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Abstract. In recent years a vast amount of glacier surface
velocity data from satellite imagery has emerged based on
correlation between repeat images. Thereby, much empha-
sis has been put on the fast processing of large data volumes
and products with complete spatial coverage. The metadata
of such measurements are often highly simplified when the
measurement precision is lumped into a single number for
the whole dataset, although the error budget of image match-
ing is in reality neither isotropic nor constant over the whole
velocity field. The spread of the correlation peak of individ-
ual image offset measurements is dependent on the image
structure and the non-uniform flow of the ice and is used
here to extract a proxy for measurement uncertainty. A quan-
tification of estimation error or dispersion for each individ-
ual velocity measurement can be important for the inversion
of, for instance, rheology, ice thickness and/or bedrock fric-
tion. Errors in the velocity data can propagate into derived
results in a complex and exaggerating way, making the out-
comes very sensitive to velocity noise and outliers. Here, we
present a computationally fast method to estimate the match-
ing precision of individual displacement measurements from
repeat imaging data, focusing on satellite data. The approach
is based upon Gaussian fitting directly on the correlation
peak and is formulated as a linear least-squares estimation,
making its implementation into current pipelines straight-
forward. The methodology is demonstrated for Sermeq Ku-
jalleq (Jakobshavn Isbræ), Greenland, a glacier with regions
of strong shear flow and with clearly oriented crevasses, and
Malaspina Glacier, Alaska. Directionality within an image
seems to be the dominant factor influencing the correlation
dispersion. In our cases these are crevasses and moraine

bands, while a relation to differential flow, such as shear, is
less pronounced on the correlation spread.

1 Introduction

The increased global availability of satellites images has
created unprecedented archives of velocity products over
glaciers, ice caps (Fahnestock et al., 2016; Millan et al.,
2019; Friedl et al., 2021) and ice sheets (Rosenau et al.,
2015; Joughin et al., 2018). These velocity fields have a
large potential to enhance our understanding of ice mechan-
ics and glacier dynamics in space and time. Current efforts
are mostly focused on the automatic construction of large-
scale time series (Gardner et al., 2018; Altena et al., 2019;
Derkacheva et al., 2020) or the detection of special speed
variations, such as seasonal fluctuations or surge dynamics,
from a patchwork of velocity products (Greene et al., 2020;
Riel et al., 2021). Advances in time series construction of
glacier velocities will likely mature rapidly in the next few
years with the new and increasing availability of suitable
data. One promising direction of development is to include
the measurement precision into the estimation procedure for
glacier velocity variations, through either Bayesian infer-
ences (Brinkerhoff and O’Neel, 2017) or generalized least
squares (Altena and Kääb, 2017; Riel et al., 2021). Though,
for such approaches estimation of the dispersion of individ-
ual image correlations is needed. Dispersion in this context
is the magnitude of fluctuation or the expected variability in
the velocity estimate (i.e., variance σ ). Typically, a constant
variance is set for the whole dataset (known as homoscedas-
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ticity), as well as an absence of correlation (ρ) between ob-
servations of different velocity components (Leprince et al.,
2007). The dispersion estimation is then based upon sam-
pling statistics, using a region of bare and stable ground if
available, to extract a group variance along each axis (Her-
man et al., 2011; Heid and Kääb, 2012). However such bare
ground might be a correct representation neither for glacier
surfaces nor for their correlation dispersion estimate, as the
image content and in particular the characteristics of image
contrast to be matched are typically different between off-
and on-glacier area and vary in addition across the glacier
surface.

In our opinion the assumption of constant variance (ho-
moscedasticity) does not hold, as displacement extraction is
based upon pattern matching of small subsets of imagery,
where the image content influences the displacement preci-
sion. Pattern matching is based upon similarity metrics be-
tween the matched image across its extent. Such an image
subset can have texture with a strong directionality, such
as crevasses, or the texture in an image subset is distorted
due to skewed flow, such as shear (Debella-Gilo and Kääb,
2012). Both effects are common on glaciers but vary across
the scene, thus variation in dispersion might occur across a
scene as well. Within image matching, similarity between
imagery is computed for a multitude of locations within a
neighborhood, resulting in a surface of correlation scores for
each potential displacement location, and the maximum peak
of this surface is typically detected to indicate the most likely
image offset. Since neighboring displacement locations have
a similar appearance and partial overlap, the similarity score
captures smearing in the form of an elongated spread of the
correlation peak; i.e., such a peak is not a sharp spike but
rather a smooth top or dome. For distinct directionality in the
matched pattern location, the correlation surface gets elon-
gated in the prevailing direction, and such effects can thus
be used to extract a better formulation of dispersion for that
specific matching location and time interval.

The issue of homoscedasticity can also be approached
from the perspective of optical flow. Pattern matching and
optical flow can be seen as interchangeable techniques, as
they are mathematically similar (Lemmens, 1988). If image
gradients are present in several directions, the span of the ma-
trix is sufficiently large. However, when there is a predom-
inant direction in the image gradients, the matrix becomes
rank deficient and the optical flow estimation becomes ill-
posed (also known as the aperture problem). Hence, treat-
ing the displacement axis independent does not hold, nor is a
fixed precision term sufficient.

In this contribution, we demonstrate a fast estimation ap-
proach for dispersion characteristics for individual displace-
ment estimates from image matching. These dispersion char-
acteristics are then used to explore the connection between
the correlation spread and the processes of shear flow and
crevasse orientation. This gives a better understanding of the
image regions where displacement estimates need to be inter-

preted with caution. Furthermore, our method enables better
quantification of error propagation into the remote sensing
and derived model products, which can improve inferences
about, for instance, strain rates, glacier depth, bed roughness
and rheology.

2 Information within the correlation score surface

The backbone of velocity extraction from imaging satel-
lites is image correlation (a.k.a. pattern matching and fea-
ture tracking). For a general overview of an image-matching
pipeline, see Appendix A. The implementation of image cor-
relation is done through the use of a subdomain or kernel in
one image that is compared against a second image to find
the most similar signal within this subdomain. Typically, a
matching domain is a two-dimensional space (i,j ), where
each axis describes one translation. This leads to a two-
dimensional correlation surface of similarity scores (2i,j ),
where the highest score is taken as the candidate for the dis-
placement.

Apart from the displacement information, other metrics
can also be extracted from the correlation surface. For an ex-
tensive assessment of such metrics, see Xue et al. (2014).
We interpret these not as metrics for dispersion but describe
other qualitative aspects. For example, we interpret the ab-
solute value of the highest peak as a proxy for confidence,
while an indication for validity can be calculated from the
ratio between the highest and second highest peak. Similarly,
the signal-to-noise ratio is a proxy for uniqueness, but neither
of these descriptors give any information about the matching
precision. The just-mentioned reliability proxies are typically
provided on a point-per-point basis within glacier velocity
products, while an individual dispersion estimate is still lack-
ing.

However, upon close inspection the width and form of the
highest peak in a correlation surface changes and depends
greatly on the image structure, for example, surfaces with a
preferred orientation, such as crevasses (Fig. 1a). Here the
maximum score is situated on a ridge of similar high scores,
as there is a lack of distinguishable features along the direc-
tion of the crevasses. In the direction perpendicular to the
dominant feature orientation, the correlation peak is sharp
with steep flanks. In the direction of the feature orientation,
though, the peak is weakly defined in one of the two direc-
tions and thus uncertain. Such correlation ridges occur abun-
dantly on glaciers, as elongated features such as crevasses,
moraines and streamlines populate many glacier surfaces.
Paradoxically, it is these features that exhibit high contrast
and are persistent over time and thus represent the dominant
features for glacier displacement estimation.

A second process influencing the spread of correlation
scores is when significant shear occurs within the template
(Fig. 1b). Even though the variation (or contrast) in the tem-
plate might be present in all directions, a ridge in the correla-
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Figure 1. Examples of cross-correlation results with anisotropy, due to the image content or the underlying surface flow. For both panels, the
lower-left panel is the image template to be correlated with the upper-left search area. The resulting correlation surface is displayed in the
lower right, and a zoom around the correlation peak is in the upper right. Both examples (a) and (b) show typical glacier surfaces that result
in elongated correlation peaks (here called correlation ridges), sharply defined in one direction but weakly in the perpendicular direction.
NCC: normalized cross-correlation.

tion surface can emerge similarly to the one from crevasses.
In case of glacier surface shear, the simple translation as-
sumed in the pattern matching is not valid (Debella-Gilo and
Kääb, 2012). Misalignment in the outer parts of the template
causes dissimilarity so that the correlation peak gets damp-
ened and neighboring values increase at the same time, weak-
ening the relative strength of the peak. If the size of the tem-
plate is reduced in such situations, this spreading of corre-
lation scores is reduced, however at the cost of a decreasing
signal-to-noise ratio. A second remedy to shear or rotation is
to apposition an affine model instead of one with translation
only. Though non-linear and thus iterative in nature, such a
higher-order model creates the opportunity to estimate shear
and strain rates directly from the image matching (Debella-
Gilo and Kääb, 2012).

Formulating the precision of a match can be done by
looking directly at the variation in intensities within an im-
age (Kanazawa and Kanatani, 2003). Local derivative filters
can be used to describe the spatial variation within a Hes-
sian matrix. However at which scale these filters should be
set is in the case of naive image matching not always known.
Nonetheless an image-based approach for precision estima-
tion is beneficial when the scale is known, which is the case
for feature descriptors such as scale-invariant feature trans-
form (SIFT) or speeded-up robust features (SURF), and such
formulations have been worked out (Zeisl et al., 2009). An-
other approach, which is also taken in this study, is to di-
rectly look at the correlation peak. Similarly to the image-
based case, the curvature of the correlation peak can be de-
scribed by the Hessian approach. This approach is imple-
mented in Ampcorr an SAR-offset (synthetic-aperture radar)

procedure within the ROI_PAC package (Repeat Orbit Inter-
ferometry Package; Rosen et al., 2004) and is described in
a bit more detail in Casu et al. (2011). Here a similar ap-
proach is taken, but we directly model the correlation peak
to a Gaussian function. From the background given in this
section, our motivation is to capture information about the
correlation surface, and in particular its peak, potentially al-
lowing for a better judgment of the quality and precision of
individual matches for displacement measurement.

3 Methodology

We perceive the close surroundings of the correlation func-
tion as a probability density function. This is a standard per-
ception in the field of fluid mechanics (Bhattacharya et al.,
2018), where pattern matching is known as particle image
velocimetry (PIV). However, within this latter field of typi-
cally controlled laboratory environments, image matching is
performed on small distinct features; hence shear effects are
not present in the templates, while such effects are present
for ice flow. Because the correlation surface is perceived as a
probability density function, it is here fitted with a Gaussian
function to be in line with generalized least-squares inversion
techniques.

3.1 Co-variance from correlation spread

Here, we draw up a linear formulation to describe the vari-
ance of the correlation peak, which also considers its orien-
tation. At a certain location in this search space (i,j ), a two-
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dimensional Gaussian can be calculated through

f (i,j)= A · e
(
−(a·(i−i0)

2
+2b·(i−i0)·(j−j0)+c·(j−j0)

2)
)
, (1)

where i0 and j0 denote the center of the peak (i0 = imax+1i)
which might not coincide with the integer-valued location of
the highest value in the correlation grid (imax). The center of
the top can be estimated by a peak-finding function and is
here considered to be known. Equation (1) is in a simplified
form, whereA encompasses the magnitude and a, b and c are
lumped constants. A detailed derivation thereof is given in
Appendix B. Then, the rest of the unknowns can be estimated
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This gives the possibility for directly estimating the un-
knowns (in x) through least-squares adjustment from the sim-
ilarity scores (2). The direct neighborhood is used here (ra-
dius = 1) when the peak is next to the border; otherwise a
two-pixel radius is used. The lumped constants (a, b and c)
can then be reformulated to extract the variances (σ 2) and
their dependency (ρ) from Eq. (1):

2ρ =
b
√
a · c

, σ 2
i =

1
−2 · (1− ρ2) · a

,

σ 2
j =

1
−2 · (1− ρ2) · c

. (3)

This estimation procedure is an extension of Anthony and
Granick (2009), who only resolved for σi and σj . However
in the formulation of Eq. (1) the axes can have a depen-
dency (ρ), and correlation ridges with different orientations
can thus be estimated. Then the dispersion matrix (Qyy) is
composed of the estimates from Eq. (3) and the pixel spac-
ing (d) as follows:

Qyy =

[
dx 0
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]
·

[
σ 2
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ρσiσj σ 2
j

]
. (4)

The dispersion matrix (Qyy) can directly be inserted into a
co-variance matrix for error propagation or data assimilation.

The off-diagonal elements of this matrix describe the depen-
dencies between observations. Typically these are set to zero
for displacement couples (e.g., Derkacheva et al., 2020), but
they have the ability to describe the temporal and/or spatial
relational dependencies within the dataset (a.k.a. spatial co-
herency; Riel et al., 2014).

3.2 From (co-)variance to standard-error ellipse

For the dependencies between two-dimensional displace-
ments, as presented here, interpretation of the elements
within the dispersion matrix might not be intuitive. For exam-
ple, an equal variance can still produce an orientation depen-
dency, as can be seen for example in Fig. B1. Hence, here we
give the transformation from the standard-error axis (σ 2
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to a description of standard-error ellipse in the form of a mi-
nor and a major axis (λ1,λ2, respectively) and its orientation
(θ ). The two axes can be extracted through
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Similarly, the orientation of the ellipse (θ ) can be calcu-
lated by

tan(2θ)=
2ρσ1σ2

σ 2
2 − σ

2
1
. (6)

3.3 Derivatives of flow from incomplete data

Surface strain rates are used in this study to assess the rela-
tion between the correlation ridge and ice deformation. Such
strain rates can be extracted from a velocity field; however
remote sensing results contain holes and patches without es-
timates, since similarity could not be established. Hence a
robust estimation framework is given in Appendix C that is
somewhat resistant to such sporadic outliers. This procedure
is used here to have a more complete strain rate field for anal-
ysis.

3.4 Crevasse characteristics from a Radon transform

To assess the impact of directionality in the input images
on our approach to compute and use the dispersion of in-
dividual correlations, we need to quantify the directional
characteristics of glacier images. In particular crevasse fields
have strong directional properties, which can be composed
of cracks with several predominant orientations. In order to
extract the local crevasse characteristic for each matching
template, a Radon transform is used, as described in earlier
work (Gong et al., 2018). This methodology provides an ar-
gument of the strongest crevasse direction and a strength of
this signal. With both the shear flow and crevasse orienta-
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tion quantified, it is then possible to assess the sensitivity of
image matching to these two properties.

4 Results

Here we present results from two sites, namely Sermeq Ku-
jalleq (Jakobshavn Isbræ), Greenland, and Malaspina Glacier
system, Alaska.

4.1 Sermeq Kujalleq, Greenland

We demonstrate and assess our method to estimate the uncer-
tainty in displacement matching using a small subset of two
orthorectified Sentinel-2A scenes over Sermeq Kujalleq, a
large and fast outlet glacier of the Greenland ice sheet. High-
pass filtered imagery (following Fahnestock et al., 2016) of
the 10 m near-infrared band number 4 is used. The image
pair has acquisitions that are 10 d apart, acquired from the
same orbit. We apply a template window of 200 m in dimen-
sion, and velocities are estimated every 100 m, with a search
window of 800 m. Co-registration is not applied to the image
pair beforehand, as related offsets are not in the scope of this
study nor does the absence of co-registration influence the
outcomes of the presented work. A similar template size of
200 m was used for the crevasse detection using the Radon
transform.

The velocity magnitude between the two images (20 and
30 July 2020), derived streamlines, and the resulting along-
and across-flow variance estimates are shown in Fig. 2. The
streamlines indicate a strongly convergent flow of this outlet
glacier. At some places the signal-to-noise ratio of the image
matching was too low (SNR< 4), and such displacements
have been excluded. This happened in particular at the east-
ern part, where a cloud is present in one of the images, and
at other locations which seem to correspond to supraglacial
lakes. Along-flow variations are large at the northern side of
the main outlet and in the bend before the outlet terminates
in the fjord. Across-flow variation occurs in the more slowly
moving regions, where sheared crevassing occur, such as the
terminus of the outlet northwest and the southwestern part of
the study region.

The dominant crevasse orientation (Fig. 3b) is transverse
to the flow direction, aligning with crevasses originating
from extensive extensional strain. This has a stark similar-
ity with the orientation of the correlation surface (Fig. 3a).
Some regions have more complex orientations, most likely
due to variations in surface slope and bedrock variation.

Figure 4b shows the shear strain rate. A major feature is
a large shear zone along the southern flank of the main flow
channel. Finer details like alternating patches are also present
in the main outlet, which could stem from the propagation
of subglacial features to the surface. In Fig. 4a, a measure
for the elongation of the correlation ridge is plotted. Here,
elongation is given as the normalized inequality of the two

dispersion components ([min(λx,λy)−max(λx,λy)]/[λx +
λy]). Hence 0 corresponds to a perfectly circular distribution,
while 1 would be a straight ridge.

4.2 Malaspina Glacier system, Alaska

Results from the surroundings of Malaspina Glacier and
Agassiz Glacier in the St. Elias Mountains are presented here
as well. The region exhibits more supraglacial features than
Sermeq Kujalleq, which is an outlet of the Greenland ice
sheet with predominantly clean ice. For example, a large
collection of moraines, ogives, foliations, meltwater chan-
nels and more diverse orientations of flow is present on both
Malaspina Glacier and Agassiz Glacier, as can be seen in
Fig. D1 in the Appendix. Malaspina Glacier is an outlet
of Seward Glacier with a total area of 5000 km2 (Molnia,
2008); its entire piedmont lobe lies within the ablation area.
Agassiz Glacier is the other large tributary of the Malaspina
Glacier system and creates a distinct western lobe. The ice
transport from Seward Glacier has multi-annual fluctuations
(see https://www.youtube.com/watch?v=YslhQZwvvu0, last
access: 1 June 2022, and Altena et al., 2019), creating looped
or curved moraine bands.

Here we use two subsets of Sentinel-2 scenes from 21 Au-
gust and the 15 September 2019, a 25 d difference, and from
the same orbit. Processing parameters are similar to the Ser-
meq Kujalleq study: a high-pass-filtered band 4 image was
matched, with a template window of 200 m wide, and ve-
locities are estimated every 100 m, with a search window of
800 m. No co-registration over stable ground was done, so
the velocities should be seen as displacement (being real sur-
face displacements or artificially created due to sensor/pro-
cessing biases).

The estimated displacements over the study region
(Fig. 5a) have a smooth surface. In the mountains region,
small speckles are present, as well as a small patch on Agas-
siz Glacier. In this zone the transient snow line was located,
so correspondence is more difficult to establish. Similarly,
haze or thin cloud cover might be present at the end of
the snout of Agassiz Glacier, causing further correspondence
failures.

The pattern of elongation (Fig. 5b) and shear (Fig. 6a) are
similar at the borders of Agassiz Glacier, as indicated by
the red parallelogram. This is not the case for many other
parts, while a region which shows no extensive local shear
or extension can be seen at the start of the lobe (encircled
in red). However, this region does have heavy crevassing as
well (Fig. 6b). This is not only happening in this region, but
in general the Radon strength correlates well with the elonga-
tion of the ridge. Hence, excessive shear and extension might
create crevasses, and these seem to be the most dominant
mechanism for asymmetrical correlation spread. Other sig-
nals are also present in the shear estimate (Fig. 6a), but these
will be highlighted later in the discussion, as they are not re-
lated to correlation spread.
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Figure 2. Color-coded speed and streamlines of Sermeq Kujalleq (Jakobshavn Isbræ) between 20 and 30 July 2020 based on Sentinel-2A
imagery. The upper inset (b) shows the along-flow variance, while the lower inset (c) shows the across-flow variance.

Figure 3. Descriptions of directionality for the case study of Sermeq Kujalleq. (a) The correlation peak orientation for individual image-
matching results. (b) The direction of the imagery, extracted from the Radon transform, that directly operates upon the imagery.

4.2.1 Orientation of crevasses and dispersion peak

The dominance of the feature orientation (Fig. 7a) to the di-
rection of the correlation ridge (Fig. 7b) is present here, as is
also observed in the Sermeq Kujalleq case. The structure of
these two independent proxies are very similar. While Ser-
meq Kujalleq is dominated by clean ice, it seems also other
directional features like foliations and moraine bands influ-
ence the correlation surface.

5 Discussion

5.1 Interpretation of the dispersion signal

In general the main orientation of the crevasses at Sermeq
Kujalleq (Fig. 3b) seems to correspond to the orientation of
the Gaussian peak (Fig. 3a). When these two parameters are
plotted against each other their relation becomes even clearer
(Fig. 8a). The bulk of crevasse orientations are oriented to-
wards a north–south axis, corresponding to be perpendicu-
lar to the main flow direction. A straight correlation between
both parameters is present in Fig. 8a but does not cover the
whole domain equally due to the limited distribution of flow
directions. A relation with crevasse presence is profound
(Fig. 8b); when the Gaussian peak is close to symmetrical
(i.e., inequality near zero), there is no clear relation, but this
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Figure 4. The strength of asymmetry of the correlation peak (a) and estimated surface shear (b).

Figure 5. Image displacement (a) and elongation of the correlation ridge (b). The red parallelogram illustrates large values of correlation
spread, which also aligns with shear flow as in Fig. 6a, while the large spread highlighted by the red circle is probably due to crevassing,
since flow is fairly homogenous in this region.

increases when crevasses become more apparent in the im-
agery through the Radon transform. The pattern of elonga-
tion of Sermeq Kujalleq (Fig. 4a) is less pronounced and does
not have a clear linear relation to shear flow (not shown). A
reason why no clear relation between shear flow and elonga-
tion of the correlation peak is found in our example can be
due to the strong presence of crevasses that then dominate
the signal and image correlation in this dataset. The domi-
nance of crevasses in the study region could suppress the ex-
istence a clear relation with non-uniform ice flow. Nonethe-
less, crevasses seem to be the dominant driver for asymmetry
in the correlation peak.

5.2 Description of dispersion

In earlier work the handing of dispersion has been estimated
through sampling statistics (standard deviation and mean ab-
solute difference), where displacement estimates are com-

pared against in situ measurements or stable terrain. The
use of stable terrain for dispersion estimation has drawbacks,
apart from assuming constant variance of the whole scene
as mentioned earlier. Specifically, image matching in the fre-
quency domain is hampered by peak locking that favors in-
teger displacements (Foroosh et al., 2002); thus in the con-
figuration of stable terrain (in this case zero displacement),
sample statistics will give an opportunistic estimate of pre-
cision. A dispersion formulation based on image intensities
has been proposed (Förstner, 1987). Then template matching
itself is formulated within a least-squares framework where
the noise level of individual pixels propagates into a preci-
sion estimate of a match, but such estimates can be highly
influenced by sample statistics where a large amount of pix-
els in a template cause the system of equations to produce
a very good measurement precision; furthermore outliers in
such a formulation are neglected (Maas et al., 2010).
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Figure 6. Estimated surface shear, derived from the estimated velocity (Fig. 5a). The red parallelogram illustrates a region with clear shear
flow, but also other regions of Malaspina Glacier have large shear rates and correspond to large elongations. Red arrows within the large
circle in the center highlight faint shear patterns that stem from sensor misalignment (Fig. D2b). The strength of image structure in the form
of the Radon transform (b) has some distinct features of interest; the red rectangle highlights strong crevasses, which also result in elongated
correlation spread (Fig. 5b). The red circle at Agassiz Glacier highlights another region with strong crevasses, which also is present in the
estimates of the flow divergence (Fig. 10a) and the signal-to-noise estimate of the image matching (Fig. 9b).

Figure 7. Orientation descriptors over the Malaspina case study, estimated through Radon transform (Fig. 9a) and correlation spread (Fig. 9b).

Thus the method presented here can be a direction to for-
mulate measurement precision, without biases introduced by
sample statistics and peak locking. Another advantage of our
method is the possibility for using statistical testing (Teunis-
sen, 2000) and integration into data assimilation models or
time series construction through a richer description of the
co-variances (Riel et al., 2021).

We postulate that the correlation coefficient is a proxy for
the confidence of a match and are therefore less suited to

function as a descriptor of precision. The maximum corre-
lation coefficient and the signal-to-noise proxy are dissimi-
lar proxies. For example, the narrow and crevassed outlet of
Malaspina Glacier has low correlation scores (Fig. 9a) but a
high signal-to-noise ratio (Fig. 9b). Upon closer inspection,
a striking feature of multiple peaks grouped together might
be observed in the correlation score (see the region inside
the red diamond). This pattern aligns with the sub-pixel dis-
placement away from an integer, as the correlation score is
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Figure 8. Probability density plots of results for Sermeq Kujalleq of correlation peak versus crevasse orientation (Figs. 2 and 3a) and
asymmetry of the correlation peak and versus crevasse strength (Figs. 2 and 4a).

Figure 9. Correlation descriptors over the Malaspina case study showing the absolute correlation value for each match (a) and the signal-to-
noise values (b). The red circles indicate highly distinct regions that align with regions of large shear (Fig. 6a) and many crevasses (Fig. 6b);
the red square also indicates a region with high values but has homogenous flow with many surface cracks. The red diamond highlights a
pattern that is similar to the integer distance as shown in Fig. 10b, indicating a dependency.

estimated at individual steps. This off-integer bias in the cor-
relation score can be replicated by the displacement estimate
and is done so in Fig. 10b. Hence, using a correlation score
as precision proxy (e.g., Ding et al., 2021), while it is con-
taminated by off-integer biases, is not recommended.

A second commonly used proxy for precision is the signal-
to-noise ratio. Here we postulate that this proxy might de-
scribe the uniqueness of a match. Very high signal-to-noise
values (Fig. 9b) seem to coincide with strong crevassing
(Fig. 6b), as is also indicated by the red encircling. A sec-
ond class of high values (see red square) is present in clean
ice zones of the lobe of Malaspina Glacier, where distinct fo-
liations occur, giving a unique fingerprint for the matching.

In this study we propose to use a Gaussian formulation to
describe the matching precision. If the maximum correlation
or signal-to-noise ratio would be a good proxy for precision,

then one can expect a correlation or some form of agreement
between the major axis (Fig. 11) and these other proxies.
However, for the data over Malaspina Glacier this does not
seem to be the case, as these proxies only seem to be cor-
related in the extreme ends. Thus, the proposed dispersion
parameters do provide a new type of data description, which
we think has a straightforward connection to measurement
precision.

5.3 Implementation issues

The implementation done here for our correlation-
dispersion-based method is a simple least-squares ad-
justment, and no robust re-weighting is applied. This can
result in negative variances or rank deficiency, corresponding
to the white data voids in Fig. 3. Causes for such anomalies
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Figure 10. Estimated surface divergence, derived from the estimated velocity (Fig. 5a). The red circles indicate regions where significant
crevassing is present (Fig. 6b). The modulus from a combination of sub-pixel displacements (Fig. D2a, b) is shown in (b). The red diamond
indicates a pattern that is similar to the absolute correlation value as shown in Fig. 9a.

Figure 11. Probability scatterplots between different matching descriptors for the Malaspina Glacier system.

can come from the logarithmic function within Eq. (2), ca-
pable of transforming white to asymmetric noise (Anthony
and Granick, 2009).

In this study, the correlation computation is done in the
spatial domain. When transformed back to the spatial do-
main, frequency domain methods produce sharp peaks in the
correlation surface in the form of a two-dimensional Dirich-
let function, as they prescribe consistent rigid displacement
at integer resolution (Foroosh et al., 2002). Furthermore,
when sufficient shear occurs or repeating image features are
present, this might result in multiple distinct but sharp peaks
in the correlation surface (Scarano, 2001). Hence, interpre-
tation of our dispersion estimation is most suited for spatial-
domain methods.

Finally to demonstrate its application domain, we intro-
duce a generalized least-squares framework to use our disper-
sion estimation (see Appendix C) and resolve issues caused
by missing data from neighboring displacement estimates
when estimating strain rates. This is a step towards a more
integrated approach and moves away from parameter-based
interpolation (e.g., Lüttig et al., 2017).

6 Conclusions

Quantifying the measurement precision of individual dis-
placement estimates from matching repeat spaceborne im-
ages has received little attention in recent years despite the
increasing efforts to produce large displacement datasets
from an increasing number of suitable data. Here, we in-
troduce a simple procedure to estimate the correlation dis-
persion of such displacement measurements (either optical
or SAR), through characterizing the shape of the correlation
surface. We demonstrate this technique for Sermeq Kujalleq,
a fast-flowing and heavily crevassed outlet of the Greenland
ice sheet and the Malaspina Glacier system. Dispersion re-
sults are compared to shear strain rates and crevasse orien-
tation. These results indicate that crevasses are the domi-
nant driver for asymmetry in the correlation surface. We sug-
gest this simple procedure to estimate uncertainty in individ-
ual image matches can be useful in processing pipelines for
large-volume image displacement measurements, so error-
propagation can be applied on a large scale and will improve
inversion of other geophysical properties. In all, we hope this
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demonstrates the rich information present in satellite imagery
and its processing chain and might make it easier to extract a
more detailed physical signal from such noisy remote sens-
ing products.

Appendix A: Schematic of an image-matching pipeline

In order to clarify where in a displacement processing
scheme the dispersion estimation can be implemented,
a schematic of an image-matching pipeline is drawn in
Fig. A1. It consists of the following five steps:

i. Given the extent of the imagery, a mask is generated
indicating what is ocean, land and glacier.

ii. A regular grid is generated, where for each location the
land cover is recorded.

iii. For each post of the grid, a subset of the satellite im-
agery is used. A kernel is moved over a base image,
and at every location a similarity score is estimated.
This generates a correlation surface. The highest value
is taken as the correct displacement. The neighboring
correlation values of this peak can be used for sub-pixel
localization, but the same values can also be used for the
dispersion calculation following the method presented
in this study.

iv. The displacements over stable ground are used to cor-
rect offsets due to misalignment of the satellite plat-
form.

v. The co-registration parameters are subtracted from the
displacement vectors, resulting in a grid of velocities
and its precision.

Appendix B: Complete derivation

A two-dimensional normal distribution, with a dependency
(ρ) in its variables can be written as (Teunissen et al., 2009)

I (x,y)=
1

2πσxσy
√

1− ρ2
· exp

[
−

1
2 · (1− ρ2)(

(x− x0)
2

σ 2
x

−
2ρ(x− x0)(y− y0)

σxσy
+
(y− y0)

2

σ 2
y

)]
, (B1)

where x and y denote coordinates on two orthogonal axis,
σ 2 is the variance, and x0 and y0 are their mean. This formu-
lation can be written out fully with parameters (A, a, b and
c) substituted for the ease of readability (Eq. 1). This results
in a linear system of equations with four unknowns, so these
need to be estimated through several neighboring correlation
values, as written down in Eq. (2). The following operations

show the transformation from one formulation to the other.

I (x,y)=
1

2πσxσy
√

1− ρ2
exp

[(
−

1
2 · (1− ρ2) · σ 2
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· (x− x0)
2
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· (x− x0)(y− y0)

−
1

2 · (1− ρ2) · σ 2
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· (y− y0)
2
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(B2)

I (x,y)= A · exp
[
a · (x− x0)

2
+ b · (x− x0)

·(y− y0)+ c · (y− y0)
2
]

(B3)

ln
[
I (x,y)

]
= ln [A] · 1+ a · (x− x0)

2
+ b · (x− x0)

· (y− y0)+ c · (y− y0)
2 (B4)

The substituted parameters (A, a, b and c) can be written out
fully as

A=
1

2πσxσy
√

1− ρ2
, a =−

1
2 · (1− ρ2) · σ 2

x

,

b =
2ρ

(1− ρ2) · σxσy
, c =−

1
2 · (1− ρ2) · σ 2

y

. (B5)

Transferring these lumped parameters towards the Gaussian
parameters (Eq. B1) is done though first formulating them in
relation to the dependency (ρ):

2ρ =
b
√
a · c

, (B6)

a · c =−
1

2 · (1− ρ2) · σ 2
x

· −
1

2 · (1− ρ2) · σ 2
y
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1
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2
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√
a · c =

1
2 · (1− ρ2) · σx · σy

=
1
2
·

1
(1− ρ2) · σx · σy

,

b =
2ρ

(1− ρ2) · σx · σy
. (B8)

Knowing ρ makes it possible to solve the other equations
and extract the variances (σ 2

x , σ 2
y ) from the other lumped pa-

rameters (Eq. 3):

σ 2
x =

1
−2 · (1− ρ2) · a

=
−2 · (1− ρ2)

−2 · (1− ρ2)
· σ 2
x ,

σ 2
y =

1
−2 · (1− ρ2) · c

=
−2 · (1− ρ2)

−2 · (1− ρ2)
· σ 2
y . (B9)

With the resulting parameters (σ1, σ2 and ρ), an oriented
ellipse can be described, as shown in Fig. B1.
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Figure A1. Schematic of the main procedure to generate a displacement field from a pair of remote sensing images.

Figure B1. Example of ellipses with different dispersion parameters. Illustration adopted from Polman and Salzmann (1996).
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Appendix C: Kernel computation in a generalized
least-squares framework

Flow descriptors like strain rates can also give an insight into
the geometric bedrock configuration or properties related to
subglacial sliding. Strain rates can be formulated in relation
to the local flow direction, giving longitudinal, transverse or
shear flow, respectively. These properties are computed from
velocity estimates over a close neighborhood of surrounding
pixels. As strain rates are derivatives of velocities, they are
particularly sensitive to the propagation of noise and errors
in the input velocities. Applying thresholds and filters to the
strain rates based on variations or low quality of the input
velocities can lead to voids in the resulting strain rate field.
Here, a methodology is introduced that is somewhat resistant
to such cases caused by velocity errors or missing data.

The methodology presented here is based upon the re-
dundancy of a kernel, since it is typically formulated as a
smoothed differentiation. The steps are schematically illus-
trated in Fig. C1. A convolution (⊗) is written out as a matrix
form of a displacement grid (P) and a kernel (G). In this ma-
trix form one can see it clearly as a weighted linear combina-
tion from neighboring velocity measurements. For the sake
of clarity, the examples shown in this schematic are an im-
plementation of two different kernels (a Sobel and Prewitt),
for the two different spatial axis (x, y). Each column in the
design matrix (A) is independent and is composed of pos-
itive and negative entities. The summation of all elements
within the kernel need to cancel each other out, as is indi-
cated by the colored elements. However, when gaps occur in
the neighborhood, this energy balance is disrupted. Conse-
quently, this lost weight should be added to others within its
group or, reversely, taken away from entries with the group
with an opposing sign. When the convolution is written out
directly in matrix form, this allocation of energy is done by
column-wise operators. If the neighborhood is out of balance,
the kernel is not estimated.

Figure C1. Schematic of a computation of a convolution, in this case the first derivative in the vertical and horizontal direction.

In the example shown in Fig. C1 the horizontal and vertical
components (x, y) are independent. However the dependency
can also be included, since formulating a convolution as a
least-squares estimation makes it possible to propagate the
co-variances. Hence, the co-variances of the image matching
as given in Eq. (4) can be used to estimate the precision and
dependencies of derived parameters, through

Qx̂x̂ = A>Q−1
yy A, (C1)

hence, estimating derivatives with correct weighting, making
generalized least squares possible as

x̂=Q−1
x̂x̂

A>Q−1
yy y. (C2)

Nevertheless, improvement is only made on a local level in
a direct neighborhood covered by the kernel, so when large
parts are affected with regions of missing values or when the
outlier detection is false, spurious fluctuations can still prop-
agate into the final product.

Appendix D: Additional information about the
Malaspina Glacier case

In this appendix, additional illustrations are shown for the
Malaspina Glacier to ease interpretation of the results and to
highlight the information present in dispersion peak.

Here we also show some sub-pixel displacement plots,
as the integer (Fig. 10b) is based upon the combination of
two axes, as the remainder of the modulus of displacement
is shown in Fig. D2. Sensor specific artifacts are present in
these figures as indicated by the gray boxes or the red encir-
cled region; see Kääb et al. (2016) and Stumpf et al. (2018)
for more details. They are mentioned here explicitly, since
these patterns are striking and might dilute the interpretation
of the results in Fig. 6.
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Figure D1. Sentinel-2 scene over Malaspina Glacier (center) and Agassiz Glacier (left) with annotations in red to enhance interpretation.

Figure D2. Rainbow-color-coded remainder of the modulus of displacement, for the horizontal and vertical direction (a, b). The gray arrows
and boxes show displacement artifacts due to internal sensor alignments. The red circles and arrows indicate oscillations that stem from
similar internal registration errors.
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