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Abstract. The Greenland ice sheet has experienced signifi-
cant melt over the past 6 decades, with extreme melt events
covering large areas of the ice sheet. Melt events are typi-
cally analysed using summary statistics, but the nature and
characteristics of the events themselves are less frequently
analysed. Our work examines melt events from a statistical
perspective by modelling 19 years of Moderate Resolution
Imaging Spectroradiometer (MODIS) ice surface tempera-
ture data using a Gaussian mixture model. We use a mixture
model with separate model components for ice and meltwa-
ter temperatures at 1139 cells spaced across the ice sheet.
By considering the uncertainty in the ice surface temperature
measurements, we use the two categories of model compo-
nents to define, for each observation, a probability of melt
which is independent of any pre-defined fixed melt thresh-
old. This probability can then be used to estimate the ex-
pected number of melt events at a given cell. Furthermore,
the model can be used to estimate temperature quantiles at
a given cell and analyse temperature and melt trends over
time by fitting the model to subsets of time. Fitting the model
to data from 2001–2009 and 2010–2019 shows increases in
melt probability and yearly expected maximum temperatures
for significant portions of the ice sheet.

1 Introduction

The Greenland ice sheet has experienced significant melt
over the past 6 decades (Fettweis et al., 2011) and has had an
overall accelerating contribution to sea-level rise from a com-
bination of melt and dynamical discharge, in particular over
the last 18 years (Rignot et al., 2018). Wide regions of the

ice sheet have lost mass over the last 2 decades, resulting in
an increasing contribution to sea-level rise (Mouginot et al.,
2019). Combined with melt from other ice bodies, e.g. the
Antarctic ice sheet and valley glaciers, groundwater deple-
tion, and thermal expansion of the oceans, total sea-level rise
has been far above the historical rate of sea-level rise during
this period (Chen et al., 2017). Understanding where, when,
and how frequently melt occurs on the Greenland ice sheet is
a key part of understanding its role in sea-level rise and how
we might expect it to change in the future.

Since air temperature is a strong control on ice melt (Ver-
meer and Rahmstorf, 2009), temperature data are often used
as a proxy for melting. Ice surface temperatures exceeding
−1 ◦C can be interpreted as evidence of melt, depending on
the dataset used and its accuracy and uncertainty (Hall et al.,
2018). There are many ways to study the temperature of the
ice sheet, including through observations from space (Zheng-
ming and Dozier, 1989), automatic weather stations (AWSs)
(Tedesco et al., 2013), and using regional or global climate
model output (Smith et al., 2007). Data from these diverse
sources are characterised by differing levels of accuracy and
coverage. Whilst in situ observations are often considered
to provide the most accurate measurements for a given cell
and global climate model (GCM) output allows considera-
tion of temperatures under different climate scenarios, satel-
lite data have comparable accuracy to in situ measurements
under clear-sky conditions (Hall et al., 2008) but with far
higher spatial coverage, thus providing the most comprehen-
sive overall view of the ice sheet.

In 2012, a record-breaking melt event was observed during
mid-July, with 98.6% of the ice sheet simultaneously expe-
riencing melt (Hanna et al., 2014). Extreme melt events such
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as this are likely to become more common as overall tem-
peratures on the Greenland ice sheet increase, contributing
to increasing amounts of melt. Despite their contribution to
our overall understanding of melt on the ice sheet, the mag-
nitude, frequency, and melt contribution of these melt events
are not clearly defined. Because these events are rare, our un-
derstanding of them has necessarily been based on case stud-
ies of a few isolated examples to date. By applying statistical
models to these events, we can both deepen our understand-
ing of the physical properties of the melt events and improve
quantification of melt on the ice sheet overall.

Here, we propose a novel statistical approach applied to
Moderate Resolution Imaging Spectroradiometer (MODIS)
ice surface temperature (IST) data to model the distribu-
tion of temperatures on the Greenland ice sheet at 1139
MODIS cells, with a particular interest in identifying and
modelling melt temperatures. The approach is based on three
key characteristics of IST data: firstly, the presence of physi-
cal bounds on the range of ice and ice-melt temperatures; sec-
ondly, the multi-modality of the distribution; and thirdly, am-
biguity about whether measurements close to 0 ◦C represent
melting of the ice sheet surface. This model-based approach
has several advantages over a purely empirical analysis, in-
cluding allowing full characterisation of the distribution of
IST and resulting properties, for example, melt threshold ex-
ceedance probabilities, quantiles, return periods, and return
levels, as well as allowing for out-of-sample prediction and
extrapolation. Since the sample of cells used to fit the statisti-
cal model is uniformly distributed over the full ice sheet, our
model is sufficiently generalisable as to be useful for cells
not explicitly used to generate the model, regardless of el-
evation, distance from the coast, or geographical location.
Finally note that we limit our analysis to the modelling of
cloud-free days. This is due to the absence of data on days
with cloud cover and the bias that would ensue if we were to
assume that temperatures on clear days could be used to rep-
resent these missing values. The data can not be considered
missing at random, so there would be a bias in temperatures
on cloudy days compared to clear days. We use this model to
investigate time trends in the observation period and to quan-
tify both the frequency and magnitude of temperature events
that are likely to result in ice melt.

2 Data and methods

2.1 MODIS IST data

We use MODIS IST data from MODIS/Terra Sea Ice Extent
5-Min L2 Swath 1km, Version 6 (MOD29), contained within
a multilayer Greenland MODIS-based product (Hall et al.,
2018). MODIS records surface reflectance from 36 spectral
bands of different wavelengths – including those used in IST
– near daily for the entire Earth. This dataset spans the period
1 March 2000 to 31 December 2019 and has a spatial resolu-

tion of 0.78 × 0.78 km. Here we discard the first 10 months
of the dataset, up to 1 January 2001, in order to work only
with those years for which a full annual cycle is available.
To reduce the computational burden of our model, we also
subsample the data by taking 1 in every 50 cells in both x
and y dimensions for a total of 1139 cells, roughly equally
spaced across in latitude and longitude and thus covering the
full range of glaciological and climatological settings across
the ice sheet.

2.2 Cloud cover

The IST measurements represent the temperature at the sur-
face of the ice in cloud-free conditions. Clouds (specifically
water vapour) can interfere with the measurements, so a
cloud mask is used in the MODIS product to remove mea-
surements made in cloudy conditions. As a consequence, our
analysis and predictions are valid for clear conditions only.
Due to the generally warmer temperatures seen on cloudy
days, were the analysis to be interpreted as representative
of clear days also, there would be a strong likelihood of
over-estimating the magnitude and frequency of melt events
(Koenig and Hall, 2010).

As a result of cloud masking, areas on the coast and in
the north have a higher proportion of missing data than more
central areas (Fig. 1). We also see that winter months have
more missing data on average than summer months because
of cloud cover, with a range of 65.1% of data available in
December compared to 91.1% of data available in May. This
is important to bear in mind when interpreting the predic-
tions made from the statistical models, as the IST distribu-
tions will be more heavily weighted towards warmer temper-
atures. This should not affect our inference with regards to
melt, however, as melt temperatures almost exclusively occur
in the summer months, which have a much lower proportion
of missing data.

To check for the possible presence of longer-term changes
in surface conditions in response to changes in cloud cover,
the proportion of data missing due to cloudiness is compared
between decades (Fig. 2). The clear spatial trends seen in
the overall proportions of missing data are not present here,
though locations in the north and south of the ice sheet have
slightly more data in the most recent decade in contrast to
locations at mid-latitudes where the reverse is true. How-
ever, these trends are not consistent over all locations, and the
magnitudes of the changes are relatively minor with a maxi-
mum absolute change of 0.060 and a mean absolute change
of 0.010. Seasonal differences in cloud cover and thereby
data availability also vary between the two decades. Jan-
uary, February, and October show the largest changes, with a
maximum absolute change of 0.044 in February. Ten months
have an average decrease in data availability between the
decades, but the absolute differences are reasonably minor.
Furthermore, of the four months with the lowest changes,
three (June, July, and August) also see the highest average
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Figure 1. Proportion of available MODIS IST data (i.e. not filtered by the cloud mask) at 1139 cells on the Greenland ice sheet between
2001 and 2019 (a) and mean proportion of available MODIS IST data by month between 2001 and 2019 (b).

Figure 2. Change in proportion of available MODIS IST data (i.e. not filtered by the cloud mask) at 1139 cells on the Greenland ice sheet
from 2010 to 2019–2001 to 2009 (a) and change in mean proportion of available MODIS IST data by month from 2010 to 2019–2001 to
2009 (b).

temperatures, giving further confidence in our cross-decade
comparison of temperature quantiles and melt estimates.

2.3 Modelling considerations

To create a statistical model that is parsimonious and applica-
ble at all cells over a large and geographically varied region,
we model the IST data using statistical methods that allow us
to treat melting in a probabilistic manner. Exploratory data
analysis shows that there is no clear quantile in the temper-
ature distribution that can be attributed as the onset of melt-
ing (Fig. 3). As a result, we model melting ice temperatures
and non-melting ice temperatures separately and estimate the
probability of melt occurring over a range of temperatures.
This approach allows for some uncertainty in the observa-
tions from factors such as the precision of the dataset, which
has a stated uncertainty of ±1 ◦C. We hereby refer to tem-
peratures associated with melting ice as “melt” temperatures

and temperatures associated with non-melting ice as “ice”
temperatures.

A key feature of the dataset and a core modelling consid-
eration is the soft upper limit at 0 ◦C. The melting point of
the ice acts as a physical upper limit on ISTs, as once the
ice exceeds this temperature it melts and may no longer form
the surface of the ice sheet. Some sites have measurements
above this limit, which arise due to meltwater sitting on top
of the ice. However, the ice under the water places a limit
on these melt temperatures; hence the distribution of positive
temperatures is truncated close to 0 ◦C. This soft upper limit
of ISTs causes a significant peak in the distribution centred at
approximately −0.5 ◦C, as any ISTs that would exceed 0 ◦C
are truncated to small positive values close to 0 ◦C.

The simplest statistical model would be to fit a single dis-
tribution to the full dataset, potentially after an initial trans-
formation. This raises two issues. Firstly, a bimodal distribu-
tion is clear at all cells with cells that experience melt having
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Figure 3. Frequency distribution of daily MODIS IST data from an
example cell (82.47, −37.50) on the Greenland ice sheet between
2001 and 2019. Solid and dashed lines show a mixture model fit to
these data where blue indicates the three ice components, red in-
dicates the melt component, and black indicates the full model as
the sum of the ice and melt components. Each individual compo-
nent is a truncated Gaussian distribution, and the lines represent the
probability density function of these on a scale matching that of the
histogram.

the highest mode close to 0 ◦C (Fig. 3). For non-melt cells,
the location of the higher mode is more variable. This does
not appear to be directly attributable to seasonal differences
in temperatures, as the shape of seasonal temperature distri-
butions show as much inter-site variability as they do inter-
season variability. Fits of unimodal distributions are particu-
larly poor at the tails of the distributions, which is particularly
problematic since our interest lies in melt which is directly
connected to the upper tail of the temperature distribution.

Given the focus on melt, an alternative option would be
to undertake an extreme value analysis of only the high-
est temperatures at each cell. This would allow the model
to focus on the temperatures of highest interest that are the
most difficult for more standard models to capture. This also
proves problematic though, as in order to fit the model the
temperatures must first be identified as extreme using an ex-
treme value threshold, with temperatures above the threshold
being classed as extreme and those below being classed as
non-extreme. Due to the mode around 0 ◦C, finding a consis-
tent threshold location using quantiles, gradient analysis, or
a specific temperature encounters problems due to the large
variety of tail shapes at different cells. Each of the above-
mentioned threshold types do not work universally across the
ice sheet and in many cases provide much worse fits than a
distribution applied to the whole range of temperatures.

A consistent model that can be automatically applied at
cells across the ice sheet therefore requires a multi-modal
distribution or a time-series model to capture seasonal be-
haviour. The disadvantage of the latter is that it is less able
to capture the mode around 0 ◦C and the truncation of the
temperatures, which is where our research interest lies. This
further motivates a modelling approach that more directly
considers the distribution of the specific dataset and allows

for multi-modal distributions. The overall distribution shape
is broadly similar between sites with the main difference be-
ing the proximity of the distribution to 0 ◦C and thereby the
amount of truncation in the data. The considerations above
around the multi-modality of the dataset and of the nature of
melt temperatures around 0 ◦C give us a basic set of assump-
tions to base our modelling around that allow the model to
retain the same underlying structure regardless of the abso-
lute difference in ISTs between cells.

2.4 Model description

In order to accommodate spatial variability in the tempera-
ture distribution, we model IST using a truncated Gaussian
mixture model in which components are assigned to model
groups of temperatures that we assign to be either ice or melt.
For nI ice components and a single melt component, let φi
be the weight associated with model component i such that
for nc = nI+ 1 total components,

∑nc
i=1φi = 1. For each ice

component i (and melt componentM), let fi(x) be the prob-
ability density function of the truncated normal distribution
X ∼ TN(µi,σ 2

i ,ai,bi), where µi is the mean, σi is the stan-
dard deviation, and ai (bi) is the lower (upper) truncation
point. Then the probability density function of ISTs x is

p(x)=

nI∑
i=1

φifi(x)+φMfM(x). (1)

We set the upper and lower truncation points for the ice
and melt components at values that bound each measure-
ment type with relative certainty. For the ice components,
a =−∞ as there is no hard lower limit on the temperature
of ice (aside from absolute zero), and b = 0 as, theoretically,
ice temperature can not exceed 0 ◦C. This means that there
is no limit on how low ice temperatures can go, but they
can not exceed 0 ◦C. For the melt component, b =∞ and
a =−1.65, so temperatures in the melt component can not
go below −1.65 ◦C but are not upper truncated. We take a
bound lower than zero here to account for uncertainty in the
data and any potential impurities in the ice surface. The the-
oretical minimum temperature at which saline ice can melt
is −1.65 ◦C (Hall et al., 2004) and thus should be a conser-
vative estimate for this lower bound. Temperatures between
−1.65 ◦C and 0 ◦C can be modelled by either of the ice and
melt components or both of them as there is uncertainty as to
whether they are associated with melting or non-melting ice.

A mixture model was fitted using the expectation–
maximisation (EM) algorithm for each sample cell. The al-
gorithm alternates between two main steps: calculating the
component probabilities that each observation xi comes from
model component k and maximising the expectations of the
model parameters using the component probabilities (for full
details see Appendix A). We used this method to obtain es-
timates of µ, σ , and φ for each model component at each
cell.
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We used the Bayesian information criterion (BIC) to as-
sess the most appropriate number of ice and melt components
and found that three ice components and one melt component
fit the data best. These components may be broadly inter-
preted as winter, autumn, and spring and the melt season for
the three ice components and single melt component respec-
tively.

When modelled with separate Gaussian components, the
characteristics of the different modes of the data are much
clearer (Fig. 3). The melt component at each cell generally
has a much lower variance than the ice components due to
the soft upper limit of ISTs and the lower truncation point of
the model, whereas the ice components have higher variances
and more overlap between components. For the sites that ex-
perience melt regularly, a substantial proportion of the over-
all temperature distribution occurs in the overlap between
true ice and true melt. A similar result is seen across sites
located on or near the coasts, which further validates the de-
cision to use a fixed melt threshold as the melt temperatures
– and thereby the melt process – appear to have consistent
characteristics across cells.

2.5 Defining melt

Using this model, the probability of melt occurring, which
we denote by ρ(x), can be quantified as the ratio of the den-
sities of the ice and melt components. For a given IST x, nI
ice components, and melt component M , we have

ρ(x)=
fM(x)

fM(x)+
∑nI
i=jfi(x)

. (2)

Consequences of this definition are that for ISTs below
−1.65 ◦C, the probability of melt is 0; for ISTs above 0 ◦C,
the probability of melt is 1; and between these values the
melt probability depends on relative values of the melt and
ice components’ densities. For cells with very few or no ISTs
above −1.65 ◦C, the weight of the melt component may be
close to or equal to 0, in which case the probability of melt
occurring is effectively zero. Note that there are discontinu-
ities in the model-based estimate of this probability due to
the censoring of the mixture components. These discontinu-
ities occur at the edges of the range of interest (−1.65 and
0 ◦C) and are more or less severe depending on the degree of
truncation of the ice and melt components.

3 Results

3.1 Melt extent comparison

Using our model, we calculate the expected number of melt
days in each year at each sample cell. Let Ny be the num-
ber of melt days in year y, then E[Ny] =

∑m
i=1ρ(xi), where

ρ(x) is the notation introduced earlier to denote Pr[melt|X =
x] andm is the number of observations in year y. The overall

Figure 4. Melt probability estimates of a range of ISTs using the fit-
ted mixture model at a single cell (75.37,−58.13) on the Greenland
ice sheet between 2001 and 2019. Because some cells have very
limited data above −1.65 ◦C, we use a cell on the west coast with a
high proportion of data above−1.65 ◦C (22.55%), thus giving us an
increased amount of information in the most pertinent temperature
range.

annual average is simply the average of the individual an-
nual averages. We then compare our modelled estimates to
a simple threshold-based approach to defining melt, i.e. the
average number of days per year with temperatures greater
than or equal to −1 ◦C (Fig. 5).

The majority of the ice sheet – 90.7% of cells from the
expected melt from the model, 79.5% from a threshold of
−1 ◦C on the data – experiences some degree of melt on
average each year, except for sites in the dry-snow zone in
the centre and north of the ice sheet (Benson, 1960). Of the
cells that experience melt, most sites (62.2% from the model,
57.3% from the data) on average see less than 2 d of melt
per year, which makes up the rest of the dry-snow zone and
most of the percolation zone. The areas with the most melt
are located around the coast and in the south and west as
may be expected. The main discrepancies between the two
measures are at coastal cells, particularly on the west and
north coasts. Here, the model estimates a larger amount of
melt, with a maximum of 14 additional melt days at one spe-
cific cell on the edge of the south-east coast compared to the
dataset. However, 89% of cells have an absolute difference
of less than 2 melt days, showing the broad agreement be-
tween the measures at central cells.

3.2 Comparison to AWS melt statistics

To place the methodology and the results within the con-
text of the literature, we compare the estimates of melt
found using our method to those estimated using data from
the Programme for Monitoring of the Greenland Ice Sheet
(PROMICE) AWSs (Fausto et al., 2021). The characteris-
tics of the datasets differ with known biases between the two
(Koenig and Hall, 2010); however previous validation car-
ried out independently for both datasets suggests it is rea-
sonable to consider both datasets representative of the true
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Figure 5. The mean annual number of ISTs above−1 ◦C per year (a), the mean annual expected melt days estimated from each cell’s mixture
model (b), and the difference between the two variables (c).

surface temperatures. With AWSs as a baseline, Fig. 6 com-
pares the difference between the AWS melt proportions with
the same quantity obtained from (a) MODIS IST and (b) the
model fitted to MODIS IST. Despite the relatively large dis-
tances between some of the comparison locations, there is
still reasonable agreement for a substantial number of AWS
locations. The differences between the estimates may also be
partially due to other factors surrounding the nature of the
comparison, such as the reduced number of data available
because of the need for common dates, the difference in time
resolutions between the datasets in terms of the number of
observations averaged to give a single daily observation, and
the different measurement uncertainties that lead to different
definitions of melt.

3.3 Temperature quantiles

We now use the model fit to calculate quantiles of the ISTs
at each cell (Fig. 5). This gives context to the overall temper-
ature trends observed in the dataset before looking at melt in
more detail. We calculate the 90% quantiles to examine the
broader trends of high temperatures that are not necessarily
melt temperatures, as well as the 10% quantiles for tempera-
tures that are as relatively low as the 90% quantiles are high.
The estimated 10% and 90% quantiles broadly follow the
same trends as elevation on the ice sheet. The 10% quantiles
have a range from −53.84 ◦C in the centre of the ice sheet to
a maximum of−15.75 ◦C at the south tip of the ice sheet. As
would be expected, cells at higher elevations have a lower
10% and 90% quantile. However, of more interest are the
few (30/1139) cells located on the west, east, and southern
coasts that have a 90% quantile above 0 ◦C. At these cells,
we would expect at least (in some cases more than) 10%
of observed temperatures to be above 0 ◦C and thereby melt
temperatures.

We also calculate the 1-year return levels of each cell. This
is the IST that is on average only exceeded once per year as
estimated from each cell’s mixture model. The return levels

range from a minimum of −7.08 ◦C in the centre to a max-
imum of 7.24 ◦C on the west coast. Although, as previously
discussed, ISTs should not be seen higher than 0 ◦C, these
return levels reflect similar temperatures recorded by obser-
vations in the dataset and can be plausible temperatures when
considering the effect that meltwater on the surface of the ice
sheet has on the observations. The rarity of melt in certain
central areas can be seen more clearly, as temperatures in
many cells (519/1139) on average reach −1.65 ◦C less than
once a year. The trends seen in the return levels also broadly
agree with those seen in the quantiles and are in reasonable
agreement with the elevations and distance to the coast of
each cell, with cells at lower altitudes and closer to the coast
generally experiencing more melt.

3.4 Decadal variability

To examine potential changes in melt over time, we fit mix-
ture models at each cell for two separate decades: 2001 to
2009 and 2010 to 2019. Averaging over a decade helps to
smooth some of the annual variability and thus highlight any
potential differences as a result of climatic change. To as-
sess any changes in melt and high ISTs between the decades,
we compare quantiles between the fitted models and the es-
timated melt probabilities at each cell in each decade.

3.4.1 Temperature quantiles

Because some central areas of the ice sheet do not have many
historical melt observations, we examine the 95% quantiles
and yearly expected maximum temperatures, both of which
give an indication of overall trends in high temperatures even
if these do not reach the level required for melt at some cells.
As previously, we take the estimated quantiles from each of
the fitted decadal models for each cell.

For almost all cells (1100/1139), the 95% quantile in-
creased between the two decades. Cells in the south in par-
ticular have increased fairly consistently. The average change
for all cells south of 73.41◦ N was 0.73 ◦C, with 99.3% of all
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Figure 6. A comparison of the empirical melt from Programme for Monitoring of the Greenland Ice Sheet (PROMICE) AWS data (proportion
of data ≥ 0 ◦C) with empirical MODIS IST estimates (proportion of data ≥ 0 ◦C) and mixture-model-based expected melt estimates. Only
dates with data available from both datasets are used, meaning the above estimates are valid only for cloud-free days due to the limitations
of the MODIS IST dataset.

Figure 7. The 10% quantile (a), 90% quantile (b), and 1-year return level (c) estimates for MODIS IST data from 2001 to 2019 at 1139
cells. Estimates are calculated from fitted mixture models at each cell.

cells further south than this seeing an increase. The largest
increases were also concentrated in the southern areas of the
ice sheet, with a maximum increase of 1.78 ◦C.

The 1-year return levels also generally increased, albeit
slightly less consistently than the 95% quantiles (849/1139
cells). Areas in the east show the largest increases – with
the largest increase being 2.66 ◦C – however on the south-
west coast and particularly in the north central area of the ice
sheet, there are also several cells that show a slight decrease
in contrast to larger increases. More clearly than in the 95%
quantiles, 1-year return levels at coastal cells do not increase
as much as in central cells between decades. However, it is
important to note that the maxima at coastal cells are already
close to or above 0 ◦C. Because of the soft upper limit of the
IST data, values already close to this limit can be partially
constrained from further increases, so cells that had a 1-year
return level above 0 ◦C are less likely to show an increase
than colder areas such as in the centre of the ice sheet. This
makes the 1-year return level more informative for central
cells than for coastal cells.

3.4.2 Melt probability

We next compare the probability that each cell experiences
melt on any given day for each decade. Using the fitted mod-
els, we estimate the probability that each daily observation
is a melt temperature and then take an average of all values
within our defined decades. For the purposes of interpreta-
tion, we limit our discussions to the summer months (May to
September, inclusive) when considering melt probabilities,
due to the almost zero probability of observing melt outside
of this period.

The two decades show very similar trends in their daily
melt probabilities, particularly around the coast. However,
decade 2 has more cells with a non-zero probability of melt
(1017) than decade 1 (853) – an increase of around 19.2%
between the two decades – and 68.5% of cells saw an in-
creased probability of melt between the decades. The cell
with the single largest probability from either decade is from
decade 2 (64.11, −49.93). This cell has a probability of a

https://doi.org/10.5194/tc-16-1597-2022 The Cryosphere, 16, 1597–1607, 2022



1604 D. Clarkson et al.: Melt probabilities and surface temperature trends

Figure 8. Comparison of the change in 95 % quantiles (a) and 1-year return levels (b) of mixture models fit to MODIS IST data from 2001
to 2009 and 2010 to 2019.

melt temperature on any given summer day of 0.64 – equiv-
alent to an expected 97.92 melt days per year.

Most of central Greenland has experienced minimal
change in the probability of melt between the two decades
(Fig. 9). This may be largely due to the probabilities being
extremely small for these areas regardless of the time period
chosen. Coastal cells show clearer and larger cross-decadal
variation in melt probability. South-east and south-west ar-
eas of the ice sheet were generally more likely to experience
melt, in addition to some cells in the north-east and north-
west areas that were less likely to experience melt, in the
more recent decade. The largest increase is on the south-east
coast, where cells show a maximum change of 0.0351, which
equates to an expected increase of 15.42 melt days each year.

4 Discussion

Increases in ice melt in Greenland are of major concern due
to the impact that the ice melt will have on sea levels (van den
Broeke et al., 2016); however in situ observations of ice
melt are sparse, spaced irregularly, and of coarse resolution.
Here, we show that melting can be estimated using a rela-
tively low-dimensional and highly flexible statistical model
for IST. This enables us to assemble a record of melting that
is continuous in time and space and is sampled at a high spa-
tial (0.78× 0.78 km) and temporal (daily) resolution (cloud
cover permitting) using the MODIS IST dataset. In addition
to the greater availability of IST data, ISTs are on a contin-
uous scale and vary smoothly over time and space, making
them better suited to statistical modelling. This is of partic-
ular interest given that, from these data, we see that there is
ambiguity about whether or not temperatures below 0 ◦C are
in fact reflective of melting ice. In this paper, we have ad-
dressed this uncertainty by incorporating it into the structure
of the statistical model, and thus our record of melting/not-
melting is probabilistic rather than binary.

Our model gives comparable results to empirical estimates
of melt obtained using a fixed threshold while also allowing
more detailed analyses of melt and the overall temperature
distribution via quantile estimation, melt probabilities, and
return levels. By modelling the entire temperature distribu-
tion, we can gain insight into not only the frequency and
range of melt temperatures but also broader trends such as
higher temperatures in both the high and the low quantiles.
Furthermore, the model allows for out-of-sample predictions
and extrapolation beyond the range of observations. This is
of particular interest for melt which occurs with temperatures
in the upper tail of the IST distribution where there can in
some cells be insufficient data to confidently make empirical
estimates.

We observe that melt is much more likely at coastal cells
and in the south of the ice sheet than in the centre and that
there is a non-trivial probability of melt occurring below
−1 ◦C. The spatial melt trends are in keeping with previ-
ous work examining melt using surface mass balance data
(van den Broeke et al., 2016) and satellite data (Mernild et al.,
2011), including MODIS data (Nghiem et al., 2012). The fit-
ted models also show a clear link between elevation and high
ISTs similarly to previous studies linking temperature to el-
evation (Reeh, 1991), and the yearly expected maxima show
the potential for even central areas of the ice sheet to experi-
ence melt (Nghiem et al., 2012). Trends previously observed
in the south (Mote, 2007) also appeared to have continued, as
all cells examined south of 75.16◦ N saw increases in high-
temperature quantiles in the most recent decade.

One of the key considerations is the impact of cloud cover
on temperatures, which will not be negligible. The dataset
used has a complete absence of data on cloudy days. This
could be handled in three ways: analyse clear days only, im-
pute missing values, or impute cloudy-day data from a sec-
ond data source. Cloudy-day data are not missing at ran-
dom, since the mechanism which causes the missingness is
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Figure 9. The average probability of a melt temperature on any given summer (May–September inclusive) day from 2001 to 2009 (a) and
2010 to 2019 (b) and the change in melt probability between 2001 to 2009 and 2010 to 2019 calculated from the fitted mixture models.

intrinsically related to the missing values themselves. Con-
sequently the usual methods for imputation using the ob-
served data are not valid. In particular, any such imputa-
tion of cloudy-day values using the available clear-day data
would need to take into account the systematic differences
between clear- and cloudy-day temperatures since, as noted,
cloudy days are in general warmer than comparable clear
days. Because there is a complete absence of cloudy-day
data, there is no way for the extent of this bias to be esti-
mated empirically. Consequently, we would need to use ex-
ternal information, for example, other sources of data, to un-
dertake the imputation. This would open up additional prob-
lems around different levels of measurement and recording
error, different spatio-temporal measurements scales, and so
forth, which we believe is beyond the scope of the project.

Although some of the expected annual maxima are just
below the lower censoring point of our model’s melt compo-
nent, melt may be possible in these areas over longer time
periods. For some cells, the model fit suggests an extremely
low probability of melt. This may be because these cells have
few historical instances of possible melt in the data, i.e. no
ISTs above the lower censoring point of the melt component.
In these instances, the information in the data is insufficient
to support a melt component, so only the ice components can
be fit to the data, leading to an effective zero probability of
melt.

The model also assumes that surface conditions remain
similar over the observed time period. Additional impurities
becoming present in the ice or rocks appearing after a par-
ticularly warm summer could affect the distribution of tem-
peratures at least in the short term and potentially in the long
term; however these changes would be difficult to accurately
identify using only IST data. A separate dataset with addi-
tional information about surface conditions could be used to
identify these changes, or adaptations to the current model
structure could be made to allow for the detection of long-
term changes in surface conditions. This could take the form
a regression-based or mixed-effects-based model, which may
represent the surface conditions of the ice but at the expense

of being more difficult to fit and potentially interpret due to
the increased number of parameters.

Given the assumptions and intuition behind some of the
modelling choices, this dataset could alternatively be mod-
elled using a Bayesian framework with prior distributions
that reflect these assumptions. We would expect melt to have
similar distributions at different cells even if there is less ev-
idence of melt in some cells than others. If this is the case,
then a modelling framework could be established whereby
the melt components of the model share information or pa-
rameters while the ice components are independent between
cells. This could be used to estimate melt probabilities even
in cells where no melt temperatures have been observed, as
melt components could still be estimated using information
from other cells with more data resembling melt.

Fitting models to sub-decadal datasets would lead to in-
sufficient data to fit the model; in particular, there would be
many cells and time periods with an extremely low number
of ISTs above −1.65 and 0 ◦C, making it difficult to fit the
melt component with any degree of accuracy. By separately
fitting the model to data from two decades (2001 to 2009 and
2010 to 2019), the overall temperature trends were examined.
South-west and south-east areas of the ice sheet were found
to have a higher probability of melt in 2010 to 2019 com-
pared to 2001 to 2009, and although 22.2% of cells saw a
decrease in melt probability of some degree, 68.5% of cells
saw an increase in melt probability and the average increase
was more than double the average decrease (−0.0044 com-
pared to 0.011). By contrast, the 95% quantiles increased at
almost all cells (1100/1139) and the 1-year return levels in-
creased at most cells (849/1139). The overall trends of the
model suggest that melt has become more frequent in the
most recent decade, and temperatures more broadly are in-
creasing in areas across the ice sheet.
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Appendix A: Expectation–maximisation (EM)
algorithm

A1 Truncated normal distribution

Let X ∼ TN(µ,σ 2,a,b), where µ is the mean, σ is the stan-
dard deviation, and a (b) is the lower (upper) truncation
point. Furthermore, let α = a−µ

σ
and β = b−µ

σ
. Then X has

the following probability density function:

fTN(x)=
fN
(
x−µ
σ

)
σ (FN (β)−FN (α))

, (A1)

where fN and FN are the probability density function and the
cumulative distribution function of a standard normal distri-
bution respectively.

A2 Algorithm

Let (µk,σk,αk,βk) denote the parameters for the kth trun-
cated normal distribution. To initialise the algorithm, ran-
domly sample without replacement three values of x ∈X
and set them as µk for k = 1, k = 2, and k = 3. We set
µ4 = 0 to ensure that one of the model components starts
in the region of melt temperatures. Let σk be the sample vari-
ance and the component weights φk = 1/4 for k = 1, k = 2,
k = 3, and k = 4. For simplicity we refer to the truncated nor-
mal probability density function and cumulative distribution
function as f (x) and F(x) respectively. The expectation–
maximisation (EM) algorithm consists of iterating between
two stages, the expectation and maximisation steps, until
convergence is obtained. For the expectation step, we set

γ̂i k =
φ̂kf

(
xi | µ̂k, σ̂k

)∑4
j=1φ̂jf

(
xi | µ̂j , σ̂j

) , (A2)

where γ̂i k is the estimated probability that observation i be-
longs to model component k.

For the maximisation step, let

φ̂k =

N∑
i=1

γ̂i k

N
, (A3)

µ̂k =

∑N
i=1γ̂i kxi∑N
i=1γ̂i k

+ σ̂k

(
f (αk)− f (βk)

F (βk)−F(αk)

)
, (A4)

σ̂ 2
k =

∑N
i=1γ̂i k

(
xi − µ̂k

)2∑N
i=1γ̂i k[

1+
αkf (αk)−βkf (βk)

FN (β)−FN (α)
−

(
f (αk)− f (βk)

FN (β)−FN (α)

)2
]
. (A5)

We iterate between these two steps until the parameters con-
verge to the final estimates (800 iterations were sufficient in
this case). The algorithm is considered to have converged if

the difference between parameters in each iteration is suffi-
ciently small. We found a difference of 10−5 between itera-
tions to be sufficient indication of convergence for all param-
eters.

Code and data availability. The MODIS data are available on-
line (https://doi.org/10.5067/7THUWT9NMPDK, Hall and DiGiro-
lamo, 2019) from the Multilayer Greenland Ice Surface Temper-
ature, Surface Albedo, and Water Vapor from MODIS, Version
1, dataset (Hall et al., 2018). The AWS station data are available
to download online (https://doi.org/10.22008/promice/data/aws)
from the Programme for Monitoring of the Greenland Ice Sheet
(PROMICE) (Fausto et al., 2021). Code for the mixture model and
analysis is available upon request at d.clarkson@lancaster.ac.uk.
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