Articles | Volume 14, issue 9
https://doi.org/10.5194/tc-14-2775-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-14-2775-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Mario Hoppmann
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Holger Schmithüsen
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Alexander D. Fraser
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart 7001, Tasmania, Australia
Antarctic Climate & Ecosystems Cooperative Research Centre,
University of Tasmania, Hobart 7001, Tasmania, Australia
Marcel Nicolaus
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und
Meeresforschung, 27570 Bremerhaven, Germany
Related authors
Steven Franke, Mara Neudert, Veit Helm, Arttu Jutila, Océane Hames, Niklas Neckel, Stefanie Arndt, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2657, https://doi.org/10.5194/egusphere-2025-2657, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Our research explored how icebergs affect the distribution of snow and flooding on Antarctic coastal sea ice. Using aircraft-based radar and laser scanning, we found that icebergs create thick snow drifts on their wind-facing sides and leave snow-free zones in their lee. The weight of these snow drifts often causes the ice below to flood, forming slush. These patterns, driven by wind and iceberg placement, are crucial for understanding sea ice changes and improving climate models.
Yubing Cheng, Bin Cheng, Roberta Pirazzini, Amy R. Macfarlane, Timo Vihma, Wolfgang Dorn, Ruzica Dadic, Martin Schneebeli, Stefanie Arndt, and Annette Rinke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1164, https://doi.org/10.5194/egusphere-2025-1164, 2025
Short summary
Short summary
We study snow density from the MOSAiC expedition. Several snow density schemes were tested and compared with observation. A thermodynamic ice model was employed to assess the impact of snow density and precipitation on the thermal regime of sea ice. The parameterized mean snow densities are consistent with observations. Increased snow density reduces snow and ice temperatures, promoting ice growth, while increased precipitation leads to warmer snow and ice temperatures and reduced ice thickness.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin
The Cryosphere, 19, 3381–3395, https://doi.org/10.5194/tc-19-3381-2025, https://doi.org/10.5194/tc-19-3381-2025, 2025
Short summary
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2, we observe an overall linear increase in the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modeling of waves in sea ice at global and climate scales when such fine detail may not be needed.
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166, https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean waves play a previously-neglected role in the rapid annual melting of Antarctic sea ice by flooding and pulverising floes, removing the snow cover and reducing the albedo by an estimated 0.38–0.54 – to increase solar absorption and enhance the vertical melt rate by up to 5.2 cm/day. Ice algae further decrease the albedo, to increase the melt-rate enhancement to up to 6.1 cm/day. Melting is accelerated by four previously-unconsidered wave-driven positive feedbacks.
Steven Franke, Mara Neudert, Veit Helm, Arttu Jutila, Océane Hames, Niklas Neckel, Stefanie Arndt, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2657, https://doi.org/10.5194/egusphere-2025-2657, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Our research explored how icebergs affect the distribution of snow and flooding on Antarctic coastal sea ice. Using aircraft-based radar and laser scanning, we found that icebergs create thick snow drifts on their wind-facing sides and leave snow-free zones in their lee. The weight of these snow drifts often causes the ice below to flood, forming slush. These patterns, driven by wind and iceberg placement, are crucial for understanding sea ice changes and improving climate models.
Yubing Cheng, Bin Cheng, Roberta Pirazzini, Amy R. Macfarlane, Timo Vihma, Wolfgang Dorn, Ruzica Dadic, Martin Schneebeli, Stefanie Arndt, and Annette Rinke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1164, https://doi.org/10.5194/egusphere-2025-1164, 2025
Short summary
Short summary
We study snow density from the MOSAiC expedition. Several snow density schemes were tested and compared with observation. A thermodynamic ice model was employed to assess the impact of snow density and precipitation on the thermal regime of sea ice. The parameterized mean snow densities are consistent with observations. Increased snow density reduces snow and ice temperatures, promoting ice growth, while increased precipitation leads to warmer snow and ice temperatures and reduced ice thickness.
Rui Xu, Chaofang Zhao, Stefanie Arndt, and Christian Haas
The Cryosphere, 18, 5769–5788, https://doi.org/10.5194/tc-18-5769-2024, https://doi.org/10.5194/tc-18-5769-2024, 2024
Short summary
Short summary
The onset of snowmelt on Antarctic sea ice is an important indicator of sea ice change. In this study, we used two radar scatterometers to detect the onset of snowmelt on perennial Antarctic sea ice. Results show that since 2007, snowmelt onset has demonstrated strong interannual and regional variabilities. We also found that the difference in snowmelt onsets between the two scatterometers is closely related to snow metamorphism.
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127, https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary
Short summary
Melt ponds on Arctic sea ice affect how much solar energy is absorbed, influencing ice melt and climate change. This study used satellite data from 2017–2023 to examine how these ponds vary across regions and seasons. The results show that the surface fraction of melt ponds is more stable in the Central Arctic, with air temperature and ice surface roughness playing key roles in their formation. Understanding these patterns can help to improve climate models and predictions for Arctic warming.
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024, https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
Short summary
A long-term mooring array in the Fram Strait allows for an evaluation of decadal trends in temperature in this major oceanic gateway into the Arctic. Since the 1980s, the deep waters of the Greenland Sea and the Eurasian Basin of the Arctic have warmed rapidly at a rate of 0.11°C and 0.05°C per decade, respectively, at a depth of 2500 m. We show that the temperatures of the two basins converged around 2017 and that the deep waters of the Greenland Sea are now a heat source for the Arctic Ocean.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Stefanie Arndt, Nina Maaß, Leonard Rossmann, and Marcel Nicolaus
The Cryosphere, 18, 2001–2015, https://doi.org/10.5194/tc-18-2001-2024, https://doi.org/10.5194/tc-18-2001-2024, 2024
Short summary
Short summary
Antarctic sea ice maintains year-round snow cover, crucial for its energy and mass budgets. Despite its significance, snow depth remains poorly understood. Over the last decades, Snow Buoys have been deployed extensively on the sea ice to measure snow accumulation but not actual depth due to snow transformation into meteoric ice. Therefore, in this study we utilize sea ice and snow models to estimate meteoric ice fractions in order to calculate actual snow depth in the Weddell Sea.
Moein Mellat, Amy R. Macfarlane, Camilla F. Brunello, Martin Werner, Martin Schneebeli, Ruzica Dadic, Stefanie Arndt, Kaisa-Riikka Mustonen, Jeffrey M. Welker, and Hanno Meyer
EGUsphere, https://doi.org/10.5194/egusphere-2024-719, https://doi.org/10.5194/egusphere-2024-719, 2024
Preprint archived
Short summary
Short summary
Our research, utilizing data from the Arctic MOSAiC expedition, reveals how snow on Arctic sea ice changes due to weather conditions. By analyzing snow samples collected over a year, we found differences in snow layers that tell us about their origins and how they've been affected by the environment. We discovered variations in snow and vapour that reflect the influence of weather patterns and surface processes like wind and sublimation.
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024, https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated against airborne and ground-based measurements conducted in the European Arctic in different seasons between 2017 and 2022. We found a seasonally dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. The strongest effects of the albedo model bias on the net irradiance were most apparent in the presence of optically thin clouds.
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024, https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Ladina Steiner, Holger Schmithüsen, Jens Wickert, and Olaf Eisen
The Cryosphere, 17, 4903–4916, https://doi.org/10.5194/tc-17-4903-2023, https://doi.org/10.5194/tc-17-4903-2023, 2023
Short summary
Short summary
The present study illustrates the potential of a combined Global Navigation Satellite System reflectometry and refractometry (GNSS-RR) method for accurate, simultaneous, and continuous estimation of in situ snow accumulation, snow water equivalent, and snow density time series. The combined GNSS-RR method was successfully applied on a fast-moving, polar ice shelf. The combined GNSS-RR approach could be highly advantageous for a continuous quantification of ice sheet surface mass balances.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Marcel Nicolaus, Fanyi Zhang, Benjamin Rabe, Long Lin, Julia Regnery, and Donald K. Perovich
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-25, https://doi.org/10.5194/tc-2023-25, 2023
Manuscript not accepted for further review
Short summary
Short summary
To characterize the freezing and melting of different types of sea ice, we deployed four IMBs during the MOSAiC second drift. The drifting pattern, together with a large snow accumulation, relatively warm air temperatures, and a rapid increase in oceanic heat close to Fram Strait, determined the seasonal evolution of the ice mass balance. The refreezing of ponded ice and voids within the unconsolidated ridges amplifies the anisotropy of the heat exchange between the ice and the atmosphere/ocean.
Long Lin, Ruibo Lei, Mario Hoppmann, Donald K. Perovich, and Hailun He
The Cryosphere, 16, 4779–4796, https://doi.org/10.5194/tc-16-4779-2022, https://doi.org/10.5194/tc-16-4779-2022, 2022
Short summary
Short summary
Ice mass balance observations indicated that average basal melt onset was comparable in the central Arctic Ocean and approximately 17 d earlier than surface melt in the Beaufort Gyre. The average onset of basal growth lagged behind the surface of the pan-Arctic Ocean for almost 3 months. In the Beaufort Gyre, both drifting-buoy observations and fixed-point observations exhibit a trend towards earlier basal melt onset, which can be ascribed to the earlier warming of the surface ocean.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022, https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Short summary
The role of eddies and fronts in the oceans is a hot topic in climate research, but there are still many related knowledge gaps, particularly in the ice-covered Arctic Ocean. Here we present a unique dataset of ocean observations collected by a set of drifting buoys installed on ice floes as part of the 2019/2020 MOSAiC campaign. The buoys recorded temperature and salinity data for 10 months, providing extraordinary insights into the properties and processes of the ocean along their drift.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Jessica Cartwright, Alexander D. Fraser, and Richard Porter-Smith
Earth Syst. Sci. Data, 14, 479–490, https://doi.org/10.5194/essd-14-479-2022, https://doi.org/10.5194/essd-14-479-2022, 2022
Short summary
Short summary
Due to the scale and remote nature of the polar regions, it is essential to use satellite remote sensing to monitor and understand them and their dynamics. Here we present data from the Advanced Scatterometer (ASCAT), processed in a manner proven for use in cryosphere studies. The data have been processed on three timescales (5 d, 2 d and 1 d) in order to optimise temporal resolution as each of the three MetOp satellites is launched.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021, https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Short summary
We present here snow and ice core data from the northwestern Weddell Sea in late austral summer 2019, which allow insights into possible reasons for the recent low summer sea ice extent in the Weddell Sea. We suggest that the fraction of superimposed ice and snow ice can be used here as a sensitive indicator. However, snow and ice properties were not exceptional, suggesting that the summer surface energy balance and related seasonal transition of snow properties have changed little in the past.
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, and Takeshi Tamura
The Cryosphere, 15, 1697–1717, https://doi.org/10.5194/tc-15-1697-2021, https://doi.org/10.5194/tc-15-1697-2021, 2021
Short summary
Short summary
We used an ocean–sea ice–ice shelf model with a 2–3 km horizontal resolution to investigate ocean–ice shelf/glacier interactions in Lützow-Holm Bay, East Antarctica. The numerical model reproduced the observed warm water intrusion along the deep trough in the bay. We examined in detail (1) water mass changes between the upper continental slope and shelf regions and (2) the fast-ice role in the ocean conditions and basal melting at the Shirase Glacier tongue.
Ruibo Lei, Mario Hoppmann, Bin Cheng, Guangyu Zuo, Dawei Gui, Qiongqiong Cai, H. Jakob Belter, and Wangxiao Yang
The Cryosphere, 15, 1321–1341, https://doi.org/10.5194/tc-15-1321-2021, https://doi.org/10.5194/tc-15-1321-2021, 2021
Short summary
Short summary
Quantification of ice deformation is useful for understanding of the role of ice dynamics in climate change. Using data of 32 buoys, we characterized spatiotemporal variations in ice kinematics and deformation in the Pacific sector of Arctic Ocean for autumn–winter 2018/19. Sea ice in the south and west has stronger mobility than in the east and north, which weakens from autumn to winter. An enhanced Arctic dipole and weakened Beaufort Gyre in winter lead to an obvious turning of ice drifting.
Christian Katlein, Lovro Valcic, Simon Lambert-Girard, and Mario Hoppmann
The Cryosphere, 15, 183–198, https://doi.org/10.5194/tc-15-183-2021, https://doi.org/10.5194/tc-15-183-2021, 2021
Short summary
Short summary
To improve autonomous investigations of sea ice optical properties, we designed a chain of multispectral light sensors, providing autonomous in-ice light measurements. Here we describe the system and the data acquired from a first prototype deployment. We show that sideward-looking planar irradiance sensors basically measure scalar irradiance and demonstrate the use of this sensor chain to derive light transmittance and inherent optical properties of sea ice.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Alexander D. Fraser, Robert A. Massom, Kay I. Ohshima, Sascha Willmes, Peter J. Kappes, Jessica Cartwright, and Richard Porter-Smith
Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, https://doi.org/10.5194/essd-12-2987-2020, 2020
Short summary
Short summary
Landfast ice, or
fast ice, is a form of sea ice which is mechanically fastened to stationary parts of the coast. Long-term and accurate knowledge of its extent around Antarctica is critical for understanding a number of important Antarctic coastal processes, yet no accurate, large-scale, long-term dataset of its extent has been available. We address this data gap with this new dataset compiled from satellite imagery, containing high-resolution maps of Antarctic fast ice from 2000 to 2018.
Cited articles
Aoki, S.: Breakup of land-fast sea ice in Lützow-Holm Bay, East
Antarctica, and its teleconnection to tropical Pacific sea surface
temperatures, Geophys. Res. Lett., 44, 3219–3227, 2017.
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional
patterns of snowmelt on Antarctic sea ice from passive microwave satellite
observations, J. Geophys. Res.-Oceans, 121, 5916–5930,
https://doi.org/10.1002/2015JC011504, 2016.
Arndt, S., Asseng, J., Behrens, L. K., Hoppmann, M., Hunkeler, P. A.,
Ludewig, E., Müller, H., Paul, S., Rau, A., Schmidt, T.,
Schmithüsen, H., Schulz, H., Stautzebach, E., and Nicolaus, M.:
Thickness and properties of sea ice and snow of land-fast sea ice in Atka
Bay in 2010–2018, reference list of 9 datasets, Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA,
https://doi.pangaea.de/10.1594/PANGAEA.908860, 2019.
Arrigo, K. R.: Sea ice ecosystems, Annu. Rev. Mar. Sci., 6, 439–467, https://doi.org/10.1146/annurev-marine-010213-135103, 2014.
Boebel, O., Kindermann, L., Klinck, H., Bornemann, H., Plötz, J.,
Steinhage, D., Riedel, S., and Burkhardt, E.: Real-time underwater sounds
from the Southern Ocean, Eos Transactions, 87, 361–366, 2006.
Brett, G. M., Irvin, A., Rack, W., Haas, C., Langhorne, P. J., and Leonard,
G. H.: Variability in the Distribution of Fast Ice and the Sub-ice Platelet
Layer Near McMurdo Ice Shelf, J. Geophys. Res.-Oceans, 125,
e2019JC015678, https://doi.org/10.1029/2019jc015678, 2020.
Dammann, D. O., Eriksson, L. E. B., Mahoney, A. R., Eicken, H., and Meyer, F. J.: Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry, The Cryosphere, 13, 557–577, https://doi.org/10.5194/tc-13-557-2019, 2019.
Dempsey, D. E., Langhorne, P. J., Robinson, N. J., Williams, M. J. M.,
Haskell, T. G., and Frew, R. D.: Observation and modeling of platelet ice
fabric in McMurdo Sound, Antarctica, J. Geophys. Res.-Oceans,
115, C01007, https://doi.org/10.1029/2008jc005264, 2010.
Dieckmann, G., Rohardt, G., Hellmer, H., and Kipfstuhl, J.: The occurrence
of ice platelets at 250 m depth near the Filchner Ice Shelf and its
significance for sea ice biology, Deep-Sea Res. Pt. A, 33, 141–148, 1986.
Divine, D., Korsnes, R., and Makshtas, A.: Variability and climate
sensitivity of fast ice extent in the north-eastern Kara Sea, Polar
Res., 22, 27–34, https://doi.org/10.1111/j.1751-8369.2003.tb00092.x, 2003.
Druckenmiller, M. L., Eicken, H., Johnson, M. A., Pringle, D. J., and
Williams, C. C.: Toward an integrated coastal sea-ice observatory: System
components and a case study at Barrow, Alaska, Cold Reg. Sci.
Technol., 56, 61–72, https://doi.org/10.1016/j.coldregions.2008.12.003, 2009.
Eicken, H. and Lange, M. A.: Development and properties of sea ice in the
coastal regime of the southeastern Weddell Sea, J. Geophys.
Res.-Oceans, 94, 8193–8206, https://doi.org/10.1029/JC094iC06p08193, 1989.
Eicken, H., Lange, M. A., Hubberten, H. W., and Wadhams, P.: Characteristics
and distribution patterns of snow and meteoric ice in the Weddell Sea and
their contribution to the mass balance of sea ice, Ann.
Geophys.-Atm. Hydr., 12, 80–93,
10.1007/s00585-994-0080-x, 1994.
Eicken, H., Fischer, H., and Lemke, P.: Effects of the snow cover on
Antarctic sea ice and potential modulation of its response to climate
change, Ann. Glaciol., 21, 369–376, https://doi.org/10.3189/S0260305500016086, 1995.
Foldvik, A. and Kvinge, T.: Thermohaline convection in the vicinity of an ice
shelf, in: Polar oceans, Proceedings of the Polar Oceans Conference held at
McGill University, Montreal, May, 1974, edited by: Dunbar, M. J., Arctic
Institute of North America, Calgary, Alberta, 247–255, 1977.
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., and
Lieser, J. L.: East Antarctic landfast sea ice distribution and variability,
2000–08, J. Climate, 25, 1137–1156, 2012.
Fraser, A. D., Ohshima, K. I., Nihashi, S., Massom, R. A., Tamura, T.,
Nakata, K., Williams, G. D., Carpentier, S., and Willmes, S.: Landfast ice
controls on sea-ice production in the Cape Darnley Polynya: A case study,
Remote Sens. Environ., 233, 111315, https://doi.org/10.1016/j.rse.2019.111315, 2019.
Galley, R. J., Else, B. G. T., Howell, S. E. L., Lukovich, J. V., and
Barber, D. G.: Landfast Sea Ice Conditions in the Canadian Arctic:
1983–2009, Arctic, 65, 133–144, 2012.
Giles, A. B., Massom, R. A., and Lytle, V. I.: Fast-ice distribution in East
Antarctica during 1997 and 1999 determined using RADARSAT data, J.
Geophys. Res.-Oceans, 113, C02S14, https://doi.org/10.1029/2007JC004139, 2008.
Gough, A. J., Mahoney, A. R., Langhorne, P. J., Williams, M. J. M.,
Robinson, N. J., and Haskell, T. G.: Signatures of supercooling: McMurdo
Sound platelet ice, Journal of Glaciology, 58, 38-50, Doi
10.3189/2012jog10j218, 2012.
Grosfeld, K., Treffeisen, R., Asseng, J., Bartsch, A., Bräuer, B.,
Fritzsch, B., Gerdes, R., Hendricks, S., Hiller, W., and Heygster, G.:
Online sea-ice knowledge and data platform < www.meereisportal.de
>, Polarforschung, 85, 143–155, 2015.
Günther, S. and Dieckmann, G. S.: Seasonal development of algal biomass
in snow-covered fast ice and the underlying platelet layer in the Weddell
Sea, Antarctica, Antarct. Sci., 11, 305–315, 1999.
Günther, S. and Dieckmann, G. S.: Vertical zonation and community
transition of sea-ice diatoms in fast ice and platelet layer, Weddell Sea,
Antarctica, in: Ann Glaciol, edited by: Jeffries, M. O. and Eicken, H.,
Cambridge, 287–296, https://doi.org/10.3189/172756401781818590, 2001.
Haas, C.: The seasonal cycle of ERS scatterometer signatures over perennial
Antarctic sea ice and associated surface ice properties and processes, Ann.
Glaciol., 33, 69–73, https://doi.org/10.3189/172756401781818301, 2001.
Haas, C., Thomas, D. N., and Bareiss, J.: Surface properties and processes
of perennial Antarctic sea ice in summer, J. Glaciol., 47,
613–625, https://doi.org/10.3189/172756501781831864, 2001.
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H.: Two years
of oceanic observations below the Fimbul Ice Shelf, Antarctica, Geophys.
Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012, 2012.
Heil, P.: Atmospheric conditions and fast ice at Davis, East Antarctica: A
case study, J. Geophys. Res.-Oceans, 111, C05009, https://doi.org/10.1029/2005JC002904, 2006.
Heil, P., Gerland, S., and Granskog, M. A.: An Antarctic monitoring initiative for fast ice and comparison with the Arctic, The Cryosphere Discuss., 5, 2437–2463, https://doi.org/10.5194/tcd-5-2437-2011, 2011.
Hoppmann, M.: Sea-Ice Mass Balance Influenced by Ice Shelves, Jacobs
University Bremen, 2015.
Hoppmann, M., Paul, S., Hunkeler, P., Baltes, U., Kühnel, M., Schmidt, T., Nicolaus, M., Heinemann, G., and Willmes, S.: Field work on Atka Bay land-fast sea ice in 2012/13 (Field report), 2012.
Hoppmann, M., Nicolaus, M., Hunkeler, P. A., Heil, P., Behrens, L. K.,
Konig-Langlo, G., and Gerdes, R.: Seasonal evolution of an ice-shelf
influenced fast-ice regime, derived from an autonomous thermistor chain,
J. Geophys. Res.-Oceans, 120, 1703–1724,
10.1002/2014jc010327, 2015a.
Hoppmann, M., Nicolaus, M., Paul, S., Hunkeler, P. A., Heinemann, G.,
Willmes, S., Timmermann, R., Boebel, O., Schmidt, T., Kuhnel, M.,
Konig-Langlo, G., and Gerdes, R.: Ice platelets below Weddell Sea landfast
sea ice, Ann. Glaciol., 56, 175–190, https://doi.org/10.3189/2015AoG69A678, 2015b.
Hoppmann, M., Richter, M. E., Smith, I. J., Jendersie, S., Langhorne, P.,
Thomas, D., and Dieckmann, G.: Platelet ice, the Southern Ocean's hidden
ice: a review, Ann. Glaciol., 61, https://doi.org/10.1017/aog.2020.54, 2020.
Hughes, K. G., Langhorne, P. J., Leonard, G. H., and Stevens, C. L.:
Extension of an Ice Shelf Water plume model beneath sea ice with application
in McMurdo Sound, Antarctica, J. Geophys. Res.-Oceans, 119,
8662–8687, https://doi.org/10.1002/2013jc009411, 2014.
Hunkeler, P. A., Hoppmann, M., Hendricks, S., Kalscheuer, T., and Gerdes,
R.: A glimpse beneath Antarctic sea ice: Platelet layer volume from
multifrequency electromagnetic induction sounding, Geophys. Res.
Lett., 43, 222–231, 2016.
Jacobs, S., Helmer, H., Doake, C., Jenkins, A., and Frolich, R.: Melting of
ice shelves and the mass balance of Antarctica, J. Glaciol., 38,
375–387, 1992.
JCOMM Expert Team on Sea Ice: WMO Sea-Ice Nomenclature I-III, 2015.
Jeffries, M., Li, S., Jana, R., Krouse, H., and Hurst-Cushing, B.: Late
winter first-year ice floe thickness variability, seawater flooding and snow
ice formation in the Amundsen and Ross Seas, Antarctic Sea Ice: Physical
processes, interactions and variability, 74, 69–87, 1998.
Jeffries, M. O., Krouse, H. R., Hurst-Cushing, B., and Maksym, T.: Snow-ice
accretion and snow-cover depletion on Antarctic first-year sea-ice floes,
Ann. Glaciol., 33, 51–60, 2001.
Kawamura, T., Jeffries, M. O., Tison, J.-L., and Krouse, H. R.:
Superimposed-ice formation in summer on Ross Sea pack-ice floes, Ann.
Glaciol., 39, 563–568, 2004.
Kern, S. and Ozsoy-Çiçek, B.: Satellite Remote Sensing of Snow
Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches,
Remote Sens., 8, 450, https://doi.org/10.3390/rs8060450, 2016.
Kipfstuhl, J.: Zur Entstehung von Unterwassereis und das Wachstum und die
Energiebilanz des Meereises in der Atka Bucht, Antarktis = On the formation
of underwater ice and the growth and energy budget of the sea ice in Atka
Bay, Antarctica, Berichte zur Polarforschung (Reports on Polar Research),
85, https://doi.org/10.2312/BzP_0085_1991, 1991.
König-Langlo, G. and Loose, B.: The Meteorological Observatory at
Neumayer Stations (GvN and NM-II) Antarctica, Berichte zur Polar-und
Meeresforschung (Reports on Polar and Marine Research), 76, 25–38, 2007.
Kwok, R., Pang, S. S., and Kacimi, S.: Sea ice drift in the Southern Ocean:
Regional patterns, variability, and trends, Elem. Sci. Anth., 5, https://doi.org/10.1525/elementa.226, 2017.
Langhorne, P. J., Hughes, K. G., Gough, A. J., Smith, I. J., Williams, M. J.
M., Robinson, N. J., Stevens, C. L., Rack, W., Price, D., Leonard, G. H.,
Mahoney, A. R., Haas, C., and Haskell, T. G.: Observed platelet ice
distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux,
Geophys. Res. Lett., 42, 5442–5451, https://doi.org/10.1002/2015gl064508, 2015.
Lei, R. B., Li, Z. J., Cheng, B., Zhang, Z. H., and Heil, P.: Annual cycle
of landfast sea ice in Prydz Bay, east Antarctica, J. Geophys.
Res.-Oceans, 115, C02006,
https://doi.org/10.1029/2008jc005223, 2010.
Lemieux, J. F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G.
M.: Improving the simulation of landfast ice by combining tensile strength
and a parameterization for grounded ridges, J. Geophys. Res.-Oceans, 121, 7354–7368, 2016.
Leonard, G. H., Purdie, C. R., Langhorne, P. J., Haskell, T. G., Williams,
M. J. M., and Frew, R. D.: Observations of platelet ice growth and
oceanographic conditions during the winter of 2003 in McMurdo Sound,
Antarctica, J. Geophys. Res.-Oceans, 111, C04012,
https://doi.org/10.1029/2005jc002952, 2006.
Leonard, G. H., Langhorne, P. J., Williams, M. J. M., Vennell, R., Purdie,
C. R., Dempsey, D. E., Haskell, T. G., and Frew, R. D.: Evolution of
supercooling under coastal Antarctic sea ice during winter, Antarct. Sci.,
23, 399–409, https://doi.org/10.1017/S0954102011000265, 2011.
Li, L. and Pomeroy, J. W.: Estimates of threshold wind speeds for snow
transport using meteorological data, J. Appl. Meteorol., 36, 205–213,
https://doi.org/10.1175/1520-0450, 1997.
Mahoney, A., Eicken, H., Gaylord, A. G., and Shapiro, L.: Alaska landfast
sea ice: Links with bathymetry and atmospheric circulation, J.
Geophys. Res.-Oceans, 112, C02001, https://doi.org/10.1029/2006JC003559, 2007a.
Mahoney, A., Eicken, H., and Shapiro, L.: How fast is landfast sea ice? A
study of the attachment and detachment of nearshore ice at Barrow, Alaska,
Cold Reg. Sci. Technol., 47, 233–255, 2007b.
Mahoney, A. R., Gough, A. J., Langhorne, P. J., Robinson, N. J., Stevens, C.
L., Williams, M. M. J., and Haskell, T. G.: The seasonal appearance of ice
shelf water in coastal Antarctica and its effect on sea ice growth, J. Geophys. Res.-Oceans, 116, C11032, https://doi.org/10.1029/2011jc007060, 2011.
Mahoney, A. R., Eicken, H., Gaylord, A. G., and Gens, R.: Landfast sea ice
extent in the Chukchi and Beaufort Seas: The annual cycle and decadal
variability, Cold Reg. Sci. Technol., 103, 41–56, https://doi.org/10.1016/j.coldregions.2014.03.003, 2014.
Markus, T. and Cavalieri, D. J.: Snow depth distribution over sea ice in
the Southern Ocean from satellite passive microwave data, Antarctic sea ice:
physical processes, interactions and variability, 19–39, https://doi.org/10.1029/AR074p0019, 1998.
Massom, R., Hill, K., Lytle, V., Worby, A., Paget, M., and Allison, I.:
Effects of regional fast-ice and iceberg distributions on the behaviour of
the Mertz Glacier polynya, East Antarctica, Ann. Glaciol., 33,
391–398, 2001a.
Massom, R., Jacka, K., Pook, M., Fowler, C., Adams, N., and Bindoff, N.: An
anomalous late-season change in the regional sea ice regime in the vicinity
of the Mertz Glacier Polynya, East Antarctica, J. Geophys.
Res.-Oceans, 108, 3212, https://doi.org/10.1029/2002JC001354, 2003.
Massom, R. A., Eicken, H., Haas, C., Jeffries, M. O., Drinkwater, M. R.,
Sturm, M., Worby, A. P., Wu, X. R., Lytle, V. I., Ushio, S., Morris, K.,
Reid, P. A., Warren, S. G., and Allison, I.: Snow on Antarctic Sea ice, Rev.
Geophys., 39, 413–445, https://doi.org/10.1029/2000rg000085, 2001b.
Massom, R. A., Hill, K., Barbraud, C., Adams, N., Ancel, A., Emmerson, L.,
and Pook, M. J.: Fast ice distribution in Adélie Land, East Antarctica:
interannual variability and implications for emperor penguins Aptenodytes
forsteri, Mar. Ecol. Prog. Ser., 374, 243–257, 2009.
Massom, R. A., Giles, A. B., Fricker, H. A., Warner, R. C., Legrésy, B.,
Hyland, G., Young, N., and Fraser, A. D.: Examining the interaction between
multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica:
Another factor in ice sheet stability?, J. Geophys. Res.-Oceans, 115, C12027, https://doi.org/10.1029/2009JC006083, 2010.
Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and
Stammerjohn, S. E.: Antarctic ice shelf disintegration triggered by sea ice
loss and ocean swell, Nature, 558, 383–389, https://doi.org/10.1038/s41586-018-0212-1, 2018.
McGrath Grossi, S., Kottmeier, S. T., Moe, R. L., Taylor, G. T., and
Sullivan, C. W.: Sea ice microbial communities – VI – Growth and primary
production in bottom ice under graded snow cover, Mar. Ecol. Prog.
Ser., 35, 153–164, 1987.
Meiners, K. M., Vancoppenolle, M., Carnat, G., Castellani, G., Delille, B.,
Delille, D., Dieckmann, G. S., Flores, H., Fripiat, F., Grotti, M., Lange,
B. A., Lannuzel, D., Martin, A., McMinn, A., Nomura, D., Peeken, I., Rivaro,
P., Ryan, K. G., Stefels, J., Swadling, K. M., Thomas, D. N., Tison, J. L.,
van der Merwe, P., van Leeuwe, M. A., Weldrick, C., and Yang, E. J.:
Chlorophyll-a in Antarctic Landfast Sea Ice: A First Synthesis of Historical
Ice Core Data, J. Geophys. Res.-Oceans, 123, 8444–8459,
10.1029/2018JC014245, 2018.
Murphy, E. J., Clarke, A., Symon, C., and Priddle, J.: Temporal variation in
Antarctic sea-ice: analysis of a long term fast-ice record from the South
Orkney Islands, Deep-Sea Res. Pt. I, 42,
1045–1062, 1995.
Nicolaus, M. and Grosfeld, K.: Ice-Ocean Interactions underneath the
Antarctic Ice Shelf Ekströmisen, Polarforschung, 72, 17–29, 2004.
Olason, E.: A dynamical model of Kara Sea land-fast ice, J.
Geophys. Res.-Oceans, 121, 3141–3158, https://doi.org/10.1002/2016JC011638, 2016.
Polyakov, I. V., Alekseev, G. V., Bekryaev, R. V., Bhatt, U. S., Colony, R.,
Johnson, M. A., Karklin, V. P., Walsh, D., and Yulin, A. V.: Long-Term Ice
Variability in Arctic Marginal Seas, J. Climate, 16, 2078–2085,
https://doi.org/10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2, 2003.
Price, D., Rack, W., Langhorne, P. J., Haas, C., Leonard, G., and Barnsdale, K.: The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice, The Cryosphere, 8, 1031–1039, https://doi.org/10.5194/tc-8-1031-2014, 2014.
Robinson, D. H., Arrigo, K. R., Iturriaga, R., and Sullivan, C. W.:
Microalgal Light-Harvesting in Extreme Low-Light Environments in Mcmurdo
Sound, Antarctica1, J. Phycol., 31, 508–520,
10.1111/j.1529-8817.1995.tb02544.x, 1995.
Robinson, N. J., Williams, M. J. M., Stevens, C. L., Langhorne, P. J., and
Haskell, T. G.: Evolution of a supercooled Ice Shelf Water plume with an
actively growing subice platelet matrix, J. Geophys.
Res.-Oceans, 119, 3425–3446, https://doi.org/10.1002/2013jc009399, 2014.
Schmithüsen, H., König-Langlo, G., Müller, H., and Schulz, H.:
Continuous meteorological observations at Neumayer station
(2010–2018),reference list of 108 datasets, Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA,
https://doi.org/10.1594/PANGAEA.908826, 2019.
Selyuzhenok, V., Krumpen, T., Mahoney, A., Janout, M., and Gerdes, R.:
Seasonal and interannual variability of fast ice extent in the southeastern
Laptev Sea between 1999 and 2013, J. Geophys. Res.-Oceans, 120, 7791–7806,
https://doi.org/10.1002/2015JC011135, 2015.
Selyuzhenok, V., Mahoney, A., Krumpen, T., Castellani, G., and Gerdes, R.:
Mechanisms of fast-ice development in the south-eastern Laptev Sea: a case
study for winter of 2007/08 and 2009/10, Polar Res., 36, 1411140,
https://doi.org/10.1080/17518369.2017.1411140, 2017.
Smith, E. C., Hattermann, T., Kuhn, G., Gaedicke, C., Berger, S., Drews, R.,
Ehlers, T. A., Franke, D., Gromig, R., Hofstede, C., Lambrecht, A.,
Läufer, A., Mayer, C., Tiedemann, R., Wilhelms, F., and Eisen, O.:
Detailed Seismic Bathymetry Beneath Ekström Ice Shelf, Antarctica:
Implications for Glacial History and Ice-Ocean Interaction, Geophys.
Res. Lett., 47, e2019GL086187, https://doi.org/10.1029/2019gl086187, 2020.
Smith, I. J., Langhorne, P. J., Frew, R. D., Vennell, R., and Haskell, T.
G.: Sea ice growth rates near ice shelves, Cold Reg. Sci.
Technol., 83–84, 57–70, https://doi.org/10.1016/j.coldregions.2012.06.005, 2012.
Sullivan, C. W., Palmisano, A. C., Kottmeier, S., Grossi, S. M., and Moe,
R.: The Influence of Light on Growth and Development of the Sea-Ice
Microbial Community of McMurdo Sound, in: Antarctic Nutrient Cycles and Food
Webs, edited by: Siegfried, W., Condy, P., and Laws, R., Springer Berlin
Heidelberg, 78–83, 1985.
Tamura, T., Williams, G., Fraser, A., and Ohshima, K.: Potential regime
shift in decreased sea ice production after the Mertz Glacier calving,
Nat. Commun., 3, 826, https://doi.org/10.1038/ncomms1820, 2012.
Tamura, T., Ohshima, K. I., Fraser, A. D., and Williams, G. D.: Sea ice
production variability in Antarctic coastal polynyas, J. Geophys.
Res.-Oceans, 121, 2967–2979, 2016.
Wang, C., Cheng, B., Wang, K., Gerland, S., and Pavlova, O.: Modelling snow
ice and superimposed ice on landfast sea ice in Kongsfjorden, Svalbard,
Polar Res., 34, 20828, https://doi.org/10.3402/polar.v34.20828, 2015.
Williams, G., Bindoff, N., Marsland, S., and Rintoul, S.: Formation and
export of dense shelf water from the Adélie Depression, East Antarctica,
J. Geophys. Res.-Oceans, 113, C04039, https://doi.org/10.1029/2007JC004346, 2008.
Yu, Y., Stern, H., Fowler, C., Fetterer, F., and Maslanik, J.: Interannual
Variability of Arctic Landfast Ice between 1976 and 2007, J.
Climate, 27, 227–243, https://doi.org/10.1175/jcli-d-13-00178.1, 2014.