Articles | Volume 12, issue 2
https://doi.org/10.5194/tc-12-609-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-609-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
Dorothée Vallot
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Jan Åström
CSC – IT Center for Science, Espoo, Finland
Thomas Zwinger
CSC – IT Center for Science, Espoo, Finland
Rickard Pettersson
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Alistair Everett
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Douglas I. Benn
School of Geography and Sustainable Development, University of St Andrews, St Andrews, Scotland, UK
Adrian Luckman
Department of Geography, Swansea University, Swansea, UK
Department of Arctic Geophysics, UNIS, The University Center in Svalbard, Longyearbyen, Norway
Ward J. J. van Pelt
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
Faezeh Nick
Arctic Geology Department, University Centre in Svalbard, Svalbard, Norway
Jack Kohler
Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
Related authors
Dorothée Vallot, Nicolas C. Jourdain, and Pierre Mathiot
EGUsphere, https://doi.org/10.5194/egusphere-2025-2866, https://doi.org/10.5194/egusphere-2025-2866, 2025
Short summary
Short summary
Some recent studies show that the topography at the base of an ice shelf has consequences for its interaction with the ocean. To describe friction velocity in the melt parameterisation, we use a drag coefficient dependent on the distance of the first wet cell to the ice and the basal topography rather than a fixed-tuned parameter. We find that it is less dependent on the choice of vertical resolution and, while providing similar total melt, it gives more weight to highly crevassed areas.
Florian Vacek, Faezeh M. Nick, Douglas Benn, Maarten P. A. Zwarts, Walter Immerzeel, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-5733, https://doi.org/10.5194/egusphere-2025-5733, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied a unique glacier in South Greenland that ends in both a lake and the ocean. Using satellite data and field work, we found that the two glacier fronts behave very differently even under the same climate. At the lake glacier little melt below water and the presence of lake ice reduce the production of icebergs. The lake glacier experienced a sudden large breakup. Our work suggests that lake and marine glacier fronts must be treated differently in model simulations.
Matias Uusinoka, Jari Haapala, Jan Åström, Mikko Lensu, and Arttu Polojärvi
The Cryosphere, 19, 6493–6506, https://doi.org/10.5194/tc-19-6493-2025, https://doi.org/10.5194/tc-19-6493-2025, 2025
Short summary
Short summary
We tracked sea ice deformation over a nine-month period using high-resolution ship radar data and a state-of-the-art deep learning technique. We observe that the typically consistent scale-invariant pattern in sea ice deformation has a possible lower limit of about 102 meters in winter, but this behavior disappears during summer. Our findings provide important insights for considering current modeling assumptions and for connecting the scales of interest in sea ice dynamics.
Yiliang Ma, Liyun Zhao, Rupert Gladstone, Thomas Zwinger, Michael Wolovick, Junshun Wang, and John C. Moore
The Cryosphere, 19, 6187–6205, https://doi.org/10.5194/tc-19-6187-2025, https://doi.org/10.5194/tc-19-6187-2025, 2025
Short summary
Short summary
Totten Glacier in Antarctica holds a sea level potential of 3.85 m. Basal sliding and sub-shelf melt rate have an important impact on ice sheet dynamics. We simulate the evolution of Totten Glacier using an ice flow model with different basal sliding parameterizations and sub-shelf melt rates to quantify their effect on the projections. We found that the modelled glacier retreat and mass loss are sensitive to the choice of basal sliding parameterizations and maximal sub-shelf melt rate.
A. Clara J. Henry, Thomas Zwinger, and Josefin Ahlkrona
EGUsphere, https://doi.org/10.5194/egusphere-2025-4192, https://doi.org/10.5194/egusphere-2025-4192, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To overcome time-step restrictions, we implement the Free-Surface Stabilisation Algorithm (FSSA) at the ice-ocean interface in Stokes ice-sheet simulations. In 2D experiments, a time step of 10 years is generally numerically stable and accurate, whereas a time step of 50 years is stable, but cannot fully capture grounding-line dynamics. Implementation at the ice-ocean interface increases the applicability of Stokes models and motivates future coupling with adaptive time-stepping schemes.
Johanna Beckmann, Ronja Reese, Felicity S. McCormack, Sue Cook, Lawrence Bird, Dawid Gwyther, Daniel Richards, Matthias Scheiter, Yu Wang, Hélène Seroussi, Ayako Abe‐Ouchi, Torsten Albrecht, Jorge Alvarez‐Solas, Xylar S. Asay‐Davis, Jean‐Baptiste Barre, Constantijn J. Berends, Jorge Bernales, Javier Blasco, Justine Caillet, David M. Chandler, Violaine Coulon, Richard Cullather, Christophe Dumas, Benjamin K. Galton‐Fenzi, Julius Garbe, Fabien Gillet‐Chaulet, Rupert Gladstone, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, G. Hilmar Gudmundsson, Holly Kyeore Han, Trevor R. Hillebrand, Matthew J. Hoffman, Philippe Huybrechts, Nicolas C. Jourdain, Ann Kristin Klose, Petra M. Langebroek, Gunter R. Leguy, William H. Lipscomb, Daniel P. Lowry, Pierre Mathiot, Marisa Montoya, Mathieu Morlighem, Sophie Nowicki, Frank Pattyn, Antony J. Payne, Tyler Pelle, Aurélien Quiquet, Alexander Robinson, Leopekka Saraste, Erika G. Simon, Sainan Sun, Jake P. Twarog, Luke D. Trusel, Benoit Urruty, Jonas Van Breedam, Roderik S. W. van de Wal, Chen Zhao, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2025-4069, https://doi.org/10.5194/egusphere-2025-4069, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Antarctica holds enough ice to raise sea levels by many meters, but its future is uncertain. Warm ocean water melts ice shelves from below, letting inland ice flow faster into the sea. By 2300, Antarctica could add 0.6–4.4 m to sea levels. Our study identifies two key factors—how strongly shelves melt and how the ice responds. These explain much of the range, and refining them in models may improve future predictions.
Dorothée Vallot, Nicolas C. Jourdain, and Pierre Mathiot
EGUsphere, https://doi.org/10.5194/egusphere-2025-2866, https://doi.org/10.5194/egusphere-2025-2866, 2025
Short summary
Short summary
Some recent studies show that the topography at the base of an ice shelf has consequences for its interaction with the ocean. To describe friction velocity in the melt parameterisation, we use a drag coefficient dependent on the distance of the first wet cell to the ice and the basal topography rather than a fixed-tuned parameter. We find that it is less dependent on the choice of vertical resolution and, while providing similar total melt, it gives more weight to highly crevassed areas.
Tim van den Akker, Ward van Pelt, Rickard Petterson, and Veijo A. Pohjola
The Cryosphere, 19, 1513–1525, https://doi.org/10.5194/tc-19-1513-2025, https://doi.org/10.5194/tc-19-1513-2025, 2025
Short summary
Short summary
Liquid water can persist within old snow on glaciers and ice caps if it can percolate into the snow before it refreezes. Snow is a good insulator, and it is porous where the percolated water can be stored. If this happens, the water piles up and forms a groundwater-like system. Here, we show observations of such a groundwater-like system found in Svalbard. We demonstrate that it behaves like a groundwater system and use that to model the development of the water table from 1957 until the present day.
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025, https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Short summary
Accurate information on the ice thickness of Svalbard's glaciers is important for assessing the contribution to sea level rise in a present and a future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations to infer basal conditions. We present and analyse the new bed and thickness maps, quantify the ice volume (6800 km3), and compare these against radar data and previous studies.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Iain Wheel, Douglas I. Benn, Anna J. Crawford, Joe Todd, and Thomas Zwinger
Geosci. Model Dev., 17, 5759–5777, https://doi.org/10.5194/gmd-17-5759-2024, https://doi.org/10.5194/gmd-17-5759-2024, 2024
Short summary
Short summary
Calving, the detachment of large icebergs from glaciers, is one of the largest uncertainties in future sea level rise projections. This process is poorly understood, and there is an absence of detailed models capable of simulating calving. A new 3D calving model has been developed to better understand calving at glaciers where detailed modelling was previously limited. Importantly, the new model is very flexible. By allowing for unrestricted calving geometries, it can be applied at any location.
Coline Bouchayer, Ugo Nanni, Pierre-Marie Lefeuvre, John Hult, Louise Steffensen Schmidt, Jack Kohler, François Renard, and Thomas V. Schuler
The Cryosphere, 18, 2939–2968, https://doi.org/10.5194/tc-18-2939-2024, https://doi.org/10.5194/tc-18-2939-2024, 2024
Short summary
Short summary
We explore the interplay between surface runoff and subglacial conditions. We focus on Kongsvegen glacier in Svalbard. We drilled 350 m down to the glacier base to measure water pressure, till strength, seismic noise, and glacier surface velocity. In the low-melt season, the drainage system adapted gradually, while the high-melt season led to a transient response, exceeding drainage capacity and enhancing sliding. Our findings contribute to discussions on subglacial hydro-mechanical processes.
Jan Åström, Fredrik Robertsen, Jari Haapala, Arttu Polojärvi, Rivo Uiboupin, and Ilja Maljutenko
The Cryosphere, 18, 2429–2442, https://doi.org/10.5194/tc-18-2429-2024, https://doi.org/10.5194/tc-18-2429-2024, 2024
Short summary
Short summary
The HiDEM code has been developed for analyzing the fracture and fragmentation of brittle materials and has been extensively applied to glacier calving. Here, we report on the adaptation of the code to sea-ice dynamics and breakup. The code demonstrates the capability to simulate sea-ice dynamics on a 100 km scale with an unprecedented resolution. We argue that codes of this type may become useful for improving forecasts of sea-ice dynamics.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Andrea Spolaor, Federico Scoto, Catherine Larose, Elena Barbaro, Francois Burgay, Mats P. Bjorkman, David Cappelletti, Federico Dallo, Fabrizio de Blasi, Dmitry Divine, Giuliano Dreossi, Jacopo Gabrieli, Elisabeth Isaksson, Jack Kohler, Tonu Martma, Louise S. Schmidt, Thomas V. Schuler, Barbara Stenni, Clara Turetta, Bartłomiej Luks, Mathieu Casado, and Jean-Charles Gallet
The Cryosphere, 18, 307–320, https://doi.org/10.5194/tc-18-307-2024, https://doi.org/10.5194/tc-18-307-2024, 2024
Short summary
Short summary
We evaluate the impact of the increased snowmelt on the preservation of the oxygen isotope (δ18O) signal in firn records recovered from the top of the Holtedahlfonna ice field located in the Svalbard archipelago. Thanks to a multidisciplinary approach we demonstrate a progressive deterioration of the isotope signal in the firn core. We link the degradation of the δ18O signal to the increased occurrence and intensity of melt events associated with the rapid warming occurring in the archipelago.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Maryam Zarrinderakht, Christian Schoof, and Thomas Zwinger
EGUsphere, https://doi.org/10.5194/egusphere-2023-807, https://doi.org/10.5194/egusphere-2023-807, 2023
Preprint withdrawn
Short summary
Short summary
We used a model to study how crevasses propagate in ice shelves. Our model combines a viscous model and a fracture mechanics model. We studied periodic crevasses on an ice shelf being stretched. We show that existing models based only on stress cannot fully explain how crevasses grow and lead to iceberg calving. This model can be a useful tool to train a low-dimensional representation calving law for an ice sheet model.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Marlene Kronenberg, Ward van Pelt, Horst Machguth, Joel Fiddes, Martin Hoelzle, and Felix Pertziger
The Cryosphere, 16, 5001–5022, https://doi.org/10.5194/tc-16-5001-2022, https://doi.org/10.5194/tc-16-5001-2022, 2022
Short summary
Short summary
The Pamir Alay is located at the edge of regions with anomalous glacier mass changes. Unique long-term in situ data are available for Abramov Glacier, located in the Pamir Alay. In this study, we use this extraordinary data set in combination with reanalysis data and a coupled surface energy balance–multilayer subsurface model to compute and analyse the distributed climatic mass balance and firn evolution from 1968 to 2020.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022, https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Short summary
Tunabreen is a 26 km long tidewater glacier. It is the most frequently surging glacier in Svalbard, with four documented surges in the past 100 years. We have modelled this glacier to find out how it reacts to future climate change. Careful calibration was done against the observed length record for the past 100 years. For a 50 m increase in the equilibrium line altitude (ELA) the length of the glacier will be shortened by 10 km after about 100 years.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Zdanowicz, Jean-Charles Gallet, Mats P. Björkman, Catherine Larose, Thomas Schuler, Bartłomiej Luks, Krystyna Koziol, Andrea Spolaor, Elena Barbaro, Tõnu Martma, Ward van Pelt, Ulla Wideqvist, and Johan Ström
Atmos. Chem. Phys., 21, 3035–3057, https://doi.org/10.5194/acp-21-3035-2021, https://doi.org/10.5194/acp-21-3035-2021, 2021
Short summary
Short summary
Black carbon (BC) aerosols are soot-like particles which, when transported to the Arctic, darken snow surfaces, thus indirectly affecting climate. Information on BC in Arctic snow is needed to measure their impact and monitor the efficacy of pollution-reduction policies. This paper presents a large new set of BC measurements in snow in Svalbard collected between 2007 and 2018. It describes how BC in snow varies across the archipelago and explores some factors controlling these variations.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Cited articles
Aliani, S., Sciascia, R., Conese, I., D'Angelo, A., Del Bianco, F., Giglio, F.,
Langone, L., and Miserocchi, S.: Characterization of seawater properties and
ocean heat content in Kongsfjorden, Svalbard Archipelago, Rendiconti Lincei,
27, 155–162, https://doi.org/10.1007/s12210-016-0544-4, 2016. a
Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving
models, J. Glaciol., 56, 822–830,
https://doi.org/10.3189/002214310794457173, 2010. a
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J.
C., and Timonen, J.: A particle based simulation model for glacier dynamics,
The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013. a, b
Åström, J. A., Vallot, D., Schäfer, M., Welty, E. Z., O'Neel, S.,
Bartholomaus, T., Liu, Y., Riikilä, T., Zwinger, T., Timonen, J., and Moore, J. C.:
Termini of calving glaciers as self-organized critical systems, Nat.
Geosci., 7, 874–878, https://doi.org/10.1038/NGEO2290, 2014. a, b
Bassis, J. and Jacobs, S.: Diverse calving patterns linked to glacier geometry,
Nat. Geosci., 6, 833–836, https://doi.org/10.1038/ngeo1887, 2013. a
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179,
https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. a
Benn, D. I., Åström, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S.,
Hulton, N. R., and Luckman, A.: Melt-under-cutting and buoyancy-driven
calving from tidewater glaciers: new insights from discrete element and
continuum model simulations, J. Glaciol., 63, 691–702,
https://doi.org/10.1017/jog.2017.41, 2017. a, b, c
Boehme, L., Lovell, P., Biuw, M., Roquet, F., Nicholson, J., Thorpe, S. E.,
Meredith, M. P., and Fedak, M.: Technical Note: Animal-borne CTD-Satellite
Relay Data Loggers for real-time oceanographic data collection, Ocean
Sci., 5, 685–695, https://doi.org/10.5194/os-5-685-2009, 2009. a
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A.,
and Stearns, L. A.: Modeling turbulent subglacial meltwater plumes:
Implications for fjord-scale buoyancy-driven circulation, J.
Phys. Oceanogr., 45, 2169–2185, https://doi.org/10.1175/JPO-D-15-0033.1, 2015. a
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A.,
Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W.,
Stammer, D., and Unnikrishnan, A.: Sea Level Change, book section 13,
1137–1216 pp., Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, https://doi.org/10.1017/CBO9781107415324.026, 2013. a
Claremar, B., Obleitner, F., Reijmer, C., Pohjola, V., Waxegard, A., Karner,
F., and Rutgersson, A.: Applying a Mesoscale Atmospheric Model to Svalbard
Glaciers, Adv. Meteorol., 2012, 321649,
https://doi.org/10.1155/2012/321649, 2012. a
Cook, S., Zwinger, T., Rutt, I., O'Neel, S., and Murray, T.: Testing the effect
of water in crevasses on a physically based calving model, Ann.
Glaciol., 53, 90–96, https://doi.org/10.3189/2012AoG60A107, 2012. a
Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., and Griffiths,
C.: Water mass modification in an Arctic fjord through cross-shelf exchange:
The seasonal hydrography of Kongsfjorden, Svalbard, J. Geophys.
Res.-Oceans, 110, C12, https://doi.org/10.1029/2004JC002757, 2005. a, b
Everett, A., Lydersen, C., Kovacs, K. M., Kohler, J., and Sundfjord, A.:
Hydrography data from GPS-CTD-SRDL-equipped Ringed seals in Kongsfjorden
2012, Norwegian Polar Institute, https://doi.org/10.21334/npolar.2017.7b538020, 2017. a
Fried, M., Catania, G., Bartholomaus, T., Duncan, D., Davis, M., Stearns, L.,
Nash, J., Shroyer, E., and Sutherland, D.: Distributed subglacial discharge
drives significant submarine melt at a Greenland tidewater glacier,
Geophys. Res. Lett., 42, 9328–9336, https://doi.org/10.1002/2015GL065806,
2015. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de
Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen,
J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and
performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model
Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet
contribution to sea-level rise from a new-generation ice-sheet model, The
Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012. a
Goldberg, D. N. and Sergienko, O. V.: Data assimilation using a hybrid ice
flow model, The Cryosphere, 5, 315–327,
https://doi.org/10.5194/tc-5-315-2011, 2011. a
Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., and Lyberth,
B.: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean
waters, Nat. Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316,
2008. a, b
Holland, P. R., Jenkins, A., and Holland, D. M.: The response of ice shelf
basal melting to variations in ocean temperature, J. Climate, 21,
2558–2572, https://doi.org/10.1175/2007JCLI1909.1, 2008. a
How, P., Benn, D. I., Hulton, N. R. J., Hubbard, B., Luckman, A., Sevestre,
H., van Pelt, W. J. J., Lindbäck, K., Kohler, J., and Boot, W.: Rapidly
changing subglacial hydrological pathways at a tidewater glacier revealed
through simultaneous observations of water pressure, supraglacial lakes,
meltwater plumes and surface velocities, The Cryosphere, 11, 2691–2710,
https://doi.org/10.5194/tc-11-2691-2017, 2017. a, b
Howe, J. A., Moreton, S. G., Morri, C., and Morris, P.: Multibeam bathymetry
and the depositional environments of Kongsfjorden and Krossfjorden, western
Spitsbergen, Svalbard, Polar Res., 22, 301–316,
https://doi.org/10.1111/j.1751-8369.2003.tb00114.x, 2003. a
Jarrin, N., Benhamadouche, S., Laurence, D., and Prosser, R.: A
synthetic-eddy-method for generating inflow conditions for large-eddy
simulations, Int. J. Heat Fluid Flow, 27, 585–593,
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.006, 2006. a
Jenkins, A.: Convection-driven melting near the grounding lines of ice shelves
and tidewater glaciers, J. Phys. Oceanogr., 41, 2279–2294,
https://doi.org/10.1175/JPO-D-11-03.1, 2011. a, b, c
Jenkins, A. and Bombosch, A.: Modeling the effects of frazil ice crystals on
the dynamics and thermodynamics of Ice Shelf Water plumes, J.
Geophys. Res.-Oceans, 100, 6967–6981, https://doi.org/10.1029/94JC03227, 1995. a
Kehrl, L. M., Hawley, R. L., Powell, R. D., and Brigham-Grette, J.: Glacimarine
sedimentation processes at Kronebreen and Kongsvegen, Svalbard, J.
Glaciol., 57, 841–847, https://doi.org/10.3189/002214311798043708, 2011. a, b
Kimura, S., Candy, A. S., Holland, P. R., Piggott, M. D., and Jenkins, A.:
Adaptation of an unstructured-mesh, finite-element ocean model to the
simulation of ocean circulation beneath ice shelves, Ocean Modell., 67,
39–51, https://doi.org/10.1016/j.ocemod.2013.03.004, 2013. a, b
Köhler, A., Nuth, C., Kohler, J., Berthier, E., Weidle, C., and Schweitzer,
J.: A 15 year record of frontal glacier ablation rates estimated from seismic
data, Geophys. Res. Lett., 43, 23, https://doi.org/10.1002/2016GL070589, 2016. a
Krug, J., Weiss, J., Gagliardini, O., and Durand, G.: Combining damage and
fracture mechanics to model calving, The Cryosphere, 8, 2101–2117,
https://doi.org/10.5194/tc-8-2101-2014, 2014. a
Krug, J., Durand, G., Gagliardini, O., and Weiss, J.: Modelling the impact of
submarine frontal melting and ice mélange on glacier dynamics, The
Cryosphere, 9, 989–1003, https://doi.org/10.5194/tc-9-989-2015, 2015. a
McNabb, R., Hock, R., and Huss, M.: Variations in Alaska tidewater glacier
frontal ablation, 1985–2013, J. Geophys. Res.-Earth Surf.,
120, 120–136, https://doi.org/10.1002/2014JF003276, 2015. a
McPhee, M. G., Morison, J. H., and Nilsen, F.: Revisiting heat and salt
exchange at the ice-ocean interface: Ocean flux and modeling considerations,
J. Geophys. Res.-Oceans, 113, c06014, https://doi.org/10.1029/2007JC004383, 2008. a
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry,
D.: Spatial patterns of basal drag inferred using control methods from a
full-Stokes and simpler models for Pine Island Glacier, West Antarctica,
Geophys. Res. Lett., 37, L14502, https://doi.org/10.1029/2010GL043853, 2010. a
Nahrgang, J., Varpe, Ø., Korshunova, E., Murzina, S., Hallanger, I. G.,
Vieweg, I., and Berge, J.: Gender specific reproductive strategies of an
Arctic key species (Boreogadus saida) and implications of climate change,
PLoS one, 9, e98452, https://doi.org/10.1371/journal.pone.0098452, 2014. a
Nick, F., Van der Veen, C. J., Vieli, A., and Benn, D.: A physically based
calving model applied to marine outlet glaciers and implications for the
glacier dynamics, J. Glaciol., 56, 781–794,
https://doi.org/10.3189/002214310794457344, 2010. a
Piggott, M. D., Gorman, G. J., Pain, C. C., Allison, P. A., Candy, A. S.,
Martin, B. T., and Wells, M. R.: A new computational framework for
multi-scale ocean modelling based on adapting unstructured meshes,
Int. J. Numer. Meth. Fl., 56, 1003–1015,
https://doi.org/10.1002/fld.1663, 2008. a
Schellenberger, T., Dunse, T., Kääb, A., Kohler, J., and Reijmer, C. H.:
Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard,
from SAR offset tracking, The Cryosphere, 9, 2339–2355,
https://doi.org/10.5194/tc-9-2339-2015, 2015. a
Slater, D. A., Nienow, P. W., Cowton, T. R., Goldberg, D. N., and Sole, A. J.:
Effect of near-terminus subglacial hydrology on tidewater glacier submarine
melt rates, Geophys. Res. Lett., 42, 2861–2868,
https://doi.org/10.1002/2014GL062494, 2014GL062494, 2015. a
Slater, D. A., Goldberg, D. N., Nienow, P. W., and Cowton, T. R.: Scalings for
submarine melting at tidewater glaciers from buoyant plume theory, J.
Phys. Oceanogr., 46, 1839–1855, https://doi.org/10.1175/JPO-D-15-0132.1, 2016.
a
Slater, D., Nienow, P., Goldberg, D., Cowton, T., and Sole, A.: A model for
tidewater glacier undercutting by submarine melting, Geophys. Res.
Lett., 44, 2360–2368, https://doi.org/10.1002/2016GL072374, 2017a. a
Slater, D., Nienow, P., Sole, A., Cowton, T., Mottram, R., Langen, P., and
Mair, D.: Spatially distributed runoff at the grounding line of a large
Greenlandic tidewater glacier inferred from plume modelling, J.
Glaciol., 63, 309–323, https://doi.org/10.1017/jog.2016.139, 2017b. a
Smagorinsky, J.: General circulation experiments with the primitive equations,
Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Stevens, L. A., Straneo, F., Das, S. B., Plueddemann, A. J., Kukulya, A. L.,
and Morlighem, M.: Linking glacially modified waters to catchment-scale
subglacial discharge using autonomous underwater vehicle observations, The
Cryosphere, 10, 417–432, https://doi.org/10.5194/tc-10-417-2016, 2016. a
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013. a
Tarboton, D. G., Bras, R. L., and Puente, C. E.: Combined hydrologic sampling
criteria for rainfall and streamflow, J. Hydrol., 95, 323–339,
https://doi.org/10.1016/0022-1694(87)90009-6, 1987. a
Trusel, L. D., Powell, R., Cumpston, R., and Brigham-Grette, J.: Modern
glacimarine processes and potential future behaviour of Kronebreen and
Kongsvegen polythermal tidewater glaciers, Kongsfjorden, Svalbard, Geol.
Soc., London, Special Publications, 344, 89–102, https://doi.org/10.1144/SP344.9,
2010. a, b, c
Vallot, D., Pettersson, R., Luckman, A., Benn, D. I., Zwinger, T., Van Pelt,
W., Kohler, J., Schäfer, M., Claremar, B., and Hulton, N. R. J.: Basal
dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard:
non-local spatio-temporal response to water input, J. Glaciol.,
63, 1012–1024, https://doi.org/10.1017/jog.2017.69, 2017. a, b, c, d, e
Van der Veen, C.: Calving glaciers, Progr. Phys. Geogr., 26,
96–122, https://doi.org/10.1191/0309133302pp327ra, 2002. a
Van Pelt, W. J. J. and Kohler, J.: Modelling the long-term mass balance and
firn evolution of glaciers around Kongsfjorden, Svalbard, J.
Glaciol., 61, 731–744, https://doi.org/10.3189/2015JoG14J223, 2015. a, b, c
Xu, Y., Rignot, E., Fenty, I., Menemenlis, D., and Flexas, M. M.: Subaqueous
melting of Store Glacier, west Greenland from three-dimensional,
high-resolution numerical modeling and ocean observations, Geophys.
Res. Lett., 40, 4648–4653, https://doi.org/10.1002/grl.50825, 2013. a
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
This paper presents a new perspective on the role of ice dynamics and ocean interaction in...