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Abstract. Accurately estimating the surface melt volume of
the Antarctic Ice Sheet is challenging and has hitherto relied
on climate modeling or observations from satellite remote
sensing. Each of these methods has its limitations, especially
in regions with high surface melt. This study aims to demon-
strate the potential of improving surface melt simulations
with a regional climate model by deploying a deep learning
model. A deep-learning-based framework has been devel-
oped to correct surface melt from the regional atmospheric
climate model version 2.3p2 (RACMO2), using meteorolog-
ical observations from automatic weather stations (AWSs)
and surface albedo from satellite imagery. The framework
includes three steps: (1) training a deep multilayer percep-
tron (MLP) model using AWS observations, (2) correcting
Moderate Resolution Imaging Spectroradiometer (MODIS)
albedo observations, and (3) using these two to correct the
RACMO2 surface melt simulations. Using observations from
three AWSs at the Larsen B and C ice shelves, Antarc-
tica, cross-validation shows a high accuracy (root-mean-
square error of 0.95 mm w.e. d−1, mean absolute error of
0.42 mm w.e. d−1, and a coefficient of determination of 0.95).
Moreover, the deep MLP model outperforms conventional
machine learning models and a shallow MLP model. When
applying the trained deep MLP model over the entire Larsen
Ice Shelf, the resulting corrected RACMO2 surface melt
shows a better correlation with the AWS observations for two
out of three AWSs. However, for one location (AWS 18),
the deep MLP model does not show improved agreement
with AWS observations; this is likely because surface melt is
largely driven by factors (e.g., air temperature, topography,
katabatic wind) other than albedo within the corresponding
coarse-resolution model pixels. Our study demonstrates the

opportunity to improve surface melt simulations using deep
learning combined with satellite albedo observations. How-
ever, more work is required to refine the method, especially
for complicated and heterogeneous terrains.

1 Introduction

The Antarctic Ice Sheet (AIS) is an important indicator of
climate change. Current AIS mass loss has been estimated at
155± 19 Gt yr−1 (0.43± 0.05 mm yr−1 of eustatic sea level
rise) between 2006 and 2015 and is accelerating (Pörtner
et al., 2019). At present, mass loss is mainly driven by ice
shelf weakening due to basal melt (The IMBIE team, 2018)
or damage processes (Lhermitte et al., 2020) or by hydrofrac-
turing due to surface melt (The IMBIE team, 2018; Gilbert
and Kittel, 2021; Kuipers Munneke et al., 2014). In the com-
ing centuries, surface melt is projected to increase strongly
over Antarctica (Trusel et al., 2015), increasing the inci-
dence of surface-melt-related instability of ice shelves. The
Intergovernmental Panel on Climate Change (IPCC) esti-
mated the contribution from AIS mass loss to global mean
sea level rise until 2100 in its recent Sixth Assessment Re-
port (IPCC AR6; Fox-Kemper et al., 2021). Under different
Shared Socioeconomic Pathway (SSP) scenarios, the contri-
bution will likely be 0.03–0.27 m (SSP1–2.6), 0.03–0.29 m
(SSP2–4.5), or 0.03–0.34 m (SSP5–8.5) (Fox-Kemper et al.,
2021). In this context, accurate information about surface
melt can directly enhance our understanding of the AIS evo-
lution and its contribution to sea level rise.
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Despite the importance of melt volumes estimates, deriv-
ing them accurately from satellite observations or (regional)
climate models is not straightforward. Satellite estimates
rely, for example, on proxies of melt presence from changes
in albedo (Steffen et al., 1993; Pirazzini, 2004), brightness
temperature (Zheng et al., 2020, 2019), or backscatter (Trusel
et al., 2013, 2012) to empirically estimate melt flux or melt
volumes. However, these satellite methods face difficulties as
they often require locally adapted thresholds (e.g., thresholds
in Trusel et al., 2013) or potentially underestimate the melt
fluxes over, for example, blue ice areas (Arthur et al., 2020;
Lenaerts et al., 2017), where the contrast between melt and
no-melt is less clear.

Climate models, including regional climate models, on the
other hand, face difficulties in accurately estimating surface
melt over areas with low surface albedo. Often, features of
strong surface melt (ponds, blue ice, lakes) are smaller than
the model resolution, and processes that lead to their appear-
ance and dynamics are usually not well represented (Lenaerts
et al., 2017; Kingslake et al., 2017). Optical remote sensing
provides high-quality albedo observations at different spa-
tiotemporal resolutions; hence, it is a competent additional
source of data to the albedo simulation from a physically
based climate model. Therefore, we propose a deep learning
method that uses the albedo observations from remote sens-
ing to correct for the shortcomings of climate models. Deep
learning is a machine learning technique that extracts multi-
ple levels of abstraction/representation of data based on mul-
tiple processing layers, i.e., artificial neural networks (Le-
Cun et al., 2015). To date, deep learning has been widely
applied in Earth system science to analyze and correct mis-
matches between model simulations and observations (Re-
ichstein et al., 2019); an important reason for this is that deep
learning models execute much faster than physically based
models.

Our study aims to develop a novel framework correct-
ing the model–observation mismatch of surface melt in the
AIS with a deep learning model that utilizes inputs from
the physically based model, the regional atmospheric cli-
mate model version 2.3p2 (RACMO2), and remote sensing
albedo observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS). To achieve this, our study has
two primary objectives: (1) develop a deep learning model
to correct the simulations of surface melt from RACMO2
based on automatic weather station (AWS) observations,
and (2) apply and evaluate the performance of the devel-
oped model in correcting the surface melt simulations from
RACMO2. To prove the concept of this framework, we ap-
ply it to RACMO2 model simulations over the Larsen Ice
Shelf between 2009 and 2016, using meteorological parame-
ters from RACMO2 and remote sensing observations of sur-
face albedo. In Sect. 2, we introduce the investigated area and
specify all data sets. The architecture of the method and its
details are described in Sect. 3. Sections 4 and 5 present and
discuss the results, followed by a summary in Sect. 6.

2 Study area and data

2.1 Study area

We apply the deep learning framework to the Larsen
Ice Shelf, situated to the east of the Antarctic Penin-
sula. According to existing estimates, this area produces
about 50 % to 60 % of all surface meltwater in Antarctica
(Kuipers Munneke et al., 2012a; Trusel et al., 2013). On av-
erage, surface melt occurs on 25 d yr−1 in the southern part
of Larsen C Ice Shelf and on over 75 d yr−1 in the west-
ern and northern parts of the region (Luckman et al., 2014).
The Larsen Ice shelf is an ideal test location for develop-
ing a framework to improve surface melt estimates because
(1) there is abundant melt, (2) high-quality multiyear AWS
data suitable for melt calculations (i.e., including the surface
radiation budget) are available (Jakobs et al., 2020a), and
(3) a previous comparison between RACMO2 albedo and
radar backscatter from the Quick Scatterometer (QuikSCAT)
revealed that both positive and negative values of the dif-
ference between RACMO2 and observed surface melt ex-
ist in this area (Trusel et al., 2013). Thus, the versatility of
the method is tested both for enhancing and reducing surface
melt.

The Antarctic Peninsula (Fig. 1) is the mildest region of
Antarctica, as it protrudes farther north than other regions,
into the Southern Ocean. In the western part of the Antarc-
tic Peninsula, the atmospheric circulation is northwest–
southeast, leading to mild conditions, few ice shelves, and
little sea ice. Conversely, in the eastern Antarctic Peninsula,
the circulation is south–north, resulting in colder conditions,
extensive ice shelves, and year-round sea ice cover. There-
fore, ice shelves on the Antarctic Peninsula are mostly lo-
cated on the eastern coast. Under specific conditions, west-
erly atmospheric flow leads to warm and dry winds, known
as föhn, descending from the eastern mountain flanks onto
the ice shelves (Elvidge and Renfrew, 2016; Datta et al.,
2019). These föhn winds are known to generate strong sur-
face melt in the inlets on the ice shelves just downslope
of the mountains. On average, the annual melt exceeds
400 mm w.e. (Trusel et al., 2013; Turton et al., 2020) in these
inlets, distributed over about 100 melt days (Luckman et al.,
2014). However, further east on the Antarctic Peninsula ice
shelves, surface melt rates are also high compared with most
other ice shelves in Antarctica, at 200 to 300 mm w.e. yr−1

(Trusel et al., 2013).

2.2 Data

2.2.1 Satellite observations

MODIS aboard the Terra (launched in 1999) and Aqua
(launched in 2002) satellites provides continuous observation
of the Earth’s surface. For various disciplines, there are dif-
ferent standard MODIS data products for global change stud-
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Figure 1. Overview of the study area, the Larsen Ice Shelf, and details about the geolocations and operation periods of the deployed
automatic weather station (AWS) observations. Surface elevation is derived from the ETOPO1 1 Arc-Minute Global Relief Model
(https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:316, last access: 3 December 2021), and the
grounding line information is derived from Bindschadler et al. (2011). The base maps are the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Image Mosaic and the Antarctic ice-shelf buttressing (Fürst et al., 2016).

ies. Among these products, we deployed the bihemispheri-
cal reflectance (i.e., white-sky albedo) for shortwave broad-
band from the MCD43A3 albedo product (Schaaf and Wang,
2015) archived in the Google Earth Engine (GEE; Gorelick
et al., 2017) as the albedo input. Furthermore, to obtain ob-
servational information about cloud coverage at AWS loca-
tions, cloud classifications are taken from the MOD09GA
daily surface reflectance product (i.e., “MODIS/Terra Sur-
face Reflectance Daily L2G Global 1 km and 500 m SIN
Grid”; Vermote and Wolfe, 2015), also archived in GEE. To
confirm the spatiotemporal melt pattern in the study area, we
derived the backscattering coefficient drops as an indicator
of surface melt, following Luckman et al. (2014) and Datta
et al. (2019), from some representative Sentinel-1 imagery
archived in GEE between January and March in 2015.

2.2.2 Automatic weather station (AWS) observations

AWS 14, AWS 17, and AWS 18 (Fig. 1) are automatic
weather stations installed and operated by the Institute for
Marine and Atmospheric research Utrecht (IMAU) and the
British Antarctic Survey (BAS). Incoming and reflected
shortwave radiation (S↓ and S↑, respectively) and surface
albedo (αo) are observed using a Kipp & Zonen CNR 1 ra-
diation sensor at AWS 14 and AWS 17 and using a CNR 4
radiation sensor at AWS 18. The same sensor also measures

down- and upwelling longwave radiation (Rl). Air tempera-
ture (T2 m), air pressure (p), and relative humidity (RH) mea-
sured at 1–4 m above the surface are corrected for heating of
the shielded housing by solar radiation, especially in situa-
tions with low wind speed. More details on the experimental
setup and data corrections can be found in Kuipers Munneke
et al. (2018b), Smeets et al. (2018), and Jakobs et al. (2020a).

2.2.3 The regional climate model RACMO2

RACMO2 is a regional climate model adapted for the sim-
ulation of the weather over snow and ice surfaces, in or-
der to obtain a more accurate representation of surface
mass and energy balance. The version used in this study is
RACMO 2.3p2 forced by ERA-Interim (van Wessem et al.,
2018). The entire AIS is simulated at a horizontal reso-
lution of approximately 27× 27 km2 for the period from
1979 to 2019. For this study, we select the model output
between 2009 and 2016, overlapping with the availability
of MODIS and AWS observations on the Larsen Ice Shelf.
RACMO2 has a scheme for calculating the evolution of snow
albedo, which is a key parameter for the surface energy bal-
ance in summer and an important factor in determining sur-
face melt. The albedo scheme is based on the metamorphism
of snow grains determining the amount of incoming radia-
tion that is absorbed in the snowpack. The albedo scheme
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Figure 2. Overall flowchart illustrating the employed data sets, implemented methods, and corresponding intercomparisons and evaluations.

does not account for ponding meltwater, the appearance of
blue ice, or other icy surfaces like wind glaze or refrozen
supraglacial water. All of these surface types tend to have a
lower albedo than a snow surface (Kuipers Munneke et al.,
2011).

3 Methods

Essentially, we develop a deep learning model that corrects
RACMO2 surface melt, based on differences in modeled and
observed surface albedo values. A comprehensive flowchart
of the method is given in Fig. 2. Input to the deep learning
model consists of relevant, predictive meteorological input
and the difference between observed and simulated albedo
values (1α). The deep learning model needs to be trained
(Fig. 2, panel II-2), which is performed on a reference data
set derived from AWS observations. To build this reference
data set, the surface energy balance model is used to perturb
the surface albedo from AWS observations by an amount1α
(Fig. 2, panel II-1). The model is then trained to predict the
resulting change in surface melt. The trained model is subse-
quently applied to RACMO2, where 1α is computed as the
difference between MODIS-observed albedo and RACMO2-
simulated albedo (Fig. 2, panel II-4). The MODIS white-
sky albedo is converted to blue-sky albedo by correcting for
variations in solar zenith angle and for cloud cover (Fig. 2,
panel II-3) to allow for a comparison with the RACMO2
blue-sky albedo.

The remainder of this section describes the methodology
in more detail. The perturbation of the AWS observations,
as described above, is referred to as “AWS data augmenta-

tion”, a frequently used term in deep learning. More funda-
mentals and terminology in deep learning can be found in
LeCun et al. (2015). In order, we present details of (1) the for-
mulation of the concept of the deep learning model, (2) the
surface energy balance model design, (3) the augmentation
(perturbation) of AWS observations, (4) training and valida-
tion of the deep learning model, (5) preparation and correc-
tion of MODIS albedo, and (6) the final application of the
deep learning model as well as its evaluation (Fig. 2).

3.1 Formulation of the concept of this study

Previously, the additional absorbed solar energy that stems
from the difference between a lower observed albedo and a
higher modeled albedo has been converted entirely to surface
melt (Lenaerts et al., 2017). However, this approach neglects
the fact that all of the terms in the surface energy balance
change when surface albedo is lowered; for example, it could
lead to a higher surface temperature and, thus, enhanced heat
loss by longwave radiation to the atmosphere, or a decreased
air temperature gradient in the atmospheric boundary layer
could diminish the amount of sensible heat added to the sur-
face by turbulence. Therefore, our approach makes use of
(1) original, imperfect model albedo; (2) MODIS albedo ob-
servations; and (3) a full surface energy balance model to
compute the effect of a change in surface albedo on all en-
ergy balance terms.

Central to our approach, we assume that an imperfect
RACMO2 simulation of surface melt is caused by an im-
perfect simulation of surface albedo in the model. Absorbed
solar radiation is by far the major source of energy for
surface melt in the summertime surface energy balance of
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the Antarctic surface (Lenaerts et al., 2017). Surface albedo
strongly modulates this amount of absorbed solar radiation.
Therefore, we assume that an imperfect simulation of surface
albedo is the most dominant cause of mismatches between
modeled and observed surface melt (Lenaerts et al., 2017).

3.2 Surface energy balance model

The surface energy balance is given as

M0 = S↓+ S↑+L↓+L↑+H +L+G. (1)

Here, the radiative fluxes are represented by S↓ and S↑ (in-
coming and reflected solar radiation, respectively) and by
L↓ and L↑ (downwelling and upwelling longwave radiation,
respectively). H and L are the respective turbulent fluxes of
sensible and latent heat, and G is the ground heat flux at the
snow surface, computed from subsurface temperature. The
sum of these fluxes is zero if the surface temperature is below
the freezing point. At the freezing point, the sum of the fluxes
equals the melt energyM0. All fluxes are defined positive to-
wards the surface and are expressed in watts per square me-
ter (W m−2). The model is identical to the one described in
Kuipers Munneke et al. (2012b). The model settings (mainly
for turbulent exchange of energy) were calibrated by mini-
mizing the difference between observed and modeled surface
temperature and subsurface temperatures.

3.3 AWS perturbation

The deep learning model needs to be trained to predict the
amount by which the surface melt is changed (Ma) if albedo
is changed by an amount 1α (Fig. 2, panel II-1). Therefore,
we construct a reference data set by artificially raising or low-
ering the albedo, using the surface energy balance model to
quantify how the reduced (additional) amount of absorbed
solar radiation results in reduced (additional) melt and/or is
redistributed over the other energy fluxes in the energy bal-
ance.

One of the advantages of this approach is that the perturba-
tion strongly increases the size of the training data set while
conserving the internal consistency of the energy balance. As
a positive side effect, the data augmentation increases the
number of low-albedo values in the data set, as low-albedo
values were scarce in the original AWS time series. The data
augmentation is shown in Fig. 2, panel II-1.

The entire time series of AWS 14, AWS 17, and AWS 18
are adjusted by a value of1α between−0.30 (lowering) and
+0.09 (increasing) in steps of 0.03. As positive values of1α
can result in non-physically high albedo (i.e., albedo higher
than 1.0), adjusted albedos greater than 0.95 are discarded.

3.4 Deep learning model: the multilayer
perceptron (MLP)

To estimate the change in surface melt from RACMO2, a
deep MLP model is developed where we estimate the addi-
tional surface melt (Ma) by means of regression F :

Ma = F
(
αs,1α,T2 m,S↓,L↓,M0,Fm,1Mt ,D

)
, (2)

where the input parameters are the simulated albedo (αs)
itself, the albedo difference (1α ≡ αo−αs) between the
observed (αo) and simulated albedo, air temperature at
2 m (T2 m), incoming shortwave radiation (S↓), downwelling
longwave radiation (L↓), simulated surface melt (M0),
Boolean melt flag (Fm), surface melt difference to the pre-
vious day (1Mt ), and record date as day of the year (D). As
such, the deep MLP model builds on all important drivers
for melt fluxes. Moreover, it includes surface melt informa-
tion from the previous day, as memory effects can also play a
role. To put emphasis on the days that the surface is actually
melting, we provide an additional Boolean melt flag as input
to the model.

The model is programmed in Python using Keras, a high-
level deep learning application programming interface of
TensorFlow 2.0 (the architecture for this interface is illus-
trated in Fig. 3). The deep MLP model consists of 15 hid-
den layers, each with 64 neurons. We use the adaptive mo-
ment estimation (Adam) optimizer (Kingma and Ba, 2014)
with a learning rate of 0.0003. The Xavier normal initializer
(Glorot and Bengio, 2010) is used to set the initial random
weights of the layers. The maximum iteration is set to 5000,
and an “early stopping” is applied to avoid overfitting and
to monitor the variation of “loss”. Consequently, the training
process is terminated early if the loss stops improving after
20 epochs. This not only improves the training efficiency but
also adds regularization effects to the deep MLP model. To
further avoid overfitting, for all hidden layers, L2 regulariza-
tions (Ng, 2004) and dropouts (with a rate of 0.1) are applied
in every third layer (Fig. 3). On the other hand, to address
“gradient vanishing”, three “shortcuts” (He et al., 2016) are
built to convey the residual information from previous lay-
ers. To accelerate the training process, batch processing with
a batch size of 4096 is deployed using the shuffled training
data set.

Additionally, for comparison purposes, we have also built
a multivariate linear regression model, a boosting model
(XGBoost – a highly effective and widely used tree boosting
system; Chen and Guestrin, 2016), a bagging model (ran-
dom forest; Breiman, 2001), and a shallow MLP model (sin-
gle hidden layer with 12 neurons). The bagging and boost-
ing models are developed in Python using the open-source
scikit-learn and XGBoost packages, and the shallow MLP
model is developed using Keras. To tune the hyperparam-
eters in the random forest and XGBoost model, the Grid-
SearchCV function built in scikit-learn is used. Validation
of the abovementioned models is implemented by compar-

https://doi.org/10.5194/tc-15-5639-2021 The Cryosphere, 15, 5639–5658, 2021



5644 Z. Hu et al.: Improving surface melt estimation over Antarctic Ice Sheet using deep learning

Figure 3. Overview of the built deep multilayer perceptron (MLP) model architecture; the input parameters are the simulated albedo (αs)
itself, the albedo difference (1α ≡ αo−αs) between the observed (αo) and simulated albedo, air temperature at 2 m (T2 m), incoming short-
wave radiation (S↓), downwelling longwave radiation (L↓), simulated surface melt (M0), Boolean melt flag (Fm), surface melt difference to
the previous day (1Mt ), and record date as day of the year (D).

ing the accuracy metrics based on the training and valida-
tion data sets. To evaluate the deep MLP model and the other
machine/deep learning models, we have separated the aug-
mented AWS observations (Sect. 3.3) into a training data
set containing AWS 14 and AWS 17 and a validation data
set consisting of AWS 18. Afterward, three metrics are cal-
culated to evaluate the model performance: the root-mean-
square error (RMSE), the mean absolute error (MAE), and
the coefficient of determination (R2).

3.5 MODIS albedo correction and interpolation

When the deep learning model is applied to RACMO2 out-
put, corrections to surface melt are guided by MODIS ob-
servations of surface albedo. Therefore, we use the MODIS
albedo product (MCD43A3), which is a clear-sky product
based on observed clear-sky surface reflectances from the
Level 2 Surface Reflectance product (MOD09, MYD09).
Hence, the MODIS white-sky albedo needs to be con-
verted to blue-sky albedo by correcting for the influence
of changing solar zenith angle and cloud cover, both of
which have a significant impact on surface albedo over snow
(Kuipers Munneke et al., 2008). Therefore, we use MODIS
white-sky albedo as diffuse albedo αs at 50◦ and apply the
RACMO2 parametrization for solar zenith correction (dαu)
and clouds (dατ ), as described in Kuipers Munneke et al.
(2011) and developed in Gardner and Sharp (2010). This re-
quires the cloud optical depth and solar zenith angle as in-
put. The latter is computed as a function of date and geo-
graphical location. Cloud optical depth (τ ) is calculated from
RACMO2 simulations of the ice water path (IWP) and liquid
water path (LWP) using the parameterization from Stephens
(1978):

τi =
3
2
·

IWP
ρiReff,i

(3)

τw =
3
2
·

LWP
ρwReff,w

, (4)

where the subscripts “i” and “w” denote a separate treatment
for ice and water. The total cloud optical depth is

τ = τi+ τw. (5)

The effective particle radius used for ice (Reff,i) and wa-
ter (Reff,w) is 30 µm and 13 µm, respectively (Henderson
et al., 2011). The respective densities are ρi = 916.7 kg m−3

and ρw = 1000 kg m−3. IWP and LWP (kg m−2) are the re-
spective integrated cloud ice and water content over cloud
depth z, under the assumption that the cloud is vertically
uniform with respect to the drop-size distribution (i.e., well
mixed). Although this is a simplified assumption, it allows a
first-order correction for cloud effects on the satellite albedo.
After this correction, the daily total-sky MODIS albedo val-
ues were derived. We then implemented a linear interpolation
over time to fill in missing values caused by persistent cloud
obstructions (with a frequency of 15.51 % at AWS 14, 8.45 %
at AWS 17, and 1.32 % at AWS 18).

3.6 Application of the MLP model to RACMO2

As our objective is to improve surface melt simulations
from RACMO2 over all Larsen ice shelves, it is vital to as-
sess the MLP model performance with respect to both the
reference data set and the RACMO2 simulations directly.
For the reference data set, we use the AWS data and per-
turbed albedo changes as input data for Eq. (2), whereas for
the RACMO2 simulations, we rely on RACMO2 data and
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MODIS albedo observations as inputs to calculate the cor-
rected surface melt (Mc):

Mc =max(M0+Ma,0) , (6)

where M0 represents the uncorrected surface melt simula-
tions for both the reference and RACMO2 data sets, and
Ma stands for the additional surface melt estimated by the
deep MLP model. Additionally, to calibrate overcorrections,
if the corrected surface melt is negative, we have set it to zero
using Eq. (6). Outside of the austral summer, when absorbed
solar radiation is no longer the major source of energy for
surface melt, the deep MLP model is switched off, and the
original RACMO2 simulations are used to calculate the an-
nual surface melt.

The correction can be performed to be consistent with
the temporal extent of the MCD43A3 product (i.e., from
16 February 2000 to present). However, to intercompare the
original RACMO2 surface melt, the corrected surface melt,
and the AWS observations, the application in this study is
limited to 2009–2016 – the period for which AWSs were op-
erated on the Larsen Ice Shelf (Fig. 1).

3.7 Evaluation of the MLP model performance

To evaluate the deep MLP model performance, we conduct
two separate analyses. The first evaluation focuses on the
robustness of the method that we developed. In Sect. 4.1,
we assess the deep MLP model performance using a cross-
validation, i.e., we evaluate if the deep MLP model is able
to recreate the time series of surface melt from the surface
energy balance model. We set aside the reference data set
at AWS 18 as the validation data set, thereby preserving
the complete inter- and intra-annual melt variability. In the
same way, we also benchmark the deep MLP model with
other machine learning models: a multivariate linear regres-
sion model, an XGBoost model (a leading boosting machine
learning model), a random forest regression (a leading bag-
ging machine learning model), and a shallow MLP model
containing only one hidden layer and few neurons (hereafter
referred to as a shallow MLP model).

The second analysis, presented in Sect. 4.3, assesses the
performance of the deep MLP model in the final applica-
tion to RACMO2 model simulations that are corrected us-
ing MODIS albedo observations. First, we thoroughly eval-
uate MODIS albedo in an intercomparison with AWS and
RACMO2 albedo before we use it as an input to the deep
MLP model. This can reveal potential sources of error from
the input albedo in the deep MLP model application and
also demonstrates discrepancies among the three data sets at
different AWS locations. Second, we apply the deep MLP
model to MODIS and RACMO2 data, and present the cor-
rected surface melt in section 4.3, along with the AWS obser-
vations, QuikSCAT-based estimations (Trusel et al., 2013),
and original RACMO2 simulations over the Larsen Ice Shelf
(AWS 14, AWS 17, and AWS 18). Additionally, to further

investigate the potential influence of the imprecise meteoro-
logical input parameters to the deep MLP model, we display
the contemporary T2 m, S↓, L↓, and α from AWS observa-
tions, RACMO2 simulations, and/or MODIS observations.

4 Results

4.1 MLP performance: application of the MLP to AWS
data

Here, we test the technical correctness of the deep MLP
model as well as its ability to learn the behavior of the surface
energy balance model. We first present the cross-validation
results, indicating the performance of the deep MLP model
when applied to data from a different location. Subsequently,
we compare the performance of the deep MLP to other ma-
chine learning models. Finally, we present the capacity of the
developed MLP model to reconstruct the time series of sur-
face melt from the surface energy balance model.

4.1.1 Accuracy assessment based on cross-validation

The cross-validation of the additional daily surface melt (Ma)
predicted by the deep MLP model (Fig. 4a) shows a high
correlation (R2

= 0.95) between the deep-MLP-modeledMa
and that from the surface energy balance calculations based
on the perturbed observations at AWS 18. The overall RMSE
and MAE are 0.95 and 0.42 mm w.e. d−1, respectively. How-
ever, no- and low-melt values are abundant, and they can
greatly reduce the errors, especially outside of the summer
season. To eliminate such an effect, we discriminate between
melt and no-melt periods, and the results are summarized
separately in Fig. 4b and c. During melt periods, errors are
1.05 (RMSE) and 0.70 mm w.e. d−1 (MAE). These values are
higher than for the no-melt periods, which have an RMSE
and MAE of 0.91 and 0.34 mm w.e. d−1, respectively. The
R2 is 0.24 lower under no-melt conditions than under melt
conditions because of a number of notable outliers during no-
melt periods (Fig. 4c). These outliers indicate that the deep
MLP model sometimes has issues simulating low values of
additional melt (Fig. 4a–c), leading to a “sword-like” pat-
tern in Fig. 4a. The points along/close to the x and y axes
mainly originate from no-melt periods (Fig. 4c). Such errors
mostly occur when 1α is smaller than −0.2 during no-melt
periods (red circles in Fig. 4c), which is rare in reality. In
such cases, the deep MLP model is more likely to set the
surface melt back to zero. The second type of error is the
horizontal line crossing the origin. This mainly occurs dur-
ing melt periods in winter, between approximately May and
August. The deep MLP model does not know how to be-
have, as solar radiation is absent and albedo is undefined:
1α is no longer the dominant factor that influences the mag-
nitude of the surface melt. This is confirmed by the winter
melt anomalies in 2016 (see Sect. 4.1.3). Assessment of the
model performance throughout the year (Fig. 4d) illustrates a
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Figure 4. Performance of the deep multilayer perceptron (MLP) model regarding its (a) overall accuracy, (b) accuracy of melt periods,
(c) accuracy of no-melt periods, (d) accuracy in each month (as no melt event occurred in June during the automatic weather station (AWS)
operation period based on the AWS observations, the June value is absent), (e) accuracy for all albedo differences, and (f) monthly accuracy
(in terms of the additional melt). RMSE, MAE,R2, DOY, and1α stand for the root-mean-square error, the mean absolute error, the coefficient
of determination, the day of the year, and the albedo difference, respectively.

“bowl-like” pattern for the overall accuracy and the accuracy
for no-melt periods, with RMSEs close to zero during the
no-melt periods. During the melt season, RMSEs are close
to 1.0 mm w.e. d−1. In Fig. 4e, the model accuracy for differ-
ent 1α shows a minimum for 1α equals zero. The higher
the absolute value of 1α, the higher the RMSE and MAE.
Lastly, when daily values of surface melt are aggregated to
monthly surface melt, the accuracy of the deep MLP model
increases strongly (R2

= 0.99). This suggests that it is more
appropriate to utilize the monthly results.

4.1.2 Performance of machine learning and deep
learning model

The deep MLP model generally outperforms other machine
learning models (Table 1). The performance of the multivari-
ate linear regression model is weakest, i.e., the highest RMSE
and MAE as well as the lowest R2. The commonly used ran-
dom forest and XGBoost models both outperform the multi-
variate linear regression model and the shallow MLP model.
Furthermore, they are less likely to overfit after the hyperpa-
rameter tuning and regularization. In particular, random for-
est regression has achieved a slightly better MAE and R2

than the deep MLP model in the validation data set. In com-

parison to the shallow MLP architecture, the deep MLP with
stricter regularization and shortcuts shows a noticeable im-
provement in accuracy. Thus, we demonstrate that a lot of
improvement can be achieved by customizing and optimizing
a deep learning model compared with using an off-the-shelf
model. This confirms that the deep neural network can im-
prove the surface melt simulations from RACMO2 over the
Larsen Ice Shelf when accurate meteorological input data are
available.

4.1.3 Time series of MLP-predicted surface melt

The time series of corrected surface melt for different 1α
values show that lower1α values lead to higher daily surface
melt (Fig. 5), except for melt events during the wintertime
in 2016 (Fig. 5a). Figure 5b reveals that the disparity between
the deep-MLP-predicted surface melt and the augmented
AWS observations increases with the drop in albedo, espe-
cially when 1α <−0.18. The time series show that most
surface melt occurs during the austral summer. The largest
differences between the deep-MLP-predicted surface melt
and the augmented AWS observations are mainly found dur-
ing peak episodes of melt. It is also noteworthy that the daily
surface melt difference among different 1α values is larger
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Table 1. Performance of different models in estimating additional melt from the regional atmospheric climate model ver-
sion 2.3p2 (RACMO2) simulations. The training data set is the augmented automatic weather station (AWS) observations from AWS 14
and AWS 17, and the validation data set is the augmented AWS observations from AWS 18.

Model Training data set Validation data set

RMSE MAE R2 RMSE MAE R2

Multivariate linear regression 3.04 2.19 0.51 3.19 2.35 0.48
XGBoost 0.86 0.38 0.97 1.00 0.44 0.96
Random forest regression 0.95 0.37 0.95 0.98 0.40 0.95
Shallow multilayer perceptron 1.24 0.65 0.92 1.32 0.72 0.91
Deep multilayer perceptron 0.77 0.33 0.97 0.95 0.42 0.95

RMSE, MAE, and R2 stand for the root-mean-square error, the mean absolute error, and the coefficient of
determination, respectively. The bold values indicate the best results with respect to RMSE, MAE, and R2.

than the difference between the deep MLP results and (per-
turbed) AWS observations which indicates that the albedo is
the main source of uncertainty, not the uncertainties from the
deep MLP model.

As shown in Fig. 5a, there is a period of anomalously
high surface melt during the winter of 2016, demonstrated
previously in AWS and satellite observations as well as in
RACMO2 simulations (Kuipers Munneke et al., 2018a). In
the deep MLP results, the winter melt episodes are almost
identical for different 1α values. Given that winter melt
events occurred during polar darkness, the incoming short-
wave radiation is almost zero. In such circumstances, the in-
coming shortwave radiation is no longer the key factor lead-
ing to a surface melt increment. Therefore, 1α no longer in-
fluences such winter melt events. The actual trigger for the
winter melt events is föhn winds, adiabatically heated winds
that descend from the Antarctic Peninsula mountains to the
west of the Larsen Ice Shelf (Marshall et al., 2006; Orr et al.,
2008; Cape et al., 2015).

In Fig. 5b, we demonstrate that the deep MLP model is
capable of not only enhancing existing melt but also of simu-
lating melt when there was no melt in the original time series.
When 1α exceeds a certain value, the overall temporal melt
pattern differs from that for lower 1α values. This results in
a longer-lasting and more intense melt event. Moreover, be-
cause of the dependence of melt on the occurrence of melt on
the previous day, the duration of a certain melt event may be
prolonged. This simulates a melt–albedo feedback: an initial
melt event may trigger a melt event the next day, as albedo is
reduced.

4.2 Comparing albedos from MODIS, AWS, and
RACMO2

For clear-sky conditions indicated by MOD09GA (Fig. 6),
AWS 14 and AWS 17 show higher correlations with MODIS
(R2 values of 0.28 and 0.20, respectively) than RACMO2
(R2 values of 0.17 and 0.02, respectively), whereas this
is reversed for AWS 18, with better correlations between

AWS and RACMO2 (R2 of 0.40). The RMSE between AWS
and MODIS is lower than the RMSE between AWS and
RACMO2 at AWS 14 (by< 0.01) and AWS 17 (by 0.01), but
it is 0.02 higher at AWS 18. Histograms of albedo values are
shown in Fig. 6d–f. At AWS 14, both MODIS and RACMO2
show higher values of albedo than AWS observations. For
lower albedo values, AWS observations agree better with
RACMO2 simulations than with MODIS observations. Even
though the three data sets have a similar range of albedo
values, the MODIS albedo observations are narrow and less
skewed. At AWS 17, AWS observations show a broad dis-
tribution and are mostly below 0.85. They agree better with
the MODIS observations than with RACMO2 simulations.
At AWS 18, MODIS observations are lower than AWS ob-
servations and RACMO2 simulations, and RACMO2 simu-
lations are more similar to AWS observations.

Typical time series of albedo from RACMO2, AWSs, and
MODIS show that the differences between the three albedo
products are relatively small during most of the austral sum-
mer season (Fig. 7). The RMSEs between AWS-observed
and MODIS-observed albedo as well as between AWS-
observed and RACMO2-simulated albedo in December and
January are around 3.5 % (AWS 14), 5.5 % (AWS 17), and
4.5 % (AWS 18). The RMSE between AWS-observed and
RACMO2-simulated albedo increases up to 8.8 % (AWS 17)
in February. On a daily basis, for the first half of Decem-
ber, MODIS-observed and RACMO2-simulated albedo val-
ues are comparably high at AWS 17, 4.5 % (RACMO2) and
8.5 % (MODIS) higher than AWS observations on 11 De-
cember 2013 (Fig. 7b), and at AWS 18, 6.8 % (RACMO2)
and 3.5 % (MODIS) higher than AWS observations on 6 De-
cember 2014 (Fig. 7c). The contemporary optical depth is
also relatively high (15.64 at AWS 17 and 16.76 at AWS 18).
In contrast, at AWS 18 on 12 December 2014, both MODIS-
observed and RACMO2-simulated albedo values are com-
parably low, 11.4 % (RACMO2) and 7.4 % (MODIS) lower
than AWS observations, and the optical depth is close to
zero on a cloudy day. The difference remains low during
the middle of the summer season but gradually increases
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Figure 5. Temporal changes in the corrected regional atmospheric climate model version 2.3p2 (RACMO2) surface melt using the deep
multilayer perceptron (MLP) model at automatic weather station (AWS) 18, (a) for all albedo differences (1α) and (b) for a subset between
November 2015 and April 2016 along with the augmented AWS observations for comparison.

(up to 19.18 % between RACMO2 and AWS observations
at AWS 17 on 27 February 2014) towards the end of the
summer season in February. RACMO2 simulations tend to
produce the highest albedo at the three AWSs on average.
At AWS 14 and AWS 18, RACMO2 simulations are more
consistent with the AWS observations than with MODIS ob-
servations (Fig. 7a, c). MODIS observations are comparably
lower than AWS observations and RACMO2 simulations at
the end of February. On the contrary, AWS observations are
much lower than RACMO2 simulations at AWS 17 (Fig. 7b).
For albedo values higher than 0.80, AWS observations and
MODIS observations are similar, but for albedo below 0.80,
AWS observations show a broader tail towards lower val-
ues (e.g., as shown in Fig. 7a at AWS 14 at the end of
February 2014). It is noteworthy that each AWS has differ-
ent background geophysical settings, and the three products
have very different spatial resolutions: AWS observations are
local in situ observations, whereas MODIS albedo observa-
tions and RACMO2 albedo simulations have a 27 km spatial
resolution. Further analyses and discussion can be found in
Sect. 5.1.

To translate the white-sky MODIS albedo to the blue-sky
albedo, we used the optical depth simulated by RACMO2
at its horizontal resolution of 27 km. The optical depth from
RACMO2 and the cloudiness from the MOD09GA product
are displayed in Fig. 7 for AWS 14, AWS 17, and AWS 18.
The optical depth from the RACMO2 simulations is often
close to zero on clear-sky days; however, there are more er-

roneously high optical depth values observed at AWS 18 than
at AWS 14 and AWS 17. This is because RACMO2 provides
daily average IWP and LWP values, but the RACMO2.3p2
version has a systematic overestimation of both cloud ice and
water, simulating clouds that are optically too thick. The gen-
eral biases in these cloud variables are especially large for
the coastal bins (Fig. 6b in van Wessem et al., 2018), possi-
bly explaining the erroneously high optical depth observed at
AWS 14 and AWS 17 (Fig. 7), in which clouds are considered
“thin” when τ ≤ 6 or “thick” when τ ≥ 12. The interpreta-
tion of albedo differences in this section is also hampered be-
cause values from different sources are representative of ar-
eas of very different sizes. An AWS observation has a spatial
footprint of the order of 10× 10 m2, whereas the RACMO2
and MODIS values represent an area of hundreds of square
kilometers. We demonstrate the possible consequences for
each AWS location using high-resolution maps of Sentinel-1
backscatter (Fig. 8), which is produced following Luckman
et al. (2014). The orange and red pixels represent the detected
melt based on σ ◦t −σ ◦w.− 3 dB, where σ ◦t is the backscatter
value for a pixel observed on a certain date (t), and σ ◦w is the
mean backscatter between June and August (Luckman et al.,
2014; Trusel et al., 2012).

4.3 MLP performance: application of the MLP to
RACMO2 and MODIS data

At AWS 14, the discrepancies between the AWS observa-
tions and RACMO2 simulations with respect to the 2 m air
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Figure 6. Scatterplots illustrating albedo difference under clear-sky conditions during austral summers between automatic weather sta-
tion (AWS) and Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and albedo difference between AWS observations
and regional atmospheric climate model version 2.3p2 (RACMO2) simulations in (a) AWS 14, (b) AWS 17, and (c) AWS 18, along with
their corresponding distributions in (d) AWS 14, (e) AWS 17, and (f) AWS 18. RMSE and R2 stand for the root-mean-square error and the
coefficient of determination, respectively.

Figure 7. Temporal changes in albedo from the regional atmospheric climate model version 2.3p2 (RACMO2) simulations, automatic
weather station (AWS) observations, and Moderate Resolution Imaging Spectroradiometer (MODIS) observations at AWS 14, AWS 17, and
AWS 18 during the austral summer 2014–2015, 2013–2014, and 2014–2015, respectively. The gray bars indicate the binary cloudiness of a
500× 500 MODIS pixel corresponding to each AWS location.
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Figure 8. Spatiotemporal patterns of surface melt, represented by the drop in the backscattering coefficient in Sentinel-1 imagery, in automatic
weather station (AWS) 14, AWS 17, and AWS 18 observations between January and March in 2015 as well as their corresponding regional
atmospheric climate model version 2.3p2 (RACMO2) pixels.

temperature and incoming shortwave radiation are the small-
est amongst the three AWSs (Fig. 9a). This potentially re-
duces the effects of these meteorological parameters on the
surface melt in addition to albedo. On a daily basis (Fig. 9b),
the deep MLP model tries to make the melt agree more with
observations at AWS 14, although it is difficult for the deep
MLP model to alter the RACMO2 melt signal significantly.
Therefore both the RACMO2 and MODIS albedo data re-
main similar. It is noteworthy that a melt event at the be-
ginning of February 2014 is erroneously corrected by the
deep MLP model, as both AWS and RACMO2 do not ob-
serve or simulate such a melt event. This is plausibly due to
the significantly higher temperature simulated by RACMO2
than the one observed by AWS (Fig. 9a). The contemporary
albedo simulations/observations agree well among the three
data sets. However, RACMO2 simulates higher 2 m air tem-
perature. Therefore, we assume that the developed deep MLP
model and its “learned” melt mechanism are also sensitive to
the other input meteorological parameters, such as 2 m air
temperature. Furthermore, the discrepancy at the daily scale
seems to originate from a different timing of melt in both

RACMO2 and the observations. The deep MLP model is un-
able to completely repair the timing offset, which is different
from the observations. When considering longer-term aver-
ages, the deep MLP model delivers an improvement of the
melt fluxes. Figure 9c shows a closer agreement of the deep
MLP model with AWS observations for monthly melt fluxes.
Moreover, for annual fluxes, both the deep MLP model and
RACMO2 annual melt fluxes are higher than in the AWS
observations, although both are close to the QuikSCAT es-
timates.

At AWS 17, RACMO2 shows a systematic overesti-
mation of air temperature and incoming shortwave radia-
tion compared with AWS observations (Fig. 10a). Conse-
quently, it leads to apparent overestimations of surface melt
in RACMO2 simulations in December 2013 (Fig. 10b), when
the discrepancy in albedo is small. During the middle of the
austral summer 2013–2014, replacing the MODIS-observed
albedo by the AWS-observed albedo in the deep MLP model
input results in a better agreement with the AWS surface
melt observations. This reveals the potential of improving the
deep MLP model accuracy by better estimating the surface
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Figure 9. Automatic weather station (AWS) observations, regional atmospheric climate model version 2.3p2 (RACMO2) simulations, and
results of the deep multilayer perceptron (MLP) model applied to RACMO2 and Moderate Resolution Imaging Spectroradiometer (MODIS)
data at AWS 14: (a) discrepancies in input meteorological parameters among the AWS observations, RACMO2 simulations, and MODIS
observations; (b) daily surface melt time series from the original RACMO2 simulations, AWS observations, and MLP estimations using
a different input data set for albedo (from either MODIS or AWS observations) and the other meteorological parameters from RACMO2
during the austral summer 2013–2014; (c) a scatterplot of monthly surface melt from the deep MLP model estimations and the original
RACMO2 simulations compared to AWS observations; and (d) annual melt fluxes (July–June) at AWS 14 from AWS observations, RACMO2
simulations, the deep MLP predictions, and QuikSCAT (Quick Scatterometer) estimations (Trusel et al., 2013).

albedo from MODIS. At AWS 17 during the end of Febru-
ary 2014, when AWS observed two extensive melt events,
RACMO2 simulates the incoming shortwave radiation well.
However, even when replacing the MODIS albedo observa-
tions with AWS observations in the deep MLP model in-
put, the mismatch is still significant. It seems that the un-
derestimations in the 2 m air temperature are the trigger.
Therefore, attention should be paid to other influencing me-
teorological parameters in addition to albedo. Although the
deep MLP model improves the estimate of monthly surface

melt (Fig. 10c) and brings annual melt more in line with
QuikSCAT (Fig. 10d), compared with the AWS observations,
both the deep MLP model and RACMO2 annual melt are
much lower (Fig. 10d).

At AWS 18, the deep MLP model fails to improve sur-
face melt compared with observations. Instead of reducing
the overestimations of the original RACMO2 simulations in
the daily surface melt, the deep MLP model tends to further
increase the daily surface melt (Fig. 11b). This is plausibly
due to the overestimations in the 2 m air temperature by the
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Figure 10. The same as Fig. 9 but for AWS 17.

RACMO2 simulations (Fig. 11a). Furthermore, using AWS-
observed albedo instead of MODIS-observed albedo shows
an improvement in the agreement with AWS surface melt.
This is either due to imprecise MODIS albedo or great spa-
tiotemporal variance between the surface melt at AWS 18
and its corresponding RACMO2 pixel. On the other hand, it
indicates that the deep MLP model does not always reduce
the surface melt simulations and can also increase surface
melt simulations. In the end, both the RMSE and MAE in-
crease by 11.32 and 7.87 mm w.e. per month after the cor-
rection using the deep MLP model applied to RAMCO2 and
MODIS data (Fig. 11c). The discrepancies are also shown
in the comparison of the annual surface melt, in which the
deep MLP model produces the highest estimations through-
out all of the years. QuikSCAT estimates and AWS observa-
tions are the lowest (Fig. 11d). Moreover, this discrepancy in-

dicates the importance of high-spatial-resolution corrections.
At the 27 km resolution, the MODIS albedo is often lower
than the RACMO2 albedo, resulting in increased melt. At
the point scale of the AWS, the AWS albedo is higher than
the RACMO2 albedo, resulting in decreased melt. This indi-
cates that the spatial scale of corrections (27 km versus local
scale) matters.

5 Discussion

5.1 Impacts of different geophysical settings on MLP
model performance

The developed MLP model shows good performance for the
ideal scenario, i.e., when only the albedo observations from
an AWS are perturbed by an amount 1α (see Sect. 3.3). Its
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Figure 11. The same as Fig. 9 but for AWS 18 during the austral summer 2014–2015 in (a) and (b).

performance has been evaluated by a cross-validation based
on the reference data set at AWS 18, for different 1α values
for both melt and no-melt periods. The performance of the
deep MLP model is good especially during the austral sum-
mer, when most of the melt events take place, caused mainly
by solar radiation modulated by surface albedo. When re-
placing the AWS observations by MODIS observations and
RACMO2 simulations, the deep MLP performance is more
difficult to establish (Sect. 4.3) and varies for different AWS
locations. The first complicating factor is our assumption
that albedo is the main driver of surface melt differences.
Although we assumed that 1α is the key factor in surface
melt variation during the austral summer in Antarctica, sur-
face melt is actually also determined by other meteorologi-
cal parameters (e.g., air temperature), which can be biased
in RACMO2 (Sect. 4.3). As a second complicating factor,

the performance of the deep MLP model is compromised
because of systematic biases in MODIS albedo compared
with AWS observations. It seems that the geophysical setting
(geolocation, surface type, melt pattern, topographical char-
acteristics) play an important role in both of these factors.
Therefore, we discuss the geophysical settings of AWS 14,
AWS 17, and AWS 18 in order to explain the deep MLP re-
sults.

Scenario 1 (AWS 14): AWS 14 and its corresponding
RACMO2 pixel are centrally located in the northern part of
the Larsen C Ice Shelf, where the terrain is flat, homoge-
neous, and covered by snow and firn. At AWS 14, albedo
is relatively well simulated by RACMO2, and the discrep-
ancies among the three albedo data sets are low throughout
the austral summer (Fig. 7). No constant over- or underesti-
mations in albedo have been found in MODIS observations
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and RACMO2 simulations, compared with AWS observa-
tions. Owing to the homogeneous geophysical settings, its
spatiotemporal melt pattern is homogeneous as well. There-
fore, when applying the deep MLP model to RACMO2 and
MODIS, the result shows a better agreement with the AWS
observations at AWS 14 than at AWS 17 and AWS 18.

Scenario 2 (AWS 17): AWS 17 is located in the middle
of Scar Inlet, a remainder of the Larsen B Ice Shelf, where
the terrain is flat. However, its corresponding RACMO2 pixel
also contains the grounded areas at the edge of the pixel and
partially covers mountainous terrain. The albedo discrepancy
is the largest amongst the three data sets (i.e., AWS obser-
vations, MODIS observations, and RACMO2 simulations).
At the point level, AWS 17 is located in the most extensive
melt area, resulting in AWS observations that are constantly
lower than both the MODIS observations and RACMO2 sim-
ulations for a 27 km pixel. On the other hand, albedo from
RACMO2 simulations and MODIS observations remains
close, as the proportion of the grounding line and mountains
is low in the pixel. Therefore, the deep MLP model results
agree less than those at AWS 14.

Scenario 3 (AWS 18): AWS 18 is situated in an inlet near
the grounding line of the Larsen C Ice Shelf; the surrounding
area consists of complex terrain and also contains grounded
areas. Its corresponding RACMO2 pixel is the most mixed
pixel among the three AWS locations, and melt ponds can
occur during melt events. The AWS at this location does
record extensive melt events, but it is not located in the area
of strongest melt in the RACMO2 pixel. The discrepancies in
albedo from the three data sets are small at the beginning and
the middle of austral summer, but MODIS observes much
lower albedo at the end of austral summer. The spatiotem-
poral melt pattern is also the most heterogeneous among the
three AWS locations. Apart from the 1α, the terrain itself
also impacts the surface melt process. In the end, the chal-
lenges in accurately deriving albedo at AWS 18 and the com-
bination of multiple influencing factors result in poor perfor-
mance of the deep MLP model. Furthermore, attention must
be paid to the representativeness of the AWS observations in
such an area, which makes the verification difficult.

Scenario 4 (additional site north of AWS 17): the last
scenario is an additional location north of AWS 17 on Scar
Inlet, sitting on the grounding line of the Larsen B Ice Shelf
(Fig. 12). Such a location presents an ideal scenario, as the
albedo observed by MODIS in this area is systematically
lower than RACMO2 simulations (Fig. 12). This is a sit-
uation that the deep MLP model is actually designed for.
As a result, the daily surface melt corrected by the deep
MLP model is also systematically higher than the original
RACMO2 simulation. Thus, it is an ideal area to illustrate
the expected performance of the deep MLP model where the
overestimation in surface albedo is the dominant factor caus-
ing surface melt underestimation in RACMO2. However, we
do lack AWS observations to evaluate MLP performance at
this location.

5.2 Lessons learned from this study over the Larsen Ice
Shelf

Our study shows that the deep MLP model has the poten-
tial to improve surface melt estimates in Antarctica. On the
other hand, the results at AWS 18 shed light on the fact that
complicated and heterogeneous terrains can result in poor
performance from the deep MLP model. AWS 18 is a typ-
ical area that has high-melt features, which we are inter-
ested in, but such high-melt features are usually of small
scale. Although AWS observations suggest that there is an
overestimation in albedo simulations from RACMO2, it is
challenging for MODIS to correct it when implemented
in a coarse-resolution climate model. Therefore, we need
to combine the low-resolution RACMO2 data with higher-
resolution MODIS data to resolve this issue. Moreover, there
is also the potential to further increase the resolving power of
our method, including (1) a further refinement of the deep-
learning-based framework; (2) improvement of the albedo
derivation from satellite observations, both in magnitude and
spatial resolution; and (3) examination of MLP model per-
formance over (blue) ice surfaces.

Refinement of the deep-learning-based framework in-
cludes the development of a module to switch the deep MLP
correction as well as testing of the state-of-the-art deep learn-
ing architectures and models. Given that the concept of cor-
recting surface melt in non-albedo-driven areas may reduce
the agreement between the AWS observations and RACMO2
simulations, it is necessary to develop an application strategy
for deciding whether the deep MLP correction should be ap-
plied in a certain area. The strategy can take topographical
characteristics (e.g., elevation, aspect, slope), albedo differ-
ence, and geolocation into consideration, as these factors can
be influential (Sect. 5.1). It is also worth mentioning that the
deep learning model implemented in this study is fundamen-
tal in order to prove the concept. Exploring other state-of-
the-art deep learning architectures and models, e.g., applying
recurrent neural network architectures such as long short-
term memory (LSTM; Hochreiter and Schmidhuber, 1997)
and transformer (Vaswani et al., 2017) to help the deep learn-
ing model take in more temporal information, and/or using a
convolutional neural network to generate a better representa-
tion of MODIS albedo information within a RACMO2 grid.

Improvement of the albedo derivation from satellite ob-
servations can result in better corrected surface melt results
using the deep MLP model. Attention should be paid to the
generation and correction of the MODIS albedo observa-
tions, as the MCD43A3 is a 16 d synthetic product. For a
certain day, a composite 500 m resolution daily product is
generated based on 16 d records centered on the given day
(Schaaf and Wang, 2015). Temporal interpolation over long
periods can lead to high disparity in the albedo during an ab-
lation season, especially on high-melt days. Moreover, in het-
erogeneous terrain, such as the location of AWS 18, albedo
may be highly different in space. Therefore, implementing a
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Figure 12. Daily surface melt from regional atmospheric climate model version 2.3p2 (RACMO2) simulations and multilayer percep-
tron (MLP) estimations, albedo from RACMO2 and MODIS at the additional test site in the north of AWS 17 (left panel), and the geolocation
of the test site (i.e., the red square in the right panel). The shapefiles of the Antarctic coastline and ice shelves are provided by the Scientific
Committee on Antarctic Research Antarctic Digital Database (SCAR ADD; https://www.add.scar.org/, last access: 11 November 2021).

spatial resampling may improve this issue. Furthermore, the
MODIS albedo correction for cloud cover based on optical
depth from RACMO2 needs additional care, as RACMO2
overestimates optical depth at some locations.

On the Larsen Ice Shelf, reduction in albedo is mainly due
to the aging of snow and firn. Yet, in icy areas (mainly on
the ice shelves of eastern Antarctica and the Transantarc-
tic Mountains), albedo reduction is much stronger than over
firn and snow surfaces. Moreover, the surface energy balance
over ice surface can be fundamentally different from that
over firn and snow surfaces, for which the deep MLP model
is trained in this study. Therefore, the deep MLP model per-
formance in blue ice areas needs to be examined with extra
care.

In addition to the improvement of the deep MLP model,
we also need to look for novel and unconventional ways
to validate results over unsurveyed areas. Earth observation
satellites, such as Landsat, MODIS, and the Advanced Very
High Resolution Radiometer (AVHRR), can provide tempo-
ral records of the land surface and its modification over the
last decades at different spatial and temporal resolutions. Po-
tentially, we can compare the surface melt outcomes to prox-
ies from remotely sensed data, e.g., melting decibel days
(Trusel et al., 2013), lake depth (Philpot, 1989), and volume
(Moussavi et al., 2020).

6 Conclusions

This paper demonstrates that surface melt simulations from
the regional climate model RACMO2 can be improved
by deploying a deep learning model trained on automatic
weather station (AWS) observations. The deep learning
model takes meteorological parameters, day of the year, and
the original RACMO2 surface melt simulations as the inputs.
The cross-validation shows a good performance (RMSE
of 0.95 mm w.e. d−1, MAE of 0.42 mm w.e. d−1, and R2 of

0.95) for the Larsen Ice Shelf based on the augmented AWS
observations. Regarding accuracy, the deep learning model
outperforms some leading machine learning models (ran-
dom forest regression and XGBoost) and a shallow deep
learning model. To address the problem regarding inaccu-
rate albedo simulations from the RACMO2 model, MODIS
albedo observations after cloud and solar zenith angle cor-
rection have been used. The corrected MODIS albedo ob-
servations show a better correlation with AWS observations
than the RACMO2 simulations at AWS 14 and AWS 17. At
AWS 18, large disparities have been identified between cor-
rected MODIS albedo observations and AWS observations.
Possible explanations for this are the local geophysical set-
tings (including cloudiness, spatiotemporal melt pattern, and
topographical characteristics) and imperfect albedo correc-
tion at AWS 18. Finally, to correct the surface melt simula-
tions from RACMO2 over the entire Larsen Ice Shelf, the as-
sessment of model performance in areas and periods without
AWS observations is indispensable. For deep learning model
application, meteorological parameters except for albedo
from AWS observations are replaced by the RACMO2 sim-
ulations. The corrected MODIS albedo observations replace
albedo observations from AWS. The results indicate that the
deep learning model performs well in the area with a homo-
geneous spatiotemporal melt pattern (AWS 14) and in the
area with a heterogeneous spatial melt pattern that is homo-
geneous through time (AWS 17). However, the model per-
formance is highly uncertain in areas with a heterogeneous
spatial melt pattern that varies through time (AWS 18) due to
the inaccurate albedo input and the lack of ground truth data.
In summary, the concept of correcting surface melt simula-
tions from the regional climate model RACMO2 using deep
learning is feasible. Nevertheless, future studies are still re-
quired to refine the deep-learning-based framework, improve
the albedo derivation from satellite observations, examine the
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deep MLP model performance over (blue) ice surfaces, and
develop a novel validation scheme.

Code and data availability. The MODIS/Terra Surface Re-
flectance Daily L2G Global 1 km and 500 m SIN Grid product is
available from the Land Processes Distributed Active Archive Cen-
ter (LP DAAC) (https://doi.org/10.5067/MODIS/MOD09GA.006,
Vermote and Wolfe, 2015). The MODIS/Terra+Aqua Albedo
Daily L3 Global 500 m SIN Grid product is also available from
LP DAAC (https://doi.org/10.5067/MODIS/MCD43A3.006,
Schaaf and Wang, 2015). Sentinel-1 images are pro-
vided by the European Space Agency (ESA) (https:
//sentinel.esa.int/web/sentinel/sentinel-data-access ESA, 2021).
Automatic weather station observations from AWS 14, 17, and 18
are available from https://doi.org/10.1594/PANGAEA.910473
(Jakobs et al., 2020b). RACMO2 simulations (https://www.
projects.science.uu.nl/iceclimate/models/antarctica.php#2-1,
IMAU, 2021) are provided by van Wessem et al. (2018) and
are available upon request from the original authors. The devel-
oped model and its outcomes are free to download via Zenodo
(https://doi.org/10.5281/zenodo.5769661, Hu et al., 2021).
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