Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5639-2021
https://doi.org/10.5194/tc-15-5639-2021
Research article
 | 
13 Dec 2021
Research article |  | 13 Dec 2021

Improving surface melt estimation over the Antarctic Ice Sheet using deep learning: a proof of concept over the Larsen Ice Shelf

Zhongyang Hu, Peter Kuipers Munneke, Stef Lhermitte, Maaike Izeboud, and Michiel van den Broeke

Related authors

Ocean-Induced Weakening of George VI Ice Shelf
Ann-Sofie P. Zinck, Bert Wouters, Franka Jesse, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2025-573,https://doi.org/10.5194/egusphere-2025-573, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
On the accuracy of the measured and modelled surface latent and sensible heat flux in the interior of the Greenland Ice Sheet
Ida Haven, Hans Christian Steen-Larsen, Laura J. Dietrich, Sonja Wahl, Jason E. Box, Michiel R. Van den Broeke, Alun Hubbard, Stephan T. Kral, Joachim Reuder, and Maurice Van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-711,https://doi.org/10.5194/egusphere-2025-711, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Seasonal and interannual variability of freshwater sources for Greenland's fjords
Anneke Louise Vries, Willem Jan van de Berg, Brice Noël, Lorenz Meire, and Michiel R. van den Broeke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3735,https://doi.org/10.5194/egusphere-2024-3735, 2025
Short summary
Assessing the effect of forest management on above-ground carbon stock by remote sensing
Sofie Van Winckel, Jonas Simons, Stef Lhermitte, and Bart Muys
EGUsphere, https://doi.org/10.5194/egusphere-2024-4094,https://doi.org/10.5194/egusphere-2024-4094, 2025
Short summary
The surface mass balance and near-surface climate of the Antarctic ice sheet in RACMO2.4p1
Christiaan T. van Dalum, Willem Jan van de Berg, Michiel R. van den Broeke, and Maurice van Tiggelen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3728,https://doi.org/10.5194/egusphere-2024-3728, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Bathymetry-constrained impact of relative sea-level change on basal melting in Antarctica
Moritz Kreuzer, Torsten Albrecht, Lena Nicola, Ronja Reese, and Ricarda Winkelmann
The Cryosphere, 19, 1181–1203, https://doi.org/10.5194/tc-19-1181-2025,https://doi.org/10.5194/tc-19-1181-2025, 2025
Short summary
Age–depth distribution in western Dronning Maud Land, East Antarctica, and Antarctic-wide comparisons of internal reflection horizons
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
The Cryosphere, 19, 1153–1180, https://doi.org/10.5194/tc-19-1153-2025,https://doi.org/10.5194/tc-19-1153-2025, 2025
Short summary
Assessing the sensitivity of the Vanderford Glacier, East Antarctica, to basal melt and calving
Lawrence A. Bird, Felicity S. McCormack, Johanna Beckmann, Richard S. Jones, and Andrew N. Mackintosh
The Cryosphere, 19, 955–973, https://doi.org/10.5194/tc-19-955-2025,https://doi.org/10.5194/tc-19-955-2025, 2025
Short summary
A history-matching analysis of the Antarctic Ice Sheet since the Last Interglacial – Part 1: Ice sheet evolution
Benoit S. Lecavalier and Lev Tarasov
The Cryosphere, 19, 919–953, https://doi.org/10.5194/tc-19-919-2025,https://doi.org/10.5194/tc-19-919-2025, 2025
Short summary
ISMIP6-based Antarctic projections to 2100: simulations with the BISICLES ice sheet model
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025,https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary

Cited articles

Arthur, J. F., Stokes, C., Jamieson, S. S., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geogr., 44, 837–869, 2020. a
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Cape, M., Vernet, M., Skvarca, P., Marinsek, S., Scambos, T., and Domack, E.: Foehn winds link climate-driven warming to ice shelf evolution in Antarctica, J. Geophys. Res.-Atmos., 120, 11–037, 2015. a
Chen, T. and Guestrin, C.: Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 13–17 August 2016, San Francisco, California, USA, 785–794, 2016. a
Download
Short summary
Antarctica is shrinking, and part of the mass loss is caused by higher temperatures leading to more snowmelt. We use computer models to estimate the amount of melt, but this can be inaccurate – specifically in the areas with the most melt. This is because the model cannot account for small, darker areas like rocks or darker ice. Thus, we trained a computer using artificial intelligence and satellite images that showed these darker areas. The model computed an improved estimate of melt.
Share