Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2285-2022
https://doi.org/10.5194/tc-16-2285-2022
Research article
 | 
15 Jun 2022
Research article |  | 15 Jun 2022

Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements

Bas Altena, Andreas Kääb, and Bert Wouters

Related authors

Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021,https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Possible impacts of a 1000 km long hypothetical subglacial river valley towards Petermann Glacier in northern Greenland
Christopher Chambers, Ralf Greve, Bas Altena, and Pierre-Marie Lefeuvre
The Cryosphere, 14, 3747–3759, https://doi.org/10.5194/tc-14-3747-2020,https://doi.org/10.5194/tc-14-3747-2020, 2020
Short summary
River-ice and water velocities using the Planet optical cubesat constellation
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019,https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
MONITORING SUB-WEEKLY EVOLUTION OF SURFACE VELOCITY AND ELEVATION FOR A HIGH-LATITUDE SURGING GLACIER USING SENTINEL-2
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019,https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Importance of ice elasticity in simulating tide-induced grounding line variations along prograde bed slopes
Natalya Ross, Pietro Milillo, Kalyana Nakshatrala, Roberto Ballarini, Aaron Stubblefield, and Luigi Dini
The Cryosphere, 19, 1995–2015, https://doi.org/10.5194/tc-19-1995-2025,https://doi.org/10.5194/tc-19-1995-2025, 2025
Short summary
Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
The Cryosphere, 19, 219–247, https://doi.org/10.5194/tc-19-219-2025,https://doi.org/10.5194/tc-19-219-2025, 2025
Short summary
Seasonality in Terminus Ablation Rates for the Glaciers in Kalaallit Nunaat (Greenland)
Aman KC, Ellyn M. Enderlin, Dominik Fahrner, Twila Moon, and Dustin Carroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-3543,https://doi.org/10.5194/egusphere-2024-3543, 2024
Short summary
The Pléiades Glacier Observatory: high-resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024,https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary

Cited articles

Altena, B. and Kääb, A.: Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits, Remote Sens., 9, 300, https://doi.org/10.3390/rs9030300, 2017. a
Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, 2019. a, b
Anthony, S. M. and Granick, S.: Image analysis with rapid and accurate two-dimensional Gaussian fitting, Langmuir, 25, 8152–8160, https://doi.org/10.1021/la900393v, 2009. a, b
Bhattacharya, S., Charonko, J., and Vlachos, P.: Particle image velocimetry (PIV) uncertainty quantification using moment of correlation (MC) plane, Meas. Sci. Technol., 29, 115301, https://doi.org/10.1088/1361-6501/aadfb4, 2018. a
Brinkerhoff, D. and O'Neel, S.: Velocity variations at Columbia Glacier captured by particle filtering of oblique time-lapse images, arXiv preprint arXiv:1711.05366, https://arxiv.org/abs/1711.05366 (last access: 1 June 2022), 2017. a
Download
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Share