Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5241-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5241-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TanDEM-X PolarDEM 90 m of Antarctica: generation and error characterization
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Martin Huber
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Christian Wohlfart
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Data Office, Roche Diagnostics GmbH, Penzberg, Germany
Adina Bertram
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Nicole Osterkamp
Company for Remote Sensing and Environmental Research (SLU), Munich, Germany
Ursula Marschalk
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Astrid Gruber
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Stemmer Imaging, Puchheim, Germany
Felix Reuß
Company for Remote Sensing and Environmental Research (SLU), Munich, Germany
Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
Sahra Abdullahi
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Isabel Georg
Company for Remote Sensing and Environmental Research (SLU), Munich, Germany
Achim Roth
German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
Related authors
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
Louise Sandberg Sørensen, Rasmus Bahbah, Sebastian B. Simonsen, Natalia Havelund Andersen, Jade Bowling, Noel Gourmelen, Alex Horton, Nanna B. Karlsson, Amber Leeson, Jennifer Maddalena, Malcolm McMillan, Anne Solgaard, and Birgit Wessel
The Cryosphere, 18, 505–523, https://doi.org/10.5194/tc-18-505-2024, https://doi.org/10.5194/tc-18-505-2024, 2024
Short summary
Short summary
Under the right topographic and hydrological conditions, lakes may form beneath the large ice sheets. Some of these subglacial lakes are active, meaning that they periodically drain and refill. When a subglacial lake drains rapidly, it may cause the ice surface above to collapse, and here we investigate how to improve the monitoring of active subglacial lakes in Greenland by monitoring how their associated collapse basins change over time.
M. Tupas, C. Navacchi, F. Roth, B. Bauer-Marschallinger, F. Reuß, and W. Wagner
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 495–502, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-495-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-495-2022, 2022
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Andreas Schmitt, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere, 16, 2163–2181, https://doi.org/10.5194/tc-16-2163-2022, https://doi.org/10.5194/tc-16-2163-2022, 2022
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using the TerraSAR-X satellite. Using a high-spatial-resolution vegetation classification, we were able to quantify the variability in snow depth, as well as the topographic soil wetness index, which provided a better understanding of the electromagnetic wave–ground interaction.
Cited articles
Abdullahi, S., Wessel, B., Huber, M., Wendleder, A., Roth, A., and Künzer, C.: Estimating penetration-related X-band InSAR elevation bias – A study over the Greenland ice sheet, Remote Sens., 11, 1–19, https://doi.org/10.3390/rs11242903, 2019. a
Bintanja, R.: On the glaciological, meteorological, and climatological
significance of Antarctic blue ice areas, Rev. Geophys., 37, 337–359,
https://doi.org/10.1029/1999RG900007, 1999. a, b
Borla Tridon, D., Bachmann, M., Schulze, D., Ortega-Miguez, C. M. D. P., Martone, M., Böer, J., and Zink, M.: TanDEM-X: DEM Acquisition in the Third Year, Int. J. Space Sci. Eng., 1, 367–381, https://doi.org/10.1504/IJSPACESE.2013.059270, 2013. a, b, c
Brenner, A. C., DiMarzio, J. P., and Zwally, H. J.: Precision and Accuracy of
Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets,
IEEE T. Geosci. Remote, 45, 321–331, https://doi.org/10.1109/TGRS.2006.887172, 2007. a, b
Dehecq, A., Millan, R., Berthier, E., Gourmelen, N., Trouvé, E., and Vionnet, V.: Elevation Changes Inferred From TanDEM-X Data Over the Mont-Blanc Area: Impact of the X-Band Interferometric Bias, IEEE J. Select.
Top. Appl. Earth Obs. Remote Sens., 9, 3870–3882,
https://doi.org/10.1109/JSTARS.2016.2581482, 2016. a
Dong, Y., Zhao, J., Floricioiu, D., Krieger, L., Fritz, T., and Eineder, M.:
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X
DEM and Reference Elevation Model of Antarctica (REMA) mosaic, The
Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021, 2021. a, b
EGM2008 Development Team: EGM2008 2.5 Minute Interpolation Grid, available at:
https://earth-info.nga.mil/ (last access: 27 April 2020), EGM2008 Development Team [data set], 2012. a
Fischer, G., Papathanassiou, K. P., and Hajnsek, I.: Modeling and Compensation of the Penetration Bias in InSAR DEMs of Ice Sheets at Different
Frequencies, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 13, 2698–2707, https://doi.org/10.1109/JSTARS.2020.2992530, 2020. a, b
Floricioiu, D., Jaber, W. A., Baessler, M., Helm, V., and Jezek, K.: The
recovery ice stream: Synergy of satellite and airborne remote sensing for
flow dynamics, in: Proceedings of IEEE International
Geoscience and Remote Sensing Symposium 2016, 10–15 July 2016, Beijing, China, 7098–7100,
https://doi.org/10.1109/IGARSS.2016.7730852, 2016. a, b
Forsberg, R., Sørensen, L., and Simonsen, S.: Greenland and Antarctica Ice
Sheet Mass Changes and Effects on Global Sea Level, in: Integrative Study of
the Mean Sea Level and Its Components, edited by: Cazenave, A., Champollion,
N., Paul, F., and Benveniste, J., Springer International Publishing, Cham, 91–106, https://doi.org/10.1007/978-3-319-56490-6_5, 2017. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G.,
Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni,
P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill,
W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk,
B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A.,
Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N.,
Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto,
B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti,
A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica,
The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a, b
Fricker, H. A., Carter, S. P., Bell, R. E., and Scambos, T.: Active lakes of
Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial
hydrological system, J. Glaciol., 60, 1015–1030, https://doi.org/10.3189/2014JoG14J063, 2014. a
Fritz, T., Rossi, C., Yague-Martinez, N., Rodriguez-Gonzalez, F., Lachaise, M., and Breit, H.: Interferometric Processing of TanDEM-X Data, in: Proceesings of IEEE International Geoscience and Remote Sensing Symposium, 24–29 July 2011, Vancouver, British Columbia, Canada, 2428–2431, 2011. a
Giovinetto, M. B.: Distribution of diagenetic snow facies in Antarctica and in Greenland, Arctic, 17, 32–40, 1964. a
Gruber, A., Wessel, B., Huber, M., and Roth, A.: Operational TanDEM-X DEM
calibration and first validation results, ISPRS J. Photogram. Remote Sens.,
73, 39–49, https://doi.org/10.1016/j.isprsjprs.2012.06.002, 2012. a, b, c
Gruber, A., Wessel, B., Martone, M., and Roth, A.: The TanDEM-X DEM Mosaicking: Fusion of Multiple Acquisitions Using InSAR Quality Parameters, ISPRS J. Photogram. Remote Sens., 9, 1047–1057, https://doi.org/10.1109/JSTARS.2015.2421879, 2016. a, b, c
Harding, D. J. and Carabajal, C. C.: ICESat waveform measurements of
within-footprint topographic relief and vegetation vertical structure, Geophys. Res. Lett., 32, L21S10, https://doi.org/10.1029/2005GL023471, 2005. a
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of
Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8,
1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014. a
Höhle, J. and Höhle, M.: Accuracy assessment of digital elevation models by means of robust statistical methods, ISPRS J. Photogram. Remote Sens., 64, 398–406, https://doi.org/10.1016/j.isprsjprs.2009.02.003, 2009. a
Huber, J., McNabb, R., and Zemp, M.: Elevation Changes of West-Central
Greenland Glaciers From 1985 to 2012 From Remote Sensing, Front. Earth Sci., 8, 35, https://doi.org/10.3389/feart.2020.00035, 2020. a
Huber, M.: TanDEM-X PolarDEM Product Description, Technical Note 1.4, German Aerospace Center, available at:
https://geoservice.dlr.de/web/maps, DLR [data set], last access: 29 December 2020. a
Huber, M., Wessel, B., Kosmann, D., Felbier, A., Schwieger, V., Habermeyer, M., Wendleder, A., and Roth, A.: Ensuring globally the TanDEM-X height accuracy: Analysis of the reference data sets ICESat, SRTM and KGPS-tracks, in: Proceesings of IEEE International Geoscience and Remote Sensing Symposium, 12–17 July 2009, Cape Town, South Africa, II-769–II-772, 2009. a
Huber, M., Gruber, A., Wessel, B., Breunig, M., and Wendleder, A.: Validation
of the tie-point concepts by the DEM adjustment approach of TanDEM-X, in:
Proceedings of IEEE International Geoscience and Remote Sensing Symposium,
25–30 July 2010, Honolulu, USA, 2644–2647, 2010. a
Huber, M., Osterkamp, N., Marschalk, U., Tubbesing, R., Wendleder, A., Wessel, B., and Roth, A.: Shaping the Global High-Resolution TanDEM-X Digital
Elevation Model, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 14, 7198–7212, https://doi.org/10.1109/JSTARS.2021.3095178, 2021. a
Hueso Gonzalez, J., Bachmann, M., Scheiber, R., and Krieger, G.: Definition of ICESat Selection Criteria for their Use as Height References for TanDEM-X, IEEE T. Geosci. Remote, 48, 2750–2757, https://doi.org/10.1109/TGRS.2010.2041355, 2010. a
Hui, F., Kang, J., Liu, Y., Cheng, X., Gong, P., Wang, F., Li, Z., Ye, Y., and Guo, Z.: AntarcticaLC2000: The new Antarctic land cover database for the year 2000, Sci. China Earth Sci., 60, 686–696, https://doi.org/10.1007/s11430-016-0029-2, 2017a. a, b, c, d
Hui, F., Kang, J., Liu, Y., Cheng, X., Gong, P., Wang, F., Li, Z., Ye, Y., and Guo, Z.: AntarcticaLC2000: The new Antarctic land cover database for the
year 2000, Zenodo [data set], https://doi.org/10.5281/zenodo.826032, 2017b. a
Jezek, K. C.: RADARSAT-1 Antarctic mapping project: Change detection and surface velocity campaign, Ann. Glaciol., 34, 263–268, https://doi.org/10.3189/172756402781818030, 2002. a
Koenig, L., Martin, S., Studinger, M., and Sonntag, J.: Polar Airborne
Observations Fill Gap in Satellite Data, Eos Trans. Am. Geophys. Union, 91, 333–334, https://doi.org/10.1029/2010EO380002, 2010. a, b
Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag,
J., Swift, R., Thomas, R., and Yungel, J.: Aircraft laser altimetry measurement of elevation changes of the greenland ice sheet: technique and
accuracy assessment, J. Geodyn., 34, 357–376, https://doi.org/10.1016/S0264-3707(02)00040-6, 2002. a
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A Satellite Formation for High Resolution SAR Interferometry, IEEE T. Geosci. Remote, 45, 3317–3341,
https://doi.org/10.1109/TGRS.2007.900693, 2007. a
Lachaise, M., Fritz, T., and Bamler, R.: The Dual-Baseline Phase Unwrapping
Correction framework for the TanDEM-X Mission Part 1: Theoretical description
and algorithms, IEEE T. Geosci. Remote, 56, 780–798,
https://doi.org/10.1109/TGRS.2017.2754923, 2018. a
Macelloni, G., Leduc-Leballeur, M., Montomoli, F., Brogioni, M., Ritz, C., and Picard, G.: On the retrieval of internal temperature of Antarctica Ice Sheet by using SMOS observations, Remote Sens. Environ., 233,
111405, https://doi.org/10.1016/j.rse.2019.111405, 2019. a
Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., and Braun, M. H.: Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data, Remote Sens, 10, 188, https://doi.org/10.3390/rs10020188, 2018. a
Mengel, M., Nauels, A., Rogelj, J., and Schleussner, C.-F.: Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action, Nat. Commun., 9, 601, https://doi.org/10.1038/s41467-018-02985-8, 2018. a
Orheim, O. and Lucchitta, B.: Investigating climate change by digital analysis of blue ice extent on satellite images of Antarctica, Ann. Glaciol., 14, 211–215, https://doi.org/10.1017/S0260305500008600, 1990. a
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Borla Tridon, D.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., Wessel, B., Krieger, G., Zink, M., and Moreira, A.: Generation and performance assessment of the global TanDEM-X digital elevation model, ISPRS J. Photogram. Remote Sens., 132, 119–139, https://doi.org/10.1016/j.isprsjprs.2017.08.008, 2017. a, b, c, d
Rossi, C., Rodriguez Gonzalez, F., Fritz, T., Yague-Martinez, N., and Eineder, M.: TanDEM-X calibrated Raw DEM generatiion, ISPRS J. Photogram. Remote Sens., 73, 12–20, https://doi.org/10.1016/j.isprsjprs.2012.05.014, 2012. a
Rott, H., Wuite, J., Nagler, T., Floricioiu, D., Rizzoli, P., and Helm, V.:
InSAR Scattering Phase Centre of Antarctic Snow – An Experimental Study, in:
Proceedings of Fringe – 10th International Workshop on Advances in the
Science and Applications of SAR Interferometry and Sentinel-1 InSAR, 5–9 June 2017, Helsinki, Finnland, 2017. a, b
Rott, H., Scheiblauer, S., Wuite, J., Krieger, L., Floricioiu, D., Rizzoli, P., Libert, L., and Nagler, T.: Penetration of interferometric radar signals in Antarctic snow, The Cryosphere, 15, 4399–4419,
https://doi.org/10.5194/tc-15-4399-2021, 2021. a, b
Scambos, T., Frezzotti, M., Haran, T., Bohlander, J., Lenaerts, J., Van Den Broeke, M., Jezek, K., Long, D., Urbini, S., Farness, K., Neumann, T., Albert,
M.,
and Winther,
J.-G.: Extent of low-accumulation `wind glaze' areas on the East Antarctic plateau: implications for continental ice mass balance, J. Glaciol., 58, 633–647, https://doi.org/10.3189/2012JoG11J232, 2012. a
Scambos, T. A., Campbell, G. G., Pope, A., Haran, T., Muto, A., Lazzara, M.,
Reijmer, C. H., and van den Broeke, M. R.: Ultralow Surface Temperatures in
East Antarctica From Satellite Thermal Infrared Mapping: The Coldest Places
on Earth, Geophys. Res. Lett., 45, 6124–6133, https://doi.org/10.1029/2018GL078133, 2018. a
Schutz, B., Zwally, H., Shuman, C., Hancock, D., and Di Marzio, J.: Overview of the ICESat Mission, Geophys. Res. Lett., 32, L21S01, https://doi.org/10.1029/2005GL024009, 2005. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D.,
Wouters, B., and the IMBIE team: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Slater, T., Shepherd, A., Mcmillan, M., Armitage, T. W. K., Otosaka, I., and
Arthern, R. J.: Compensating Changes in the Penetration Depth of Pulse-Limited Radar Altimetry Over the Greenland Ice Sheet, IEEE T. Geosci. Remote, 57, 9633–9642, https://doi.org/10.1109/TGRS.2019.2928232, 2019. a
Studinger, M.: IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2, NASA National Snow and Ice Data Center (NSIDC), Distributed Active Archive Center [data set], Boulder, CO, USA, https://doi.org/10.5067/CPRXXK3F39RV, 2014, updated 2020. a, b
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., van den Broeke, M. R., van Wessem, J. M., and Reijmer, C. H.: Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques, Geophys. Res. Lett., 41, 8421–8428, https://doi.org/10.1002/2014GL061940, 2014. a
Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave remote sensing, active and passive, Addison-Wesley, Reading, MA, 1986. a
USGS: Landsat Image Mosaic Of Antarctica (LIMA), available at: https://lima.usgs.gov/ (last access: 11 January 2021), 2008. a
Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., and Roth, A.: Accuracy Assessment of the Global TanDEM-X Digital Elevation Model with GPS Data, ISPRS J. Photogram. Remote Sens., 139, 171–182,
https://doi.org/10.1016/j.isprsjprs.2018.02.017, 2018. a
Winther, J.-G., Jespersen, M. N., and Liston, G. E.: Blue-ice areas in
Antarctica derived from NOAA AVHRR satellite data, J. Glaciol., 47, 325–334,
https://doi.org/10.3189/172756501781832386, 2001. a
Zhao, J. and Floricioiu, D.: The penetration effects on TanDEM-X elevation
using the GNSS and laser altimetry measurements in Antarctica, in: vol. XLII-2 (W7), Proceedings of the Int. Archives of Photogramm., Remote Sens. and Spatial Inf. Sci., ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China, 1593–1600,
https://doi.org/10.5194/isprs-archives-XLII-2-W7-1593-2017, 2017. a, b
Zwally, H. J. R., Schutz, C., Bentley, J., Bufton, T., Herring, J., Minster,
J., and Spinhirne, R. T.: GLAS/ICESat L2 Global Land Surface Altimetry Data, Version 31, GLA14, NASA National Snow and Ice Data Center (NSIDC), Distributed Active Archive Center [data set], Boulder, CO, USA, https://doi.org/10.5067/ICESAT/GLAS/DATA227, 2012. a, b
Short summary
We present a new digital elevation model (DEM) of Antarctica derived from the TanDEM-X DEM, with new interferometric radar acquisitions incorporated and edited elevations, especially at the coast. A strength of this DEM is its homogeneity and completeness. Extensive validation work shows a vertical accuracy of just -0.3 m ± 2.5 m standard deviation on blue ice surfaces compared to ICESat laser altimeter heights. The new TanDEM-X PolarDEM 90 m of Antarctica is freely available.
We present a new digital elevation model (DEM) of Antarctica derived from the TanDEM-X DEM, with...