Journal cover Journal topic
The Cryosphere An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.713 IF 4.713
  • IF 5-year value: 4.927 IF 5-year
    4.927
  • CiteScore value: 8.0 CiteScore
    8.0
  • SNIP value: 1.425 SNIP 1.425
  • IPP value: 4.65 IPP 4.65
  • SJR value: 2.353 SJR 2.353
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 71 Scimago H
    index 71
  • h5-index value: 53 h5-index 53
TC | Articles | Volume 13, issue 11
The Cryosphere, 13, 3061–3075, 2019
https://doi.org/10.5194/tc-13-3061-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
The Cryosphere, 13, 3061–3075, 2019
https://doi.org/10.5194/tc-13-3061-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Nov 2019

Research article | 20 Nov 2019

Thickness of the divide and flank of the West Antarctic Ice Sheet through the last deglaciation

Perry Spector et al.

Related authors

New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica
Keir A. Nichols, Brent M. Goehring, Greg Balco, Joanne S. Johnson, Andrew S. Hein, and Claire Todd
The Cryosphere, 13, 2935–2951, https://doi.org/10.5194/tc-13-2935-2019,https://doi.org/10.5194/tc-13-2935-2019, 2019
Short summary
Isolation of quartz for cosmogenic in situ 14C analysis
Keir A. Nichols and Brent M. Goehring
Geochronology, 1, 43–52, https://doi.org/10.5194/gchron-1-43-2019,https://doi.org/10.5194/gchron-1-43-2019, 2019
Short summary
West Antarctic sites for subglacial drilling to test for past ice-sheet collapse
Perry Spector, John Stone, David Pollard, Trevor Hillebrand, Cameron Lewis, and Joel Gombiner
The Cryosphere, 12, 2741–2757, https://doi.org/10.5194/tc-12-2741-2018,https://doi.org/10.5194/tc-12-2741-2018, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Synoptic conditions and atmospheric moisture pathways associated with virga and precipitation over coastal Adélie Land in Antarctica
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020,https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Refractory black carbon (rBC) variability in a 47-year West Antarctic snow and firn core
Luciano Marquetto, Susan Kaspari, and Jefferson Cardia Simões
The Cryosphere, 14, 1537–1554, https://doi.org/10.5194/tc-14-1537-2020,https://doi.org/10.5194/tc-14-1537-2020, 2020
Short summary
Spatial probabilistic calibration of a high-resolution Amundsen Sea Embayment ice sheet model with satellite altimeter data
Andreas Wernecke, Tamsin L. Edwards, Isabel J. Nias, Philip B. Holden, and Neil R. Edwards
The Cryosphere, 14, 1459–1474, https://doi.org/10.5194/tc-14-1459-2020,https://doi.org/10.5194/tc-14-1459-2020, 2020
Short summary
How useful is snow accumulation in reconstructing surface air temperature in Antarctica? A study combining ice core records and climate models
Quentin Dalaiden, Hugues Goosse, François Klein, Jan T. M. Lenaerts, Max Holloway, Louise Sime, and Elizabeth R. Thomas
The Cryosphere, 14, 1187–1207, https://doi.org/10.5194/tc-14-1187-2020,https://doi.org/10.5194/tc-14-1187-2020, 2020
Short summary
Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing
Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 14, 599–632, https://doi.org/10.5194/tc-14-599-2020,https://doi.org/10.5194/tc-14-599-2020, 2020
Short summary

Cited articles

Ackert, R. P., Barclay, D. J., Borns, H. W., Calkin, P. E., Kurz, M. D., Fastook, J. L., and Steig, E. J.: Measurements of past ice sheet elevations in interior West Antarctica, Science, 286, 276–280, 1999. a, b, c
Ackert, R. P., Mukhopadhyay, S., Parizek, B. R., and Borns, H. W.: Ice elevation near the West Antarctic Ice Sheet divide during the last glaciation, Geophys. Res. Lett., 34, L21506, https://doi.org/10.1029/2007GL031412, 2007. a, b, c, d, e
Ackert, R. P., Mukhopadhyay, S., Pollard, D., DeConto, R. M., Putnam, A. E., and Borns, H. W.: West Antarctic Ice Sheet elevations in the Ohio Range: Geologic constraints and ice sheet modeling prior to the last highstand, Earth Planet. Sci. Lett., 307, 83–93, 2011. a
Ackert, R. P., Putnam, A. E., Mukhopadhyay, S., Pollard, D., DeConto, R. M., Kurz, M. D., and Borns, H. W.: Controls on interior West Antarctic Ice Sheet Elevations: inferences from geologic constraints and ice sheet modeling, Quaternary Sci. Rev., 65, 26–38, 2013. a, b, c, d
Alley, R. B. and Whillans, I. M.: Response of the East Antarctica ice sheet to sea-level rise, J. Geophys. Res.-Oceans, 89, 6487–6493, 1984. a
Publications Copernicus
Download
Short summary
We describe constraints on the thickness of the interior of the West Antarctic Ice Sheet (WAIS) through the last deglaciation. Our data imply that the ice-sheet divide between the Ross and Weddell sea sectors of the WAIS was thicker than present for a period less than ~ 8 kyr within the past ~ 15 kyr. These results are consistent with the hypothesis that the divide initially thickened due to the deglacial rise in snowfall and subsequently thinned in response to retreat of the ice-sheet margin.
We describe constraints on the thickness of the interior of the West Antarctic Ice Sheet (WAIS)...
Citation