Articles | Volume 16, issue 5
The Cryosphere, 16, 1597–1607, 2022
https://doi.org/10.5194/tc-16-1597-2022
The Cryosphere, 16, 1597–1607, 2022
https://doi.org/10.5194/tc-16-1597-2022
Research article
04 May 2022
Research article | 04 May 2022

Melt probabilities and surface temperature trends on the Greenland ice sheet using a Gaussian mixture model

Daniel Clarkson et al.

Related authors

Variability in Antarctic Surface Climatology Across Regional Climate Models and Reanalysis Datasets
Jeremy Carter, Amber Leeson, Andrew Orr, Christoph Kittel, and Jan Melchior van Wessem
EGUsphere, https://doi.org/10.5194/egusphere-2022-86,https://doi.org/10.5194/egusphere-2022-86, 2022
Short summary
An inventory of supraglacial lakes and channels across the West Antarctic Ice Sheet
Diarmuid Corr, Amber Leeson, Malcolm McMillan, Ce Zhang, and Thomas Barnes
Earth Syst. Sci. Data, 14, 209–228, https://doi.org/10.5194/essd-14-209-2022,https://doi.org/10.5194/essd-14-209-2022, 2022
Short summary
Changes in Supraglacial Lakes on George VI Ice Shelf, Antarctic Peninsula: 1973–2020
Thomas James Barnes, Amber Alexandra Leeson, Malcolm McMillan, Vincent Verjans, Jeremy Carter, and Christoph Kittel
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-214,https://doi.org/10.5194/tc-2021-214, 2021
Revised manuscript not accepted
Short summary
Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020,https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet
Baptiste Vandecrux, Ruth Mottram, Peter L. Langen, Robert S. Fausto, Martin Olesen, C. Max Stevens, Vincent Verjans, Amber Leeson, Stefan Ligtenberg, Peter Kuipers Munneke, Sergey Marchenko, Ward van Pelt, Colin R. Meyer, Sebastian B. Simonsen, Achim Heilig, Samira Samimi, Shawn Marshall, Horst Machguth, Michael MacFerrin, Masashi Niwano, Olivia Miller, Clifford I. Voss, and Jason E. Box
The Cryosphere, 14, 3785–3810, https://doi.org/10.5194/tc-14-3785-2020,https://doi.org/10.5194/tc-14-3785-2020, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Unravelling the long-term, locally heterogenous response of Greenland glaciers observed in archival photography
Michael A. Cooper, Paulina Lewińska, William A. P. Smith, Edwin R. Hancock, Julian A. Dowdeswell, and David M. Rippin
The Cryosphere, 16, 2449–2470, https://doi.org/10.5194/tc-16-2449-2022,https://doi.org/10.5194/tc-16-2449-2022, 2022
Short summary
Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings
Joshua K. Cuzzone, Nicolás E. Young, Mathieu Morlighem, Jason P. Briner, and Nicole-Jeanne Schlegel
The Cryosphere, 16, 2355–2372, https://doi.org/10.5194/tc-16-2355-2022,https://doi.org/10.5194/tc-16-2355-2022, 2022
Short summary
Comparison of ice dynamics using full-Stokes and Blatter–Pattyn approximation: application to the Northeast Greenland Ice Stream
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696, https://doi.org/10.5194/tc-16-1675-2022,https://doi.org/10.5194/tc-16-1675-2022, 2022
Short summary
Modelling the effect of submarine iceberg melting on glacier-adjacent water properties
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022,https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Multi-decadal retreat of marine-terminating outlet glaciers in northwest and central-west Greenland
Taryn E. Black and Ian Joughin
The Cryosphere, 16, 807–824, https://doi.org/10.5194/tc-16-807-2022,https://doi.org/10.5194/tc-16-807-2022, 2022
Short summary

Cited articles

Benson, C. S.: Stratigraphic studies in the snow and firn of the Greenland ice sheet, dissertation (Ph.D.), California Institute of Technology, https://doi.org/10.7907/G7V2-0T57, 1960. a
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B., and Harig, C.: The increasing rate of global mean sea-level rise during 1993–2014, Nat. Clim. Change, 7, 492–495, https://doi.org/10.1038/nclimate3325, 2017. a
Fausto, R. S., van As, D., Mankoff, K. D., Vandecrux, B., Citterio, M., Ahlstrøm, A. P., Andersen, S. B., Colgan, W., Karlsson, N. B., Kjeldsen, K. K., Korsgaard, N. J., Larsen, S. H., Nielsen, S., Pedersen, A. Ø., Shields, C. L., Solgaard, A. M., and Box, J. E.: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data, Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, data available at: https://doi.org/10.22008/promice/data/aws, 2021. a, b
Fettweis, X., Tedesco, M., van den Broeke, M., and Ettema, J.: Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models, The Cryosphere, 5, 359–375, https://doi.org/10.5194/tc-5-359-2011, 2011. a
Hall, D., Key, J., Casey, K., Riggs, G., and Cavalieri, D.: Sea ice surface temperature product from MODIS, IEEE T. Geosci. Remote, 42, 1076–1087, https://doi.org/10.1109/TGRS.2004.825587, 2004. a
Download
Short summary
The Greenland ice sheet has seen large amounts of melt in recent years, and accurately modelling temperatures is vital to understand how much of the ice sheet is melting. We estimate the probability of melt from ice surface temperature data to identify which areas of the ice sheet have experienced melt and estimate temperature quantiles. Our results suggest that for large areas of the ice sheet, melt has become more likely over the past 2 decades and high temperatures are also becoming warmer.