/medium
term (before 2050), initialisation and ice flow type pri-
marily contribute to sl, whereas in the long term, the
initial year and κ are tagged as key contributors; though
κ importance has a relatively well understood physical
basis, additional analysis should be carried out for the
initial year.

– Some modelling choices have little impact on the sl val-
ues (on average across the considered MME results), in

particular choosing a finite element or finite difference
numerical scheme or the dataset for bed topography.

– Additional computer experiments are worth conduct-
ing to better explore given parts of the parameter space
with a view to confirming the identified trends (Figs. 7
and 8), in particular for a minimum grid size rang-
ing from 3 to 4 km and for κ ranging from −0.97 to
−0.37 km (m3 s−1)−0.4 ◦C−1.

Finally, framing the diagnostic results with narratives is ex-
pected to facilitate the communication between modellers
and end users. What is “easily explained” through narra-
tives is expected to increase the end user’s level of trust in
the model and eventually their engagement in the decision-
making process (e.g. Jack et al., 2020). The narratives can
follow the example of the GrIS study (Fig. 6a): “the largest sl
predicted value is 19.1 cm by 2100 and is mainly attributable
(by a positive factor of almost 50 % of the ensemble mean)
to setting κ to its largest absolute value, i.e. a large contri-
bution of outlet glacier retreat, while the other modelling as-
sumptions have only moderate influence”. More broadly, this
provides a clear message for risk-adverse stakeholders inter-
ested in the upper tails of the distribution (named “high-end”
sea-level scenarios; Stammer et al., 2019), namely the impor-
tance of the dynamics of ice-sheet processes for projected
high sl values, especially in the second half of the century.
This message then calls for intensified future research work
to reduce uncertainty related to these processes.

These results were obtained by overcoming two major dif-
ficulties. The first one is related to the incomplete and unbal-
anced design of the numerical experiments (Sect. 4.1). Here,
applying more commonly used statistical methods, namely
the linear regression model or the ANOVA-based approach,
would hardly be feasible. On the one hand, Sect. 4.2 clearly
shows that the mathematical relationship between sl and the
inputs is not necessarily linear, and more advanced regres-
sion techniques need to be used (like RF or XGB models).
On the other hand, the considered design of experiments
is incomplete and unbalanced (as shown in Sect. 2), which
complicates the application of ANOVA. Ideally a full fac-
torial design should be used to properly apply ANOVA: in
our case, the design should then contain 3200 experiments,
i.e. far more than the available number of experiments. Some
solutions have been proposed in the literature (see, for ex-
ample, Evin et al., 2019, and references therein), and an
avenue for future work could focus on the comparison of
ANOVA with our approach. The second difficulty is related
to the presence of statistical dependencies (as outlined in
Sect. 4.1), which makes the interpretation of the individ-
ual effects less straightforward (a problem related to multi-
collinearity in the statistical community, e.g. Shrestha, 2020)
and might even lead to wrong conclusions regarding uncer-
tainty partitioning (see discussion by Do and Razavi, 2020).
Here the SHAP–CTREE combined approach developed by
Redelmeier et al. (2020) helps alleviate this problem by ex-
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Figure 9. Statistics of |µn| summarised by a boxplot at each time instant for all members of the MIROC5 RCP8.5-forced GrIS MME. The
lower and upper red crosses are the first and third quartile respectively of the cross-validation error RAEn. If the boxplot does not overlap with
the region defined by the interval between the red crosses, this indicates that the influence measured by |µn| can be considered significant
with respect to the ML prediction error. For readability, the upper bound of the y axis has been set to 2.

Figure 10. Robustness analysis of the local importance analysis for the largest simulated sl value in 2100 (Case (a) in Fig. 6). The horizontal
coloured bars correspond to the quantified contributions by including all input variables (results of Fig. 6a). The endpoints of the thick and
thin horizontal black error bars are the minimum/maximum and the percentiles at 25 % and 75 % respectively computed when iteratively
excluding one of the nine input variables.

plicitly incorporating the dependence in the computation of
the Shapley values (Sect. 3.4; see also Aas et al., 2021, for
an extensive study of this problem). In light of the different
algorithms available in the literature (Aas et al., 2021; Frye
et al., 2020), an interesting line of future research could fo-

cus on a more systematic analysis of the inputs’ dependence,
which could serve as a strong basis for defining clear recom-
mendations on how to treat it in the context of MMEs.

However, it should be underlined that the high perfor-
mance of our approach is strongly dependent on two key
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prerequisites. First, the high predictive capability of the ML
model should be carefully checked and confirmed as done
in the GrIS case (Sect. 4.2). For this purpose, several as-
pects need further investigation in future work: (1) instead
of selecting one single ML model, a combination of mod-
els could be proposed following, for example, the “super-
learner” method of van der Laan et al. (2007) or the model
class reliance approach of Fisher et al. (2019); (2) finding the
optimal hyperparameters’ settings could benefit from more
advanced search algorithms for optimisation (Probst et al.,
2019).

The second prerequisite is the careful selection of which
input variables to include in the analysis. The set of quanti-
fied contribution is always guaranteed, by construction (see
Sect. 3.3), to add up to exactly the total sl projection. This
has the practical advantage of easing the interpretation and
communication of the results. However, this also means that
the quantified contributions are themselves dependent on the
choice of the input variables. One advantage of the SHAP ap-
proach is that variables whose influence is negligible will be
assigned a low contribution, but this does not address the is-
sue of the impact of some missing input variables that are
important for the sl prediction, i.e. the influence of some
“hidden factors”. The proposed cross-validation error partly
addresses this problem since high cross-validation error re-
flects any difficulties in approximating the mathematical re-
lationship between sl and the inputs, which include the afore-
mentioned problem. To provide additional discussion, we
conducted a robustness analysis by re-running the local at-
tribution approach (and ML model fitting and selection) for
the largest simulated sl value in 2100 (Case (a) in Fig. 6), at
each iteration, with one of the nine input variables being re-
moved in turn. Figure 10 provides the changes in the quanti-
fied contributions represented by a horizontal black error bar.
The comparison with the width of the horizontal coloured
bar (representing the value of the original analysis including
all nine input variables) confirms the high robustness of the
large κ contribution (regardless of the selection of the input
variables) and shows the lack of robustness of most of the
input variables that were identified as non-significant with
respect to the prediction error (coloured in grey). In addi-
tion, though the variability is higher, the contribution of the
second- and third-largest contributor (initial SMB and bed
topography dataset) shows consistent results with the origi-
nal study. However, one disadvantage of this type of robust-
ness analysis is the much higher computational cost (at least
9 times), which makes it difficult to implement for all the
MME results. This requires further research work related to
the active research area of “sensitivity of the sensitivity anal-
ysis” (e.g. Razavi et al., 2021).

6 Concluding remarks and further work

In this study, we described the use of the machine-learning-
based SHapley Additive exPlanations (SHAP) approach to
quantify the importance of modelling assumptions in sea-
level projections produced in an MME study. The proposed
approach was applied to a subset of the GrIS ensemble that is
characterised by a limited number of experiments (50–100),
an unbalanced design, and the presence of dependence be-
tween the inputs. Our results have shown the added value of
the proposed approach to inform us about the influence of
the modelling assumptions at multiple levels: (Level 1) lo-
cally for particular instances of the modelling assumptions,
(Level 2) on the model structure at a given prediction time,
and (Level 3) globally over time. These results are intended
for different potential users, namely the ice-sheet modelling
community (individual modellers or modelling groups in
charge of the design of experiments) but also adaptation prac-
titioners, who take decisions based on sea-level projections
that rely on models such as those modelling the Greenland
ice mass losses. Trust in these projections and therefore ac-
celerated coastal adaptation can be enabled by the analyses
described in this study, allowing us to better interpret the un-
certainty range in projections. This study illustrates that per-
forming such diagnoses rigorously requires advanced math-
ematical techniques.

This study should however be seen as a first assessment
of the potential of the SHAP-based approach, and in order
to bring the SHAP-based approach to a fully operational
level, we recognise that several aspects deserve further im-
provements. First, a common pitfall of any new tool is its
misuse and over-trust in the results (as highlighted by Kaur
et al., 2020). Future steps should thus concentrate on mul-
tiplying the application cases (in particular by varying the
AOGCM and the RCP choice) with an increased cooper-
ation between the different communities, namely ice-sheet
modellers, ML researchers, human–computer interaction re-
searchers, and socio-economic scientists.

Second, it is the question of the global effects of the mod-
elling assumptions that deserves particular intensified inves-
tigation. In addition to methodological work exploring ad-
vanced procedures such as SAGE (Shapley Additive Global
importancE; Covert et al., 2020) or variance-based approach
used in the uncertainty quantification community (e.g. Iooss
and Prieur, 2019), the key will be the development of robust
protocols to design balanced and complete numerical exper-
iments. This partially resolved problem (see, for example,
discussion by Aschwanden et al., 2021) could benefit from
increased inter-disciplinary cooperation as well.
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Appendix A: Model characteristics

Table A1. Model characteristics used in the MIROC5 RCP8.5-forced GrIS MME considered in the study (adapted from Goelzer et al., 2020,
their Appendix A).

Model ID Numerics Ice Initialisation Initial Initial Velocity Bed Surface GHF Res min Res max
flow year SMB (km) (km)

AWI-ISSM1 FE HO DAv 1990 RA J M G 1 7.5
AWI-ISSM2 FE HO DAv 1990 RA J M G 1 7.5
AWI-ISSM3 FE HO DAv 1990 RA J M G 0.75 7.5
BGC-BISICLES FE SSA DAv 2000 HIR RM M 1 4.8
GSFC-ISSM FE SSA DAv 2007 RA J M SR 0.5 25
ILTS_PIK-SICOPOLIS1 FD SIA NDs 1990 ISMB J M M G 5 5
ILTS_PIK-SICOPOLIS2 FD HYB NDs 1990 ISMB J M M G 5 5
IMAU-IMAUICE1 FD SIA NDm 1990 RA M SR 16 16
IMAU-IMAUICE2 FD SIA NDm 1990 RA M SR 8 8
JPL-ISSM FE HYB DAv 1979 MAR RM M SR 0.25 15
JPL-ISSMPALEO FE SSA DAv 1979 RA RM M SR 3 30
LSCE-GRISLI FD HYB DAs,i 1995 MAR M M SR 5 5
MUN-GSM1 FD HYB NDm 1980 MAR B MIX 5 14
MUN-GSM2 FD HYB NDm 1980 MAR B MIX 5 14
NCAR-CISM FE HO DAs,i 1990 MAR M M SR 4 4
UAF-PISM1 FD HYB NDs 2008 RA M M SR 0.9 0.9
UAF-PISM2 FD HYB NDs 2008 RA M M SR 0.9 0.9
UCIJPL-ISSM1 FE HO DAv 2007 RA RM M SR 0.5 30
UCIJPL-ISSM2 FE HO DAv 2007 RA RM M SR 0.2 20
VUB-GISM FD HO DAs,i 1990 MAR M M SR 5 5
VUW-PISM FD HYB NDs 2000 RA M SR 2 2

The modelling assumptions outlined in bold were not considered in the analysis, namely velocity type, surface/thickness, and geothermal heat flux (GHF) because they are not commonly
shared across the different models. The reader is invited to refer to Goelzer et al. (2020) for the definition of the abbreviations for these three model characteristics.

Appendix B: ML models and hyperparameters’
definition

Let us first denote sli=1,...,n the ith value of sea-level change
calculated relative to the ith vector of p input parameters’
values xi=1,...,n

= {x1,x2, . . .,xp}
i=1,...,n, where n is the to-

tal number of experiments. In the following, we present the
machine learning (ML) models used in the study as well as
their hyperparameters.

B1 Linear regression (LIN) model

The linear regression (LIN) model is given by

sl= β0+

p∑
j=1

βjxj , (B1)

where βj denotes regression coefficients whose values
are estimated using a least-squares criterion minimisation
method.

B2 Random forest (RF) regression model

The random forest (RF) regression model is a non-parametric
technique based on a combination (ensemble) of tree predic-
tors (using regression trees; Breiman et al., 1984). Each tree
in the ensemble (forest) is built based on the principle of re-
cursive partitioning, which aims at finding an optimal parti-
tioning of the input parameters’ space by dividing it into L
disjoint sets R1, . . .,RL to have homogeneous Yi values in
each set Rl=1,...,L by minimising a splitting criterion (for in-
stance based on the sum of squared errors; see Breiman et al.,
1984). The minimal number of observations in each partition
is termed node size (denoted ns).

The RF model, as introduced by Breiman (2001), aggre-
gates the different regression trees as follows: (1) random
bootstrap sampling from the training data and randomly se-
lected mtry variables at each split; (2) constructing ntree trees
T (α), where αt denotes the parameter vector based on which
the t th tree is built; (3) aggregating the results from the pre-
diction of each single tree to estimate the conditional mean
of sl as

E(sl|x)=
n∑
j=1

wj (x)slj , (B2)
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where E is the mathematical expectation and the weights wj
are defined as

wj (x)=

ntree∑
t=1

wt (x,αt )

ntree

with wj (x,α)=
I{XiεRl(x,α)}

#
{
j : XiεRl(x, α)

} , (B3)

where I (A) is the indicator operator which equals 1 if A is
true and 0 otherwise; Rl(x,α) is the partition of the tree model
with parameter α which contains x.

The RF hyperparameters considered in the study are ns
and mtry, which have been shown to have a large impact on
the RF performance (Probst et al., 2019). The number of ntree
was set to a large value of 2000 because of its smaller influ-
ence on the RF model performance (relative to ns and mtry).

B3 Extreme gradient boosting (XGB) regression model

Extreme gradient boosting (Friedman, 2001) is a tree ensem-
ble method like RF model but differs regarding how trees are
built (gradient boosting builds one tree at a time) and how
tree-based results are combined (gradient boosting combines
results during the fitting process).

Formally let us denote by fj (x)= wj (x,α) the j th tree
model prediction. The set of tree models are learnt by min-
imising the following regularised objective:

n∑
i=1

l
(
sli, ŝli

)
+

∑ntree

t=1
�(ft ), (B4)

where �(ft )= γ T + 1
2λ‖w‖

2, with T the number of leaves
in the t th tree, and γ and λ are two regularisation parameters.

The first term l is a differentiable convex loss function that
measures the difference between the prediction ŝli and the
true value sli . The second term� penalises the complexity of
the regression tree functions. Equation (B4) is solved through
an additive training procedure by using a scalable implemen-
tation of Chen and Guestrin (2016) of tree boosting named
“XGBoost”. Among the different hyperparameters of this al-
gorithm, we focus on the following:

– the maximum depth of the tree models, which corre-
sponds to the number of nodes from the root down to
the furthest leaf node (this hyperparameter controls the
complexity of the tree model);

– the learning rate, which is a scaling factor applied to
each tree when it is added to the current approximation
(a low rate value means that the trained model is more
robust to overfitting but slower to compute);

– the maximum number of iterations of the algorithm.

Appendix C: List of abbreviations/acronyms

Abbreviations/ Definition
acronyms
ANOVA Analysis of variance
AOGCM Atmosphere–ocean general circula-

tion model
CTREE Conditional inference trees
DAv Data assimilation of velocity
GrIS Greenland ice sheet
FD Finite difference
FE Finite element
HO Higher order
ISM Ice-sheet model
ISMIP6 Ice Sheet Model Intercomparison

Project for CMIP6
LIN model Linear regression model
MIROC5 Model for Interdisciplinary Research

on Climate – version 5
MAE Mean absolute error
ML model Machine learning model
MME Multi-model ensemble
MRAE Mean relative absolute error
NDm Nudging to ice mask
NDs Nudging to surface elevation
RAE Relative absolute error
RCM Regional climate model
RCP Representative Concentration Path-

way
RF Random forest
SAGE Shapley Additive Global importancE
SHAP SHapley Additive exPlanations
SIA Shallow-ice approximation
SMB Surface mass balance
SSA Shallow-shelf approximation
XGB Extreme gradient boosting

Code and data availability. The sea-level dataset is the one
compiled by Edwards et al. (2021), https://raw.githubusercontent.
com/tamsinedwards/emulandice/master/inst/extdata/20201106_
SLE_SIMULATIONS.csv (last access: 2 June 2022), from the
original data of Goelzer et al. (2020) by selecting the experiments
with column names ice_source “GrIS”, region “ALL”, GCM
“MIROC5”, and scenario “RCP8.5” and with prior exclusion
of experiments with NaN (not a number) values of the retreat
parameter. R scripts to reproduce the results of Sect. 4.3 cor-
responding to the three levels of analysis and, in particular, the
different diagnostics for all MIROC5 RCP8.5-forced GrIS MME
results (similar to Fig. 6) are provided by Rohmer (2022) at
https://doi.org/10.5281/zenodo.7157302. The SHAP approach was
implemented using the R package shapr (Sellereite and Jullum,
2020). The CTREE approach was implemented using the R
package partykit (Hothorn and Zeileis, 2015). ML model fitting
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was performed using the R packages ranger (Wright and Ziegler,
2017) and xgboost (Chen et al., 2022).
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